New Jersey Semi-Conductor Products, Inc.

20 STERN AVE.
SPRINGFIELD, NEW JERSEY 07081

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

NPN Silicon Power Transistors 1 kV Switchmode III Series

These transistors are designed for high-voltage, high-speed, power switching in inductive circuits where fall time is critical. They are particularly suited for line-operated switchmode applications.

Typical Applications:

- Switching Regulators
- Inverters
- Solenoids
- Relay Drivers
- Motor ControlsDeflection Circuits

Features:

Collector-Emitter Voltage — VCEV = 1000 Vdc

- Fast Turn-Off Times
 50 ns Inductive Fall Time 100°C (Typ)
 90 ns Inductive Crossover Time 100°C (Typ)
 900 ns Inductive Storage Time 100°C (Typ)
- 100°C Performance Specified for: Reverse-Biased SOA with Inductive Load Switching Times with Inductive Loads Saturation Voltages Leakage Currents
- Extended FBSOA Rating Using Ultra-fast Rectifiers
- Extremely High RBSOA Capability

MAXIMUM RATINGS

Rating	Symbol	MJ16010A	MJH16010A	Unit
Collector-Emitter Voltage	VCEO	500		Vdc
Collector-Emitter Voltage	VCEV	1000		Vdc
Emitter-Base Voltage	VEB	6		Vdc
Collector Current — Continuous — Peak ⁽¹⁾	IC ICM	15 20		Adc
Base Current — Continuous — Peak ⁽¹⁾	I _B	10 15		Adc
Total Power Dissipation (α T _C = 25°C (α T _C = 100°C Derate above T _C = 25°C	PD	175 135 100 54 1 1.09		Watts W/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to 200	-55 to 150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	ř.	Unit	
Thermal Resistance, Junction to Case	Reuc	1	0,92	°C/W
Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	275		°C

(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.

MJ16010A MJH16010A

POWER TRANSISTORS
15 AMPERES
500 VOLTS
125 and 175 WATTS

MJ16010A, MJH16010A

Characteristic	Symbol	Min	Тур	Max	Unit
FF CHARACTERISTICS(1)					
Collector-Emitter Sustaining Voltage (Table 1) ($I_C = 100 \text{ mA}, I_B = 0$)	VCEO(sus)	500	_	_	Vdc
Collector Cutoff Current (V _{CEV} = 1000 Vdc, V _{BE(off)} = 1.5 Vdc) (V _{CEV} = 1000 Vdc, V _{BE(off)} = 1.5 Vdc, T _C = 100°C)	ICEV	_	0.003 0.020	0.15 1.0	mAdd
Collector Cutoff Current (VCE = 1000 Vdc, RBE = 50 Ω , TC = 100°C)	ICER	-	0.020	1.0	mAdo
Emitter Cutoff Current (VEB = 6 Vdc, I _C = 0)	IEBO	-	0.005	0.15	mAdd
ECOND BREAKDOWN					
Second Breakdown Collector Current with Base Forward Biased	ls/b	See Figure 14a or 14b			
Clamped Inductive SOA with Base Reverse Biased	RBSOA	See Figure 15			
N CHARACTERISTICS(1)					
Collector-Emitter Saturation Voltage $\{I_C = 5 \text{ Adc}, I_B = 1 \text{ Adc}\}$ $\{I_C = 10 \text{ Adc}, I_B = 2 \text{ Adc}\}$ $\{I_C = 10 \text{ Adc}, I_B = 2 \text{ Adc}, T_C = 100^{\circ}\text{C}\}$	VCE(sat)	=	0.25 0.45 0.60	0.7 1 1.5	Vdc
Base-Emitter Saturation Voltage (I _C = 10 Adc, I _B = 2 Adc) (I _C = 10 Adc, I _B = 2 Adc, T _C = 100°C)	VBE(sat)	=	1.2 1.2	1.5 1.5	Vdc
DC Current Gain (I _C = 15 Adc, V _{CE} = 5 Vdc)	hFE	5	8	-	_
YNAMIC CHARACTERISTICS					
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f _{test} = 1 kHz)	C _{ob}	_	-	400	pF

SWITCHING CHARACTERISTICS

Inductive Load (Tab	le 1)						
Storage Time	(I _C = 10 Adc, I _{B1} = 1.3 Adc, V _{BE(off)} = 5 Vdc, V _{CE(pk)} = 400 Vdc)	(T _J = 100°C)	tsv	-	900	2000	ns
Fall Time			tfi	_	50	250	
Crossover Time			t _c	_	90	300	
Storage Time		(T _J = 150°C)	tsv	_	1100	_	
Fall Time			tfi	—	70	_	
Crossover Time			t _c	_	120	_	
Resistive Load (Tab	le 2)						
Delay Time	(IC = 10 Adc, VCC = 250 Vdc, IB1 = 1.3 Adc, PW = 30 μs, Duty Cycle ≤ 2%	$(I_{B2} = 2.6 \text{ Adc,} R_{B2} = 1.6 \Omega)$	td	_	25	100	ns
Rise Time			tr	_	325	600	
Storage Time			ts	_	1300	3000	
Fall Time			tf	-	175	400	
Storage Time		(VBE(off) = 5 Vdc)	ts	_	700	_	
Fall Time		1. BE(OII) 0 400)	tf	_	80	_	

⁽¹⁾ Pulse Test: PW = 300 μ s, Duty Cycle \leq 2%.