

Overview

The LC72137 amd LC72137M are high input sensitivity (FMIN: 10 mVrms at 130 MHz) PLL frequency synthesizers for 3 V systems. They allow highperformance AM/FM tuners to be implemented easily.

Features

- High-speed programmable frequency divider
- FMIN: 10 to 160 MHz ..Pulse swallower
(divide-by-two prescaler built in)
- AMIN: 2 to 40 MHzPulse swallower 0.5 to 10 MHz ...Direct division
- IF counter
- IFIN: 0.4 to 12 MHzFor use as an AM/FM IF counter
- Reference frequency
- Selectable from one of eight frequencies (crystal oscillator: 75 kHz)
$1,3,5,3.125,6.25,12.5,15$, and 25 kHz
- Phase comparator
- Supports dead zone control
- Built-in unlock detection circuit
- Built-in deadlock clear circuit
- Built-in MOS transistor for forming an active low-pass filter
- I/O ports
- Dedicated output ports: 4
- I/O ports: 2
- Supports clock time base output
- Serial Data I/O
- Supports CCB format communication with the system controller.
- CCB is a trademark of SANYO ELECTRIC CO., LTD.
- CCB is SANYO's original bus format and all the bus addresses are controlled by SANYO.
- Operating ranges
- Supply voltage: 2.5 to 3.6 V
- Operating temperature: -20 to $+70^{\circ} \mathrm{C}$
- Packages
—DIP22SAMFP20

Package Dimensions

unit: mm
3059-DIP22S

unit: mm

Any and all SANYO products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your SANYO representative nearest you before using any SANYO products described or contained herein in such applications.

- SANYO assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO products described or contained herein.

Specifications

Absolute Maximum Ratings at $\mathbf{T a}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	V_{DD} max	$V_{D D}$	-0.3 to +7.0	V
Maximum input voltage	$\mathrm{V}_{\text {IN }} 1$ max	CE, CL, DI, AIN	-0.3 to +7.0	V
	$\mathrm{V}_{1 \mathrm{IN}^{2} \text { max }}$	XIN, FMIN, AMIN, IFIN	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{1 \mathrm{~N}^{3}}$ max	\01, $\overline{\mathrm{O} 2}$	-0.3 to +15	V
Maximum output voltage	$\mathrm{V}_{0} 1$ max	DO	-0.3 to +7.0	V
	$\mathrm{V}_{\mathrm{O}} 2$ max	XOUT, PD	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
	$\mathrm{V}_{\mathrm{O}} 3$ max	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}, \mathrm{AOUT}$	-0.3 to +15	V
Maximum output current	Io max	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO}}, \overline{\mathrm{IO}}, \overline{\mathrm{OO}}, \mathrm{DO}, \mathrm{AOUT}$	0 to 6.0	mA
Allowable power dissipation	Pd max	$\mathrm{Ta} \leq 70^{\circ} \mathrm{C}$: DIP22S	350	mW
		7a $3070^{\circ} \mathrm{C}$: MEP20	180	mW
Operating temperature	Topr		-20 to +70	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-40 to +125	${ }^{\circ} \mathrm{C}$

Allowable Operating Ranges at $\mathbf{T a}=\mathbf{- 2 0}$ to $+70^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Supply voltage	$V_{D D}$	$V_{D D}$	2.5		3.6	V
Input high-level voltage	$\mathrm{V}_{\text {IH }} 1$	CE, CL, DI	$0.7 \mathrm{~V}_{\mathrm{DD}}$		6.5	V
	$\mathrm{V}_{\mathrm{H}}{ }^{2}$	IO1, IO2	$0.7 \mathrm{~V}_{\mathrm{DD}}$		13	V
Input low-level voltage	$\mathrm{V}_{\text {IL }}$	CE, CL, DI, $\overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2}$	0		$0.3 \mathrm{~V}_{\mathrm{DD}}$	V
Output voltage	$\mathrm{V}_{\mathrm{O}} 1$	DO	0		6.5	V
	$\mathrm{V}_{\mathrm{O}} 2$	$\overline{\mathrm{BO}}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}, \mathrm{AOUT}$	0		13	V
Input frequency	$\mathrm{f}_{\mathrm{IN}} 1$	XIN: $\mathrm{V}_{\text {IN }} 1$		75		kHz
	$\mathrm{f}_{\mathrm{IN}}{ }^{2}$	FMIN: $\mathrm{V}_{\text {IN }}{ }^{2}$	10		160	MHz
	$\mathrm{f}_{1 \mathrm{~N}^{3}}$	AMIN: $\mathrm{V}_{\text {IN }} 3, \mathrm{SNS}=1$	2		40	MHz
	$\mathrm{f}_{\mathrm{IN}}{ }^{4}$	AMIN: $\mathrm{V}_{\text {IN }} 4, \mathrm{SNS}=0$	0.5		10	MHz
	$\mathrm{f}_{\mathrm{IN}}{ }^{5}$	IFIN: $\mathrm{V}_{\text {IN }} 5$	0.4		12	MHz
Input amplitude	$\mathrm{V}_{\text {IN }} 1$	XIN: $\mathrm{f}_{\mathrm{IN}} 1$	200		800	mVrms
	$\mathrm{V}_{1 N^{2-1}}$	FMIN: $\mathrm{f}=10$ to 40 MHz	20		800	mVrms
	$\mathrm{V}_{1 \mathrm{I}^{2-2}}$	FMIN: $f=40$ to 130 MHz	10		800	mVrms
	$\mathrm{V}_{1 \mathrm{I}^{2-3}}$	FMIN: $\mathrm{f}=130$ to 160 MHz	40		800	mVrms
	$\mathrm{V}_{\text {IN }} 3$	AMIN: $\mathrm{f}_{\text {N }}{ }^{3}, \mathrm{SNS}=1$	40		800	mVrms
	$\mathrm{V}_{\text {IN }} 4$	AMIN: $\mathrm{f}_{\text {I }} 4, \mathrm{SNS}=0$	40		800	mVrms
	$\mathrm{V}_{1 \mathrm{~N}^{5-1}}$	IFIN: $\mathrm{f}_{\text {IN }} 5$, IFS $=1$	40		800	mVrms
	$\mathrm{V}_{1 \mathrm{I}^{5-2}}$	IFIN: $\mathrm{f}_{\text {IN }} 6$, IFS $=0$	70		800	mVrms
Guaranteed crystal oscillator frequency	Xtal	XIN, XOUT *		75		kHz

* Note : Recommended crystal oscillator Cl value : $\mathrm{Cl} \leq 35 \mathrm{k} \Omega$ (for a 75 kHz crystal)

The circuit constants for the crystal oscillator circuit depend on the crystal used, the printed sircuit board pattem, and other items. Therefore we recommend consulting with the manfacturer of the crystal for evaluation and reliability.
The extremely high input impedance of the XIN pins means that applications must take the possibility of leakage into account.

Electrical Characteristics within the allowable operating ranges

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Internal feedback resistors	Rf1	XIN		8.0		$\mathrm{M} \Omega$
	Rf2	FMIN		500		$\mathrm{k} \Omega$
	Rf3	AMIN		500		$\mathrm{k} \Omega$
	Rf4	IFIN		250		$\mathrm{k} \Omega$
Internal pull-down resistors	Rpd1	FMIN		200		$\mathrm{k} \Omega$
	Rpd2	AMIN		200		$\mathrm{k} \Omega$
Internal output resistor	Rd	XOUT		250		$\mathrm{k} \Omega$
Hysteresis	$\mathrm{V}_{\mathrm{HIS}}$	$\mathrm{CE}, \mathrm{CL}, \mathrm{DI}, \overline{\mathrm{IO} 1}, \overline{\mathrm{IO} 2}$		$0.1 \mathrm{~V}_{\text {DD }}$		V
Output high-level voltage	$\mathrm{V}_{\mathrm{OH}}{ }^{1}$	PD: $\mathrm{I}_{\mathrm{O}}=-1 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{DD}}-1.0$			V
Output low-level voltage	$\mathrm{V}_{\mathrm{OL}} 1$	PD: $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			1.0	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{2}$	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}$			0.25	V
		$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO}}, \overline{\mathrm{IO} 2} ; \mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$			1.25	V
	$\mathrm{V}_{\mathrm{OL}}{ }^{3}$	DO: $\mathrm{I}_{0}=1 \mathrm{~mA}$			0.25	V
	$\mathrm{V}_{\mathrm{OL}} 4$	AOUT, $\mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}, \mathrm{~A}_{\mathrm{IN}}=1.3 \mathrm{~V}$			0.5	V
Input high-level voltage	$\mathrm{I}_{\mathrm{H}}{ }^{1}$	CE, CL, DI: $\mathrm{V}_{1}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{2}}$	$\overline{\mathrm{O} 1}, \overline{\mathrm{O} 2}: \mathrm{V}_{\mathrm{I}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{3}}$	XIN: $V_{1}=V_{D D}$	0.16		0.9	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{4}}$	FMIN, AMIN: $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{DD}}$	2.5		15	$\mu \mathrm{A}$
	$\mathrm{I}_{1 \mathrm{H}^{5}}$	IFIN: $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD}}$	5.0		30	$\mu \mathrm{A}$
	$1_{1 H^{6}}$	AIN: $\mathrm{V}_{1}=6.5 \mathrm{~V}$			200	nA
Input low-level current	$\mathrm{I}_{\text {LL }}{ }^{1}$	CE, CL, DI: $\mathrm{V}_{1}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{\text {2 }}$	$\overline{\mathrm{O} 1}, \overline{\mathrm{IO} 2}: \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }}{ }^{\text {a }}$	XIN: $\mathrm{V}_{1}=0 \mathrm{~V}$	0.16		0.9	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 4$	FMIN, AMIN: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	2.5		15	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 5$	IFIN: $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$	5.0		30	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {IL }} 6$	AIN: $\mathrm{V}_{1}=0 \mathrm{~V}$			200	nA
Output off leakage current	$\mathrm{I}_{\text {OFF }}{ }^{1}$	$\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}$, AOUT, $\overline{\mathrm{IO}}, \overline{\mathrm{IO} 2}: \mathrm{V}_{\mathrm{O}}=13 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
	$\mathrm{I}_{\text {OFF }}{ }^{2}$	DO: $\mathrm{V}_{\mathrm{O}}=6.5 \mathrm{~V}$			5.0	$\mu \mathrm{A}$
High-level three-state off leakage current	IOFFH	PD: $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{DD}}$		0.01	200	nA
Low-level three-state off leakage current	IOFFL	$\mathrm{PD}: \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$		0.01	200	nA
Input capacitance	$\mathrm{C}_{\text {IN }}$	FMIN		6		pF
Current drain	IDD^{1}	V_{DD} : $\mathrm{Xtal}=75 \mathrm{kHz}, \mathrm{f}_{\mathrm{IN}} 2=130 \mathrm{MHz}, \mathrm{V}_{\mathrm{IN}} 2=10 \mathrm{mVrms}$		2.5	6	mA
	IDD^{2}	V_{DD} : PLL block stopped (PLL inhibit), Xtal oscillator operating (Xtal = 75 kHz)		20		$\mu \mathrm{A}$
	IDD^{3}	V_{DD} : PLL block stopped, Xtal oscillator stopped			10	$\mu \mathrm{A}$

Pin Assignments

Block Diagram

Pin Descriptions

Symbol	Pin No. (MFP pin numbers are in parentheses.)	Type	Functions	Circuit configuration
$\begin{gathered} \text { XIN } \\ \text { XOUT } \end{gathered}$	$\begin{aligned} & 20(19) \\ & 21(20) \end{aligned}$	Xtal	- Crystal oscillator connections (75 kHz)	
FMIN	13 (12)	Local oscillator signal input	- FMIN is selected when the serial data input DVS bit is set to 1. - The input frequency range is from 10 to 160 MHz . - The input signal passes through the internal divide-bytwo prescaler and is input to the swallow counter. - The divisor can be in the range 272 to 65535 . However, since the signal has passed through the divide-by-two prescaler, the actual divisor is twice the set value.	A02599
AMIN	12 (11)	Local oscillator signal input	- AMIN is selected when the serial data input DVS bit is set to 0 . - When the serial data input SNS bit is set to 1 : - The input frequency range is 2 to 40 MHz . - The signal is directly input to the swallow counter. - The divisor can be in the range 272 to 65535 , and the divisor used will be the value set. - When the serial data input SNS bit is set to 0 : - The input frequency range is 0.5 to 10 MHz . - The signal is directly input to a 12 -bit programmable divider. - The divisor can be in the range 4 to 4095 , and the divisor used will be the value set.	A02599
CE	2 (1)	Chip enable	- Set this pin high when inputting (DI) or outputting (DO) serial data.	
DI	3 (2)	Input data	- Inputs serial data transferred from the controller to the LC72137.	 402600
CL	4 (3)	Clock	- Used as the synchronization clock when inputting (DI) or outputting (DO) serial data.	
DO	5 (4)	Output data	- Outputs serial data transferred from the LC72137 to the controller. The data output is determined by the DOCO to DOC2 bits in the serial data.	
$V_{D D}$	15 (14)	Power supply	- The LC72137 power supply pin. ($\mathrm{V}_{\mathrm{DD}}=2.5$ to 3.6 V) - The power on reset circuit operates when power is first applied.	
$\mathrm{V}_{S S}$	16 (15)	Ground	- The LC72137 ground	

Continued from preceding page.

Serial Data I/O Procedures

The LC72137 inputs and outputs data using the Sanyo CCB (computer control bus) audio IC serial bus format. This IC adopts an 8-bit address format CCB.

DI Control Data (serial data input) Structure

1. IN1 Mode

2. IN2 Mode

A08987

DI Control Data Descriptions

No.	Control block/data	Description				Related data
(1)	Programmable divider data P0 to P15 DVS, SNS	- Data that sets the A binary value in Note: P0 to P3 a - Selects the signa frequency range. Note: See the "P	grammableLSB P0 P0 P4 nored when ut pin (AMI Don't care.) Input pin FMIN AMIN AMIN ammable D	divider e MSB. The LSB ch P4 is the LSB. N or FMIN) for the p Divider" item for deta	ges depending on DVS and SNS. (*: Don't care.) grammable divider, switches the	
(2)	Reference divider data R0 to R3	Reference freque Note: PLL INHIB The progra and IFIN pin the high-im	R1 0 0 1 1	tion data and IF counter bloc led-down state, and	ference frequency (kHz) 25 25 25 25 12.5 6.25 3.125 3.125 5 5 5 1 3 15 PLL INHIBIT are stopped, the FMIN, AMIN, charge pump output pin goes to	
(3)	IF counter control data CTE GTO, GT1	- IF counter measu CTE = 1: Counter CTE = 0: Counter - IF counter measu Note: See the "IF	ent start sp nt time de Measu \qquad \qquad unter Struc	ecification termination ement time (ms) ture" item for details	Wait time (ms) 3 to 4 3 to 4 3 to 4 3 to 4	IFS
(4)	I/O port specification data IOC1, IOC2	- Data that specifies input or output for the I/O dual-use pins ($\overline{\mathrm{IO} 1, \overline{\mathrm{IO}})}$ Data: 0 = input mode, 1 = output mode				
(5)	Output port data BO1 to BO4, IO1, IO2	- $\overline{\mathrm{BO} 1}$ to $\overline{\mathrm{BO} 4}, \overline{\mathrm{IO} 1}$, and $\overline{\mathrm{IO} 2}$ output state data Data: $0=$ open, 1 = low - "Data = 0: Open" is selected following a power-on reset.				$\begin{aligned} & \text { IOC1 } \\ & \text { IOC2 } \end{aligned}$

Continued from preceding page.

No.	Control block/data	Description	Related data
(6)	DO pin control data DOC0, DOC1, DOC2	- Data that determines DO pin output The open state is selected following a power-on reset. Note: 1. end-UC: IF counter measurement completion check (2) Count end (3) CE: High A0260B (1) When end-UC is set and an IF count is started (CTE $=0 \rightarrow 1$), the DO pin automatically goes to the open state. (2) When the IF count measurement completes, the DO pin goes low and the count completion check operation is enabled. (3) The DO pin goes to the open state due to serial data I/O (CE: high). 2. Goes to the open state if the IO pin itself is set to be an output port. Caution: The DO pin always goes to the open state during the data input period (during the period when CE is high in mode IN1 or $\operatorname{IN} 2$), regardless of the values of the DO pin control data (DOC0 to DOC2). Also, the DO pin outputs the content of the internal DO serial data in synchronization with the CL pin signal during the data output period (during the period when CE is high in the OUT mode) regardless of the values of the DO pin control data (DOCO to DOC2).	ULO, UL1, CTE, IOC1, IOC2
(7)	Unlock detection data ULO, UL1	- Selects the phase error ($\varnothing \mathrm{E}$) detection range for PLL lock discrimination. When a phase error greater than the specified range occurs, the LC72137 determines that the PLL is unlocked. (*: Don't care.) Note: When unlocked, the DO pin goes low and the serial data output UL bit is 0 .	$\begin{aligned} & \text { DOC0, } \\ & \text { DOC1, } \\ & \text { DOC2 } \end{aligned}$
(8)	Phase comparator control data DZ0, DZ1	- Phase comparator dead zone control data Dead zone width: DZA < DZB < DZC < DZD	
(9)	Clock time base TBC	- An $8 \mathrm{~Hz} 40 \%$ duty clock time base signal can be output from $\overline{\mathrm{BO} 1}$ by setting TBC to 1 . (The BO1 data will be ignored.)	BO1
(10)	Charge pump control data DLC	- Data that forcibly controls the charge pump output Note: The LC72137 provides a technique for escaping from deadlock by setting Vtune to V_{CC} (deadlock clear circuit). This is used when the circuit is deadlocked due to the VCO oscillator being stopped by the VCO control voltage (Vtune) being 0 V .	

Continued from preceding page.

No.	Control block/data	Description	Related data
(11)	$\begin{array}{l}\text { IF counter control data } \\ \text { IFS }\end{array}$	$\begin{array}{l}\text { - This data should be set to } 1 \text { in normal operation. Setting this data to } 0 \text { switches } \\ \text { the LC72137 to a reduced input sensitivity mode in which the sensitivity is reduced by } \\ 10 \text { to } 30 \text { mVrms. }\end{array}$	
(12)	$\begin{array}{l}\text { LSI test data } \\ \text { TEST } 0 \text { to TEST2 }\end{array}$	$\left.\begin{array}{l}\text { - IC test data } \\ \text { TEST0 } \\ \text { TEST1 } \\ \text { TEST2 }\end{array}\right]$ All three bits must be set to 0.	
All the test data is set to 0 at a power-on reset.			

DO Output Data (Serial Data Output) Structure

3. OUT mode

A08989

DO Output Data

No.	Control block/data	Description	Related data
(1)	I/O port data I2, I1	- Data latched from the states of the I/O ports, pins $\overline{\mathrm{IO} 1}$ and $\overline{\mathrm{OO}}$. - This data reflects the pin states, regardless of whether they are in input or output mode. - The data is latched when OUT mode is selected. $\mathrm{I} \leftarrow \overline{\mathrm{IO} 1}$ pin state $\}$ High: 1 $12 \leftarrow \overline{\mathrm{IO} 2}$ pin state $\}$ Low: 0	$\begin{aligned} & \text { IOC1, } \\ & \text { IOC2 } \end{aligned}$
(2)	PLL unlock data UL	- Data latched from the state of the unlock detection circuit UL $\leftarrow 0$: Unlocked UL $\leftarrow 1$: Locked or in detection stopped mode	ULO, UL1
(3)	IF counter binary data C19 to C0	- Data latched from the state of the IF counter, which is a 20-bit binary counter. C19 \leftarrow Binary counter MSB CO \leftarrow Binary counter LSB	CTE, GTO, GT1

Serial Data Input (IN1/IN2) $\mathrm{t}_{\mathrm{SU}}, \mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{EL}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}}, \geq 0.75 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{LC}}<0.75 \mu \mathrm{~s}$

1. CL: Normal high

2. CL: Normal low

Serial Data Output (OUT) $\mathrm{t}_{\mathrm{SU}}, \mathrm{t}_{\mathrm{HD}}, \mathrm{t}_{\mathrm{EL}}, \mathrm{t}_{\mathrm{ES}}, \mathrm{t}_{\mathrm{EH}}, \geq 0.75 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{DC}}, \mathrm{t}_{\mathrm{DH}}<0.35 \mu \mathrm{~s}$

1. CL: Normal high

2. CL: Normal low

Note: Since the DO pin is an n-channel open drain circuit, the times for the data to change (t_{DC} and t_{DH}) will differ depending on the value of the pull-up resistor, printed circuit board capacitance.

Serial Data Timing

CL Stopped at the High Level

Parameter	Symbol	Pins	Conditions	min	typ	max	Unit
Data setup time	${ }_{\text {t }}$ U	DI, CL		0.75			$\mu \mathrm{s}$
Data hold time	$t_{\text {HD }}$	DI, CL		0.75			$\mu \mathrm{s}$
Clock low-level time	${ }^{\text {t }}$ CL	CL		0.75			$\mu \mathrm{s}$
Clock high-level time	${ }^{\text {che }}$	CL		0.75			$\mu \mathrm{s}$
CE wait time	$t_{\text {EL }}$	CE, CL		0.75			$\mu \mathrm{s}$
CE setup time	${ }^{\text {E ES }}$	CE, CL		0.75			$\mu \mathrm{s}$
CE hold time	${ }_{\text {teH }}$	CE, CL		0.75			$\mu \mathrm{s}$
Data latch change time	t LC					0.75	$\mu \mathrm{s}$
Data output time	${ }_{\text {t }}^{\text {D }}$	DO, CL	These times depend on the pull-up resistance and the printed circuit board capacitances.			0.35	$\mu \mathrm{s}$
	${ }_{\text {t }}$ H	DO, CE				0.35	$\mu \mathrm{s}$

Programmable Divider Structure

A02516

	DVS	SNS	Input pin	Set divisor	Actual divisor：N	Input frequency range（MHz）
A	1	$*$	FMIN	272 to 65535	Twice the set value	
B	0	1	AMIN	272 to 65535	The set value	
C	0	0	AMIN	4 to 4095	The set value	2 to 40

Note：＊Don＇t care．

Sample Programmable Divider Divisor Calculations

1．For a 50 kHz FM step size（DVS $=1, \mathrm{SNS}=*:$ FMIN selected $)$
－ FM RF $=90.0 \mathrm{MHz}(\mathrm{IF}=+10.7 \mathrm{MHz})$
FM VCO $=100.7 \mathrm{MHz}$
PLL fref $=25 \mathrm{kHz}(\mathrm{R} 0$ to $\mathrm{R} 1=1, \mathrm{R} 2$ to $\mathrm{R} 3=0)$
100．7 MHz $($ FM VCO $) \div 25 \mathrm{kHz}($ fref $) \div 2$（FMIN：divide－by－two prescaler）$=2014 \rightarrow 07 \mathrm{DE}(\mathrm{HEX})$

E				D				7				0											
0	1	1	1	1	0	1	1	1	1	1	0	0	0	0	0	＊	1			1	1	0	0
은	－	ก	$\stackrel{2}{2}$	I	는	0	A	¢	\％	음	$\overline{0}$	$\frac{N}{\mathrm{~N}}$	$\frac{m}{i}$	$\stackrel{\rightharpoonup}{2}$	$\frac{\varrho}{\square}$	$\underset{\omega}{\infty}$	$\begin{aligned} & \infty \\ & a \\ & \hline \end{aligned}$	$\stackrel{\omega}{0}$	O	욘		주	¢

2．For a 5 kHz SW step size $(\mathrm{DVS}=0, \mathrm{SNS}=1:$ AMIN high－speed side selected）
－ SW RF $=21.75 \mathrm{MHz}(\mathrm{IF}=+450 \mathrm{kHz})$
SW VCO $=22.20 \mathrm{MHz}$
PLL fref $=5 \mathrm{kHz}(\mathrm{R} 0=\mathrm{R} 2=0, \mathrm{R} 1=\mathrm{R} 3=1)$
22．2 MHz $(\mathrm{SW} \mathrm{VCO}) \div 5 \mathrm{kHz}($ fref $)=4440 \rightarrow 1158(\mathrm{HEX})$

8				5				1				1											
0	0	0	1	1	0	1	0	1	0	0	0	1	0	0	0	1	0			0	1	0	1
O	［	ก	®	－	$\stackrel{1}{2}$	0	人	¢	8	은	$\overline{0}$	$\underset{i}{N}$	$\frac{m}{\square}$	$\underset{i}{\nabla}$	$\frac{10}{2}$	\sum_{∞}^{∞}	2	$\stackrel{\mu}{5}$	O	안	$\bar{\square}$	ヘ	ヘั

3．For a 9 kHz MW step size $(\mathrm{DVS}=0$, SNS $=0$ ：AMIN low－speed side selected）
－ MW RF $=1008 \mathrm{kHz}(\mathrm{IF}=+450 \mathrm{kHz})$
MW VCO $=1458 \mathrm{kHz}$
PLL fref $=3 \mathrm{kHz}(\mathrm{R} 0$ to $\mathrm{R} 1=0, \mathrm{R} 2$ to $\mathrm{R} 3=1)$
$1458 \mathrm{kHz}(\mathrm{MW} \mathrm{VCO}) \div 3 \mathrm{kHz}($ fref $)=486 \rightarrow 1 \mathrm{E} 6(\mathrm{HEX})$

IF Counter Structure

The LC72137 IF counter is a 20-bit binary counter, and takes the IF signal from the IFIN pin as its input. The result of the count can be read out serially, MSB first, from the DO pin.

GT1	GT0	Measurement time	
		Measurement period (GT) (ms)	Wait time (twu) (ms)
0	0	4	3 to 4
0	1	8	3 to 4
1	0	16	3 to 4
1	1	32	3 to 4

The IF frequency (Fc) is measured by determining how many pulses were input to the IF counter in the stipulated measurement time, GT.

$$
\mathrm{Fc}=\frac{\mathrm{C}}{\mathrm{GT}} \quad(\mathrm{C}=\mathrm{Fc} \times \mathrm{GT}) \quad \mathrm{C}: \text { count value (number of pulses) }
$$

Sample IF Counter Frequency Calculations

1. For a measurement time (GT) of 32 ms and a count value (C) of 53980 (hexadecimal), which is 342,400 (decimal) IF frequency $(\mathrm{Fc})=342,400 \div 32 \mathrm{~ms}=10.7 \mathrm{MHz}$

2. For a measurement time (GT) of 8 ms and a count value (C) of E10 (hexadecimal), which is 3600 (decimal) IF frequency $(\mathrm{Fc})=3600 \div 8 \mathrm{~ms}=450 \mathrm{kHz}$

IF Counter Operation

A02623
Before starting the IF count, the IF counter must be reset in advance by setting CTE in the serial data to 0 . The IF count is started by changing the CTE bit in the serial data from 0 to 1 . The serial data is latched by the LC72137 when the CE pin is dropped from high to low. The IF signal must be supplied to the IFIN pin in the period between the point the CE pin goes low and the end of the wait time at the latest. Next, the value of the IF count at the end of the measurement period must be read out during the period CTE is 1 . This is because the IF counter is reset when CTE is set to 0 .

Note: When operating the IF counter, the control microcontroller must first check the state of the IF-IC SD (station detect) signal and only after determining that the SD signal is present turn on IF buffer output and execute an IF count operation. Auto-search techniques that use only the IF counter are not recommended, since it is possible for IF buffer leakage output to cause incorrect stops at points where there is no station.
If the auto-search technique is implemented using only the IF counter in combination with an IF-IC without SD output, sensitivity-degradation mode (IFS = 0) should be selected.

IFIN Minimum Sensitivity Ratings

IFS	$0.4 \leq f<0.5$	$0.5 \leq f<8$	$8 \leq f \leq 12$
1: Normal mode	40 mVrms $(0.1$ to 1 mVrms$)$	40 mVrms	40 mVrms $(1$ to 10 mVrms$)$
0: Degradation mode	70 mVrms (5 to 15 mVrms$)$	70 mVrms	70 mVrms (20 to 40 mVrms$)$

Note:Values in parentheses are actual performance values presented as reference data.

Unlock Detection Timing

1. Unlock Detection Determination Timing

Unlock detection is performed in the reference frequency (fref) period (interval). Therefore, in principle, unlock determination requires a time longer than the period of the reference frequency. However, immediately after changing the divisor N (frequency) unlock detection must be performed after waiting at least two periods of the reference frequency.

A09004
Figure 1 Unlock Detection Timing
For example, if fref is 1 kHz (and thus the period is 1 ms), after changing the divisor N , the system must wait at least 2 ms before checking for the unlocked state.

Figure 2 Circuit Structure
2. Unlock Detection Software

Figure 3
3. When Outputting Unlock Data Using Serial Data Output:

Once the LC72137 detects an unlocked state, it does not reset the unlock data (UL) until the next data output (or data input) operation is performed. At the data output (1) point in Figure 3, although the VCO frequency is stable (locked), the unlock data remains set to the unlocked state since no data output has been performed since the value of N was changed. Thus, even though the frequency became stable (locked), from the point of view of the data, the circuit is in the unlocked state. Therefore, the data output (1) immediately following a change to the value of N should be seen as a dummy data, and the data from the second data output (data output (2)) and later outputs should be seen as valid data.

Lock Determination Flowchart

When directly outputting data from the DO pin (set up by the DO pin control data)

Since the DO pin outputs the unlocked state (locked: high, unlocked: low) the timing considerations in the technique described in the previous section are not necessary. After changing the value of N , the locked state can be determined after waiting at least two periods of the reference frequency.

Notes on Clock Time Base Usage

When the clock time base output is used, the value of the pull-up resistor for the output pin $(\overline{\mathrm{BO}})$ must be at least $100 \mathrm{k} \Omega$. We recommend the use of a Schmitt input on the receiving controller (microprocessor) to prevent chattering.This is to avoid degradation of the VCO C/N characteristics when using the built-in low-pass filter transistor to form the loop filter. Since the clock time base output pin and the low-pass filter transistor ground are the same mode in the IC, the time base output pin current fluctuations must be suppressed to limit the influence on the low-pass filter.

Other Items

1. Notes on the Phase Comparator Dead Zone

DZ1	DZ0	Dead-zone mode	Charge pump	Dead zone
0	0	DZA	ON/ON	--0 s
0	1	DZB	ON/ON	-0 s
1	0	DZC	OFF/OFF	+0 s
1	1	DZD	OFF/OFF	++0 s

Since correction pulses are output from the charge pump even if the PLL is locked when the charge pump is in the ON/ON state, the loop can easily become unstable. This point requires special care when designing application circuits.

The following problems may occur in the ON/ON state.

- Side band generation due to reference frequency leakage
- Side band generation due to both the correction pulse envelope and low frequency leakage

Schemes in which a dead zone is present (OFF/OFF) have good loop stability, but have the problem that acquiring a high C / N ratio can be difficult. On the other hand, although it is easy to acquire a high C / N ratio with schemes in which there is no dead zone, it is difficult to achieve high loop stability. Therefore, it can be effective to select DZA or DZB, which have no dead zone, in applications which require an FM S/N ratio in excess of 90 to 100 dB , or in which an increased AM stereo pilot margin is desired. On the other hand, we recommend selecting DZC or DZD, which provide a dead zone, for applications which do not require such a high FM signal-to-noise ratio and in which either AM stereo is not used or an adequate AM stereo pilot margin can be achieved.

Dead Zone

The phase comparator compares fp to a reference frequency (fr) as shown in Figure 4. Although the characteristics of this circuit (see Figure 5) are such that the output voltage is proportional to the phase difference \varnothing (line A), a region (the dead zone) in which it is not possible to compare small phase differences occurs in actual ICs due to internal circuit delays and other factors (line B). A dead zone as small as possible is desirable for products that must provide a high S / N ratio.
However, since a larger dead zone makes this circuit easier to use, a larger dead zone is appropriate for popularlypriced products. This is because it is possible for RF signals to leak from the mixer to the VCO and modulate the VCO in popularly-priced products in the presence of strong RF inputs. When the dead zone is narrow, the circuit outputs correction pulses and this output can further modulate the VCO and generate beat frequencies with the RF signal.

Figure 4

Figure 5
2. Notes on the FMIN, AMIN, and IFIN Pins

Coupling capacitors must be placed as close as possible to their respective pin. A capacitance of about 100 pF is desirable. In particular, if a capacitance of 1000 pF or over is used for the IF pin, the time to reach the bias level will increase and incorrect counting may occur due to the relationship with the wait time.
3. Notes on IF Counting \rightarrow SD must be used in conjunction with the IF counting time When using IF counting, always implement IF counting by having the microprocessor determine the presence of the IF-IC SD (station detect) signal and turn on the IF counter buffer only if the SD signal is present. Schemes in which auto-searches are performed with only IF counting are not recommended, since they can stop at points where there is no signal due to leakage output from the IF counter buffer.

4. DO Pin Usage Techniques

In addition to data output mode times, the DO pin can also be used to check for IF counter count completion and for unlock detection output. Also, an input pin state can be output unchanged through the DO pin and input to the controller.
5. Power Supply Pins

A capacitor of at least 2000 pF must be inserted between the power supply V_{DD} and V_{SS} pins for noise exclusion. This capacitor must be placed as close as possible to the $V_{D D}$ and $V_{S S}$ pins.
6. Note on VCO designing

VCO (local oscillator) must keep its oscillation even if the control voltage (Vtune) goes to 0 V . When there is a possibility of oscillation halt, Vtune must be forcibly set to V_{CC} temporarily to prevent the PLL from being deadlocked. (Deadlock clear circuit)
7. Front end connection example

Since this product is designed with the relatively high resistance of $200 \mathrm{k} \Omega$ for the pull-down (on) resistors built in to the FMIN and AMIN pins, a common AM/FM local oscillator buffer can be used as shown in the following circuit.

Pin States at a Power-On Reset

Sample Application System

(Using the MFP20 package)

A09009
\square Specifications of any and all SANYO products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
\square SANYO Electric Co., Ltd. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
■ In the event that any or all SANYO products (including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
■ No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of SANYO Electric Co., Ltd.
■ Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO product that you intend to use.

■ Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of September, 1999. Specifications and information herein are subject to change without notice.

