New Jersey Semi-Conductor Products, Inc.

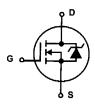
20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A. TELEPHONE: (973) 376-2922 (212) 227-6005 FAX: (973) 376-8960

IRFF130

8.0A, 100V, 0.180 Ohm, N-Channel Power MOSFET

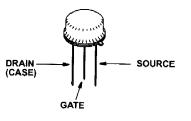
This N-Channel enhancement mode silicon gate power field effect transistor is an advanced power MOSFET designed, tested, and guaranteed to withstand a specified level of energy in the breakdown avalanche mode of operation. All of these power MOSFETs are designed for applications such as switching regulators, switching convertors, motor drivers, relay drivers, and drivers for high power bipolar switching transistors requiring high speed and low gate drive power. These types can be operated directly from integrated circuits.

Features


- 8.0A, 100V
- r_{DS(ON)} = 0.180Ω
- Single Pulse Avalanche Energy Rated
- SOA is Power Dissipation Limited
- Nanosecond Switching Speeds
- Linear Transfer Characteristics
- High Input Impedance
- Related Literature

Ordering Information

PART NUMBER	PACKAGE	BRAND		
IRFF130	TO-205AF	IRFF130		


NOTE: When ordering, use the entire part number.

Symbol

Packaging

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.

Quality Semi-Conductors

Absolute Maximum Ratings T_C = 25°C, Unless Otherwise Specified

Electrical Specifications T_C = 25°C, Unless Otherwise Specified

SYMBOL

,

	IRFF130	UNITS
Drain to Source Voltage (Note 1)V _{DS}	100	V
Drain to Gate Voltage (R _{GS} = 20kΩ) (Note 1)	100	V
Continuous Drain Current	8.0	А
Pulsed Drain Current (Note 3)I _{DM}	32	А
Gate to Source Voltage	±20	V
Maximum Power Dissipation, T _C = 25 ^o CP _D	25	W
Linear Derating Factor	0.2	W/ ^o C
Single Pulse Avalanche Energy Rating (Note 4)	69	mJ
Operating and Storage Temperature	-55 to 150	°C
Maximum Temperature for Soldering		
Leads at 0.063in (1.6mm) from Case for 10s	300	°C
Package Body for 10s, See Techbrief 334	260	°C

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

TEST CONDITIONS

түр

MIN

MAX

4.0

25

250

±100

0.180

-

50

150

UNITS

V

V

μΑ

μΑ

А

nΑ

Ω

s

ns

ns

NOTE:

1. $T_J = 25^{\circ}C$ to $125^{\circ}C$.

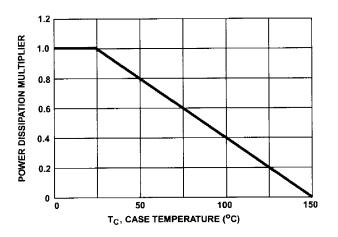
PARAMETER

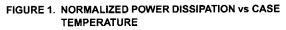
I_D = 250μA, V_{GS} = 0V (Figure 10) 100 Drain to Source Breakdown Voltage **BV**_{DSS} _ Gate Threshold Voltage VGS(TH) $V_{GS} = V_{DS}$, $I_D = 250 \mu A$ 2.0 - V_{DS} = Rated BV_{DSS}, V_{GS} = 0V Zero Gate Voltage Drain Current --IDSS V_{DS} = 0.8 x Rated BV_{DSS}, V_{GS} = 0V, T_C = 125^oC --On-State Drain Current (Note 2) $V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}, V_{GS} = 10V$ 8.0 -D(ON) $V_{GS} = \pm 20V$ Gate to Source Leakage Current _ -IGSS I_D = 4.0A, V_{GS} = 10V (Figures 8, 9) 0.14 Drain to Source On Resistance (Note 2) _ DS(ON) 5.5 Forward Transconductance (Note 2) $V_{DS} > I_{D(ON)} \times r_{DS(ON)MAX}$, $I_D = 4.0A$ (Figure 12) 4.0 9fs $V_{DD} \cong 0.5 \text{ x Rated BV}_{DSS}, \text{ I}_{D} \approx 8.0 \text{A}, \text{ R}_{G} = 9.1 \Omega,$ Turn-On Delay Time -30 t_{d(ON)} $V_{GS} = 10V, R_L = 6.1\Omega \mbox{ For } V_{DSS} = 50V, \\ R_L = 4.9\Omega \mbox{ For } V_{DSS} = 40 \mbox{ (Figures 17, 18) } \mbox{ MOSFET}$ **Rise Time** 80 tr

Turn-Off Delay Time	td(OFF)	Switching Times are Essentially Independent of Operating Temperature		-	50	100	ns
Fall Time	t _f			-	80	150	ns
Total Gate Charge (Gate to Source + Gate to Drain)	Q _{g(TOT)}	$V_{GS} = 10V, I_D = 8.0A, V_{DS} = 0.8 \times \text{Rated BV}_{DSS}$ (Figures 14, 19, 20) Gate Charge is Essentially Independent of Operating Temperature $V_{DS} = 25V, V_{GS} = 0V, f = 1MHz \text{ (Figure 11)}$		-	18	30	nC
Gate to Source Charge	Q _{gs}			-	9.0	-	nC
Gate to Drain "Miller" Charge	Q _{gd}			-	9.0	-	nC
Input Capacitance	CISS			-	600	-	pF
Output Capacitance	C _{OSS}			-	300	-	pF
Reverse Transfer Capacitance	C _{RSS}			-	100	-	pF
Internal Drain Inductance	LD	Measured from the Drain Lead, 5.0mm (0.2in) from Header to Center of Die	Modified MOSFET Symbol Showing the Internal Device	-	5.0	-	nH
Internal Source Inductance	L _S Measured from the Source Lead, 5.0mm (0.2in) from Header to Source Bonding Pad	G O C C C C C C C C C C C C C C C C C C	-	15	-	nH	
Thermal Resistance, Junction to Case	R _{θJC}		J	-	-	5.0	°C/W
Thermal Resistance, Junction to Ambient	R _{0JA}	Free Air Operation		-	-	175	°C/W

Source 1	to	Drain	Diode	Specifications
----------	----	-------	-------	-----------------------

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNITS
Continuous Source to Drain Current	I _{SD}	Modified MOSFET	-	-	8.0 32	AA
Pulse Source to Drain Current (Note 3)	ISDM	Symbol Showing the Integral Reverse P-N Junction Rectifier				
Source to Drain Diode Voltage (Note 2)	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 8.0A$, $V_{GS} = 0V$ (Figure 13)	i) -	-	2.5	V
Reverse Recovery Time	t _{rr}	T _J = 150 ^o C, I _{SD} = 8.0A, dI _{SD} /dt = 100A/µs	-	300	-	ns
Reverse Recovery Charge	Q _{RR}	$T_J = 150^{\circ}C$, $I_{SD} = 8.0A$, $dI_{SD}/dt = 100A/\mu s$	-	1.5	-	μC


NOTES:


2. Pulse test: pulse width \leq 300µs, duty cycle \leq 2%.

3. Repetitive rating: pulse width limited by Max junction temperature. See Transient Thermal Impedance curve (Figure 3).

4. V_{DD} = 25V, starting T_J = 25^oC, L = 1.62mH, R_G = 25 Ω , peak I_{AS} = 8.0A (Figures 15, 16).

Typical Performance Curves Unless Otherwise Specified

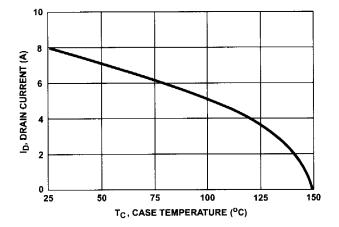
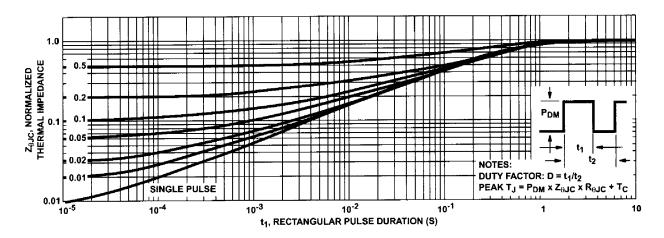



FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs CASE TEMPERATURE

