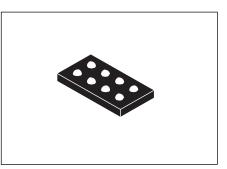
LC898214XC

CMOS LSI AF Controller



Overview

This LSI is AF control LSI. It consists of 1 system of feedback circuit for AF control.

Features

- Built-in equalizer circuit using digital operation
 - AF control equalize circuit
 - Any coefficient can be specified by $I^2C \ I/F$
- I²C Interface
- Built-in A/D converter
 - Maximum 10-bit
 - Input 2 channel
- Built-in D/A converter
 - 8-bit
 - Output 2-channel (Hall offset, Constant current Bias)
- Built-in Hall Sensor
 Si Hall sensor
- Built-in EEPROM
 128 byte (8 byte/page)
- Built-in VGAHall Amp
- Built-in OSC - 48MHz
- Built-in Constant Current Driver
- Package
 - WL-CSP 8-pin
 - Lead-free, halogen-free
- Supply voltage
 - V_{DD} (2.6V to 3.6V)

WLCSP8, 1.15x2.37, 0.5P

* I²C Bus is a trademark of Philips Corporation.

ORDERING INFORMATION

See detailed ordering and shipping information on page 8 of this data sheet.

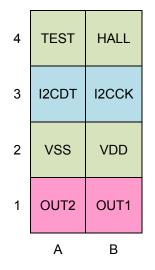
Pin Description

	TYPE							
I	INPUT	Ρ	Power supply, GND	NC	NOT CONNECT			
0	OUTPUT							
В	BIDIRECTION							
■ I ² C in	nterface I2CCK	В	I ² C Clock pin	_				
	I2CDT	B	I ² C Data pin					
■ Hall	interface HALL	0	Hall amp output					
D .		0						
■ Drive	er interface	0	.	<i>,</i> .				
	OUT1	0	Actuator outpu					
	OUT2	0	Actuator output	it pin				
■ Powe	er supply pin							
	VDD	Р	Power supply					
	VSS	Р	GND					
∎ Test j	pin TEST	0	Test pin					
			*					

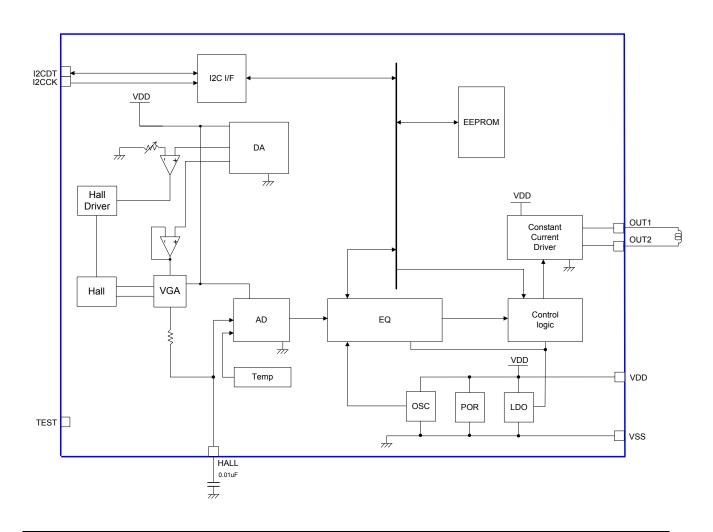
*Process when pins are not used

PIN TYPE "O" – Ensure that it is set to OPEN.

PIN TYPE "I" – OPEN is inhibited. Ensure that it is connected to the VDD or VSS even when it is unused. (Please contact ON Semiconductor for more information about selection of VDD or VSS.)


PIN TYPE "B" – If you are unsure about processing method on the pin description of pin layout table, please contact us.

Note that incorrect processing of unused pins may result in defects.


Pin Layout

Circuit Name	Number of Pins	Circuit Name	Number of Pins
Analog	4	Driver	2
Logic	2		

Backside pin layout diagram (Top View from the mold side)

Block Diagram

Electrical Characteristics

1) Absolute maximum rating at $V_{SS}\,{=}\,0V$

Item	Symbol	Condition	Rating	Unit
Supply voltage	V _{DD} 33 max	Ta ≤25°C	-0.3 to 4.6	V
Input/output voltage	V _I 33,V _O 33	Ta ≤25°C	–0.3 to V _{DD} 33+0.3	V
Storage ambient temperature	Tstg		–55 to 125	°C
Operating ambient temperature	Topr		-30 to 70	°C
Peak output current	lopeak	OUT1,OUT2 t ≤ 10 msec, On-duty ≤ 20%	180	mA
Continuous output current	lomax	OUT1,OUT2	120	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

2) Acceptable operation range at Ta=-30 to $70\ ^{\circ}C,\ V_{SS}=0V$

3V power supply (DV_{DD})

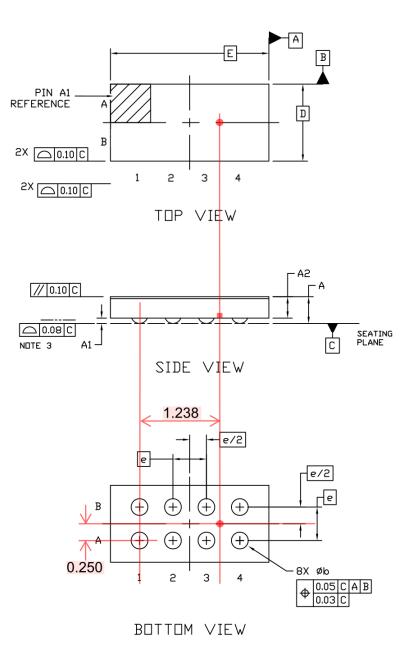
Item	Symbol	Min	Std	Max	Unit
Supply voltage	V _{DD} 33	2.6	2.8	3.6	V
Input voltage range	VIN	0	-	V _{DD} 33	V

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

3) DC characteristics : Input/output level at $V_{SS} = 0V$, $V_{DD} = 2.6V$ to 3.6V, Ta = -30 to $70 \text{ }^{\circ}\text{C}$

Item	Symbol	Condition	Min	Std	Max	Unit	Applicable pins
High-level input voltage	VIH	CMOS compliant	1.4			V	
Low-level input voltage	VIL	Schmidt			0.4	V	I2CCK, I2CDT,
Low-level output voltage	VOL	IOL= 2mA			0.4	V	I2CDT

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.


4) Driver output (OUT1, OUT2) at $V_{SS} = 0V$, $V_{DD} = 2.8V$, Ta = 25 °C

Item	Symbol	Condition	Min	Std	Max	Unit	Applicable pins
Output ON resistance	Ronu	lo=120mA Pch		2.8		Ω	
	Rond	lo=120mA Nch		2.0		Ω	OUT1, OUT2
Output leak current	loleak			1		μΑ	0011, 0012
Diode forward voltage	VD	ID=-120mA		0.9		V	

5) Non-volatile Memory Characteristics

Item	Symbol	Condition	Min	Std	Max	Unit	Applicable pins
Endurance	EN				100	Cycles	5055014
Data retention	RT		10			Years	E2PROM

Hall element position

Please refer to package diagram for each dimension.

AC Characteristics

V_{DD} supply timing

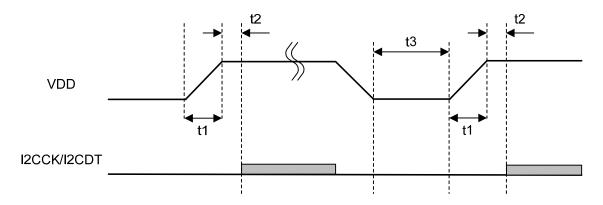


Figure 2 : V_{DD} supply timing

It is available to use I^2C 2ms later for Power On Reset of VDD.

Item	Symbol	Min	Тур	Max	Unit
VDD turn on time	t1			3	ms
I ² C start time from VDD on	t2	2			ms
V _{DD} off time	t3	10			ms

AC specification

Figure 2 shows interface timing definition and Table 1 shows electric characteristics.

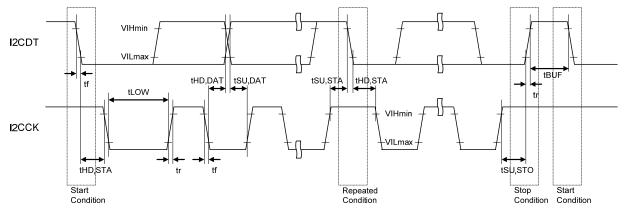


Figure 3 : I²C interface timing definition

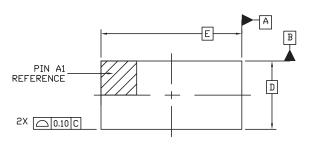
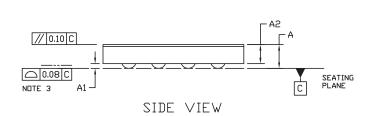

Item	Symbol	Pin name	Min	Тур	Max	Unit
I2CCK clock frequency	Fi2cck	I2CCK			400	kHz
START condition hold time	tHD,STA	I2CCK I2CDT	0.6			μS
I2CCK clock Low period	tLOW	I2CCK	1.3			μS
I2CCK clock High period	tHIGH	I2CCK	0.6			μS
Setup time for repetition START condition	tSU,STA	I2CCK I2CDT	0.6			μS
Data hold time	tHD,DAT	I2CCK I2CDT	0 (*3)		0.9	μS
Data setup time	tSU,DAT	I2CCK I2CDT	100			ns
I2CDT, I2CCK rising time	tr	I2CCK I2CDT			300	ns
I2CDT, I2CCK falling time	tf	I2CCK I2CDT			300	ns
STOP condition setup time	tSU,STO	I2CCK I2CDT	0.6			μS
Bus free time between STOP and START	tBUF	I2CCK I2CDT	1.3			μS

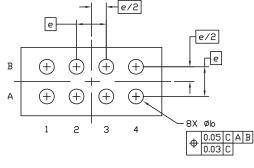
 Table 1 : Electric characteritics for I²C interface (AC characteristics)

*3 : Although the I²C specification defines a condition that 300 ns of hold time is required internally, LC898214XC is designed for a condition with typ. 20 ns of hold time. If I2CDT signal is unstable around falling point of IC2CK signal, please implement an appropriate treatment on board, such as inserting a resistor.

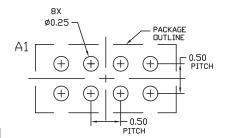
Package Dimensions

unit : mm





NDTES:


- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. COPLANARITY APPLIES TO THE SPHERICAL CROWNS OF THE SOLDER BALLS.

	MILLIMETERS					
DIM	MIN.	MAX.				
Α	0.35	0.45				
A1	0.045	0.115				
b	0.20	0.30				
D	1.15 BSC					
E	2.37	' BSC				
e	0.50 BSC					

BOTTOM VIEW

RECOMMENDED Mounting footprint

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)
LC898214XC-MH	WLCSP8, 1.15x2.37, 0.5P (Pb-Free / Halogen Free)	4000 / Tape & Reel

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not