

Gallium Nitride 28V, 5W, 20-1500 MHz MMIC Amplifier

Built using the SIGANTIC[®] process - A proprietary GaN-on-Silicon technology

Features

- Broadband operation from 20-1500 MHz
- 28V Operation
- Input and output matched to 50 ohms
- Industry Standard QFN Plastic Package
- High Drain Efficiency (>50%)

Applications

- Broadband General Purpose
- Defense Communications
- Land Mobile Radio
- Wireless Infrastructure
- VHF/UHF/L-Band Radar

20-1500 MHz 5W GaN MMIC PA

Product Description

The NPA1003 is a wideband, internally-matched, GaN MMIC power amplifier optimized for 20-1500 MHz operation. This device has been designed for CW, pulsed, and linear operation with output power levels exceeding 5W (37 dBm) in an industry standard, surface mount, QFN4X4-16 plastic package.

Symbol	Parameter	Min	Тур	Max	Units
G _{SS}	Small-signal Gain	-	18	-	dB
P _{SAT}	Saturated Output Power	-	38.5	-	dBm
η_{SAT}	Efficiency at Saturated Output Power	-	50	-	%
NF	Noise Figure	-	2.0	-	dB
G _P	Gain at P _{OUT} = 5W	14	16	-	dB
PAE	Power Added Efficiency at P _{OUT} = 5W	38	42	-	%
V _{DS}	Drain Voltage	-	28	-	V
Ψ	Ruggedness: Output Mismatch, all phase angles	VSWR = 10:1, No Device Damage			

RF Specifications (CW, 1000 MHz): V_{DS} = 28V, I_{DQ} = 100mA, T_C= 25°C

DC Specifications: $T_C = 25^{\circ}C$

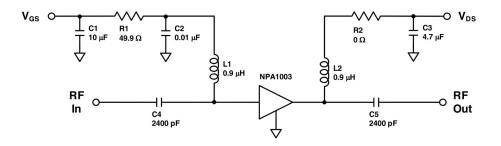
Symbol	Parameter	Min	Тур	Max	Units
Off Cha	aracteristics				
I _{DLK}	Drain-Source Leakage Current $(V_{GS}$ =-8V, V_{DS} =100V)	-	-	2	mA
I _{GLK}	Gate-Source Leakage Current $(V_{GS}$ =-8V, V_{DS} =0V)	-	-	1	mA
On Cha	On Characteristics				
V _T	Gate Threshold Voltage (V _{DS} =28V, I _D =2mA)	-2.5	-1.6	-0.5	V
V _{GSQ}	Gate Quiescent Voltage (V _{DS} =28V, I _D =100mA)	-2.1	-1.2	-0.3	V
R _{on}	On Resistance (V _{DS} =2V, I _D =15mA)	-	1.6	-	Ω
I _{D, MAX}	Maximum Drain Current (V _{DS} =7V pulsed, 300µS pulse width, 0.2% Duty Cycle)	-	1.5	-	A

Thermal Resistance Specification:

Symbol	Parameter	Тур	Units
$R_{ ext{ hetaJC}}$	Thermal Resistance (Junction-to-Case), T _J = 180 °C	12	°C/W

Junction Temperature (T_J) measured using IR Microscopy, Case Temperature (T_C) measured using a thermocouple embedded in heatsink.

Absolute Maximum Ratings: Not simultaneous, T_C = 25°C unless otherwise noted


Symbol	Parameter	Мах	Units
V _{DS}	Drain-Source Voltage	100	V
V _{GS}	Gate-Source Voltage	-10 to 3	V
l _G	Gate Current	4	mA
Ρ _T	Total Device Power Dissipation (Derated above 25°C)	14.5	W
T _{STG}	Storage Temperature Range	-65 to 150	°C
TJ	Operating Junction Temperature	200	°C
HBM	Human Body Model ESD Rating (per JESD22-A114)	Class 1A	
MSL	Moisture sensitivity level (per IPC/JEDEC J-STD-020)	MSL-1	

20 - 1500 MHz Broadband Circuit

(CW, V_{DS} =28V, I_{DQ} =100mA, T_{C} =25°C, unless otherwise noted)

Figure 1. Electrical Schematic of 20 - 1500MHz Broadband Circuit for NPA1003 (For RF Tuning details see Component Placement Diagram Figure 2)

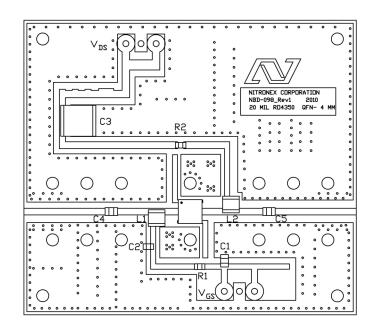
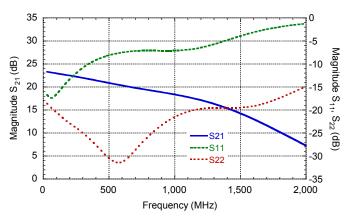
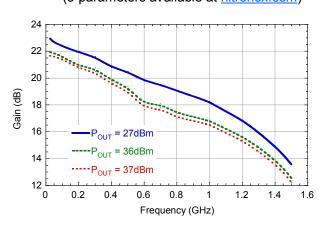
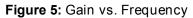
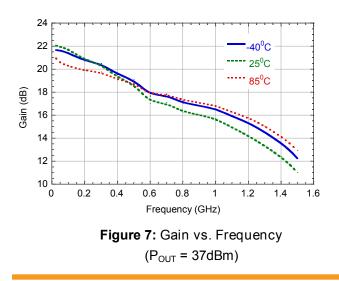


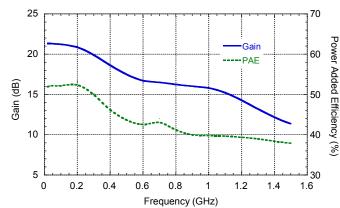
Figure 2: Component Placement of 20 - 1500MHz Broadband Circuit for NPA1003

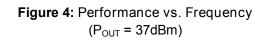

Reference	Value	Manufacturer	Part Number
C1	10µF	TDK	C2012X5R1C106M085AC
C2	0.01µF	AVX	06031C103JAT2A
C3	4.7µF	TDK	C5750X7R2A475K230KA
C4, C5	2400pF	Dielectric Labs, Inc.	C08BL242X-5UN-X0
R1	49.9Ω	Panasonic	ERJ-6ENF49R9V
R2	0Ω	Panasonic	ERJ-3GEY0R00V
L1, L2	0.9µH	Coilcraft	1008AF-901XJLC
PCB	RO4350, ε _r =3.5, 0.020"	Rogers	Nitronex NBD-098r1




Typical Performance in 20 - 1500 MHz Broadband Circuit


(CW, V_{DS} =28V, I_{DQ} =100mA, T_{C} =25°C, unless otherwise noted)





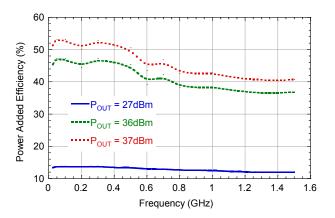
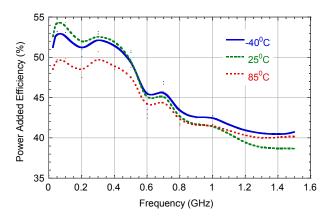
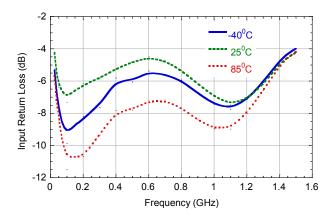
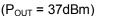


Figure 6: Power Added Efficiency vs. Frequency




Figure 8: Power Added Efficiency vs. Frequency $(P_{OUT} = 37 dBm)$



Typical Performance in 20 - 1500 MHz Broadband Circuit

(CW, V_{DS} =28V, I_{DQ} =100mA, T_{C} =25°C, unless otherwise noted)

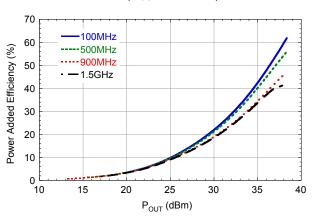
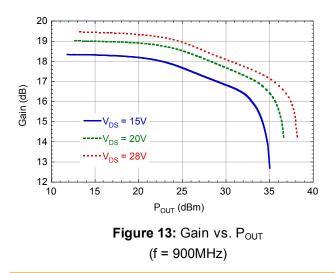



Figure 11: Power Added Efficiency vs. POUT

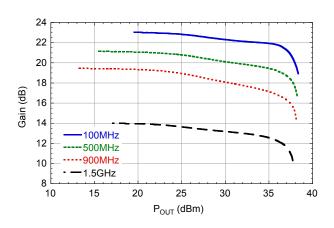


Figure 10: Gain vs. POUT

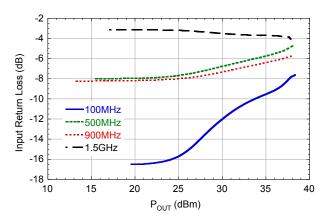
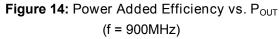



Figure 12: Input Return Loss vs. POUT

Typical Performance in 20 - 1500 MHz Broadband Circuit

(CW, V_{DS} =28V, I_{DQ} =100mA, f=1GHz, T_{C} =25°C, unless otherwise noted)

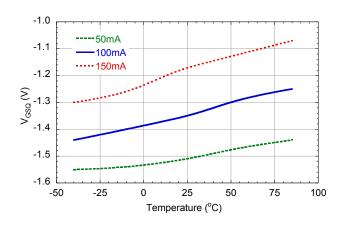


Figure 15: Quiescent V_{GS} vs. Temperature

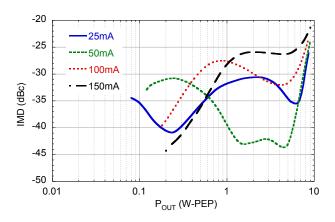
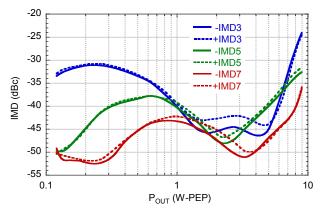
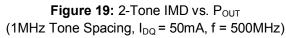




Figure 17: 2-Tone IMD3 vs. P_{OUT} vs. I_{DQ} (1MHz Tone Spacing, f = 500MHz)

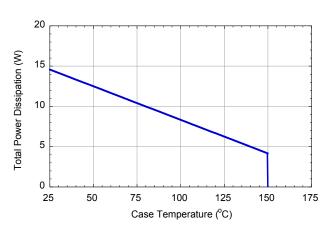


Figure 16: Power De-rating Curve $(T_J = 200^{\circ}C, T_C > 25^{\circ}C)$

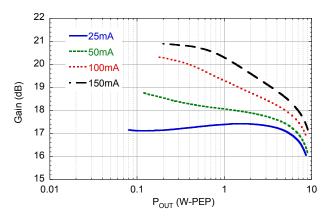
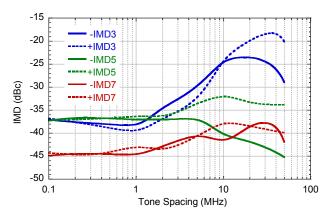



Figure 18: 2-Tone Gain vs. P_{OUT} vs. I_{DQ} (1MHz Tone Spacing, f = 500MHz)

Figure 20: 2-Tone IMD vs. Tone Spacing $(P_{OUT} = 6W-PEP, I_{DQ} = 50mA, f = 500MHz)$

Figure 21 - QFN4X4-16 Plastic Package Dimensions (all dimensions in inches [millimeters])

Pin	Function
2, 3	Gate — RF Input
10, 11	Drain — RF Output
Exposed Pad	Source — Ground
1, 4-9, 12-16	No Connect*

* All No Connect pins may be left floating or grounded

Nitronex, LLC

2305 Presidential Drive Durham, NC 27703 USA +1.919.807.9100 (telephone) +1.919.807.9200 (fax) info@nitronex.com www.nitronex.com

Additional Information

This part is lead-free and is compliant with the RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

Important Notice

- Nitronex, LLC reserves the right to make corrections, modifications, enhancements, improvements and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Nitronex terms and conditions of sale supplied at the time of order acknowledgment. The latest information from Nitronex can be found either by calling Nitronex at 1-919-807-9100 or visiting our website at www.nitronex.com.
- Nitronex warrants performance of its packaged semiconductor or die to the specifications applicable at the time of sale in accordance with Nitronex standard warranty. Testing and other quality control techniques are used to the extent Nitronex deems necessary to support the warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
- Nitronex assumes no liability for applications assistance or customer product design. Customers are responsible for their product and applications using Nitronex semiconductor products or services. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
- Nitronex does not warrant or represent that any license, either express or implied, is granted under any Nitronex patent right, copyright, mask work right, or other Nitronex intellectual property right relating to any combination, machine or process in which Nitronex products or services are used.
- Reproduction of information in Nitronex data sheets is permitted if and only if said reproduction does not alter any of the information and is accompanied by all associated warranties, conditions, limitations and notices. Any alteration of the contained information invalidates all warranties and Nitronex is not responsible or liable for any such statements.
- Nitronex products are not intended or authorized for use in life support systems, including but not limited to surgical implants into the body or any other application intended to support or sustain life. Should Buyer purchase or use Nitronex, LLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold Nitronex, LLC, its officers, employees, subsidiaries, affiliates, distributors, and its successors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, notwithstanding if such claim alleges that Nitronex was negligent regarding the design or manufacture of said products.

Nitronex and the Nitronex logo are registered trademarks of Nitronex, LLC. All other product or service names are the property of their respective owners.

©Nitronex, LLC 2013 All rights reserved.