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AN3254
Application note

SPI protocol for the STPMC1 metering device

Introduction
The STPMC1 device is an ASSP designed for effective measurement in power line systems 
utilizing the Rogowski coil, current transformer, and shunt or Hall current sensors. Used in 
combination with one or more STPMSx ICs, it implements all the functions needed in a 1, 2, 
or 3-phase energy meter. It can be coupled with a microprocessor for multifunction energy 
meter or it can directly drive a stepper motor for a simple active energy meter.

All the data measured by the STPMC1 are accessible through the SPI port, which is also 
used to configure and calibrate the device. The configuration and calibration data are 
retained in a 112-bit OTP block; in any case, these data can be dynamically changed in 
microprocessor based meters.

Measured data (like active and reactive energy, total and per phase, phase VRMS, IRMS and 
instantaneous voltage and current, line frequency, phase status, etc.) should be read by the 
microcontroller at a fixed time interval to be further processed.

This application note describes the SPI protocol to read measured data from the STPMC1 
in a multiphase energy meter and how these readings should be processed by the 
application.

For more details on the device please refer to the STPMC1; Programmable poly-phase 
energy calculator IC, datasheet.

Figure 1. STPMC1 based application block diagram
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1 SPI module description

The STPMC1 SPI interface supports a simple serial protocol, which is implemented in order 
to enable a communication between a host system (microcontroller or PC) and the device.

With this interface it is possible to perform the following tasks:

● remote reset of the device

● temporary and permanent programming of internal configuration/calibration data and 
system signals

● reading of internal data registers (shown in Figure 5).

Four pins of the device are dedicated to this purpose: SCS, SYN, SCL, and SDA.

When the STPMC1 is in standalone mode, SYN, SCL, and SDA can provide information on 
the meter status (see the STPMC1 datasheet for more information) and are not used for SPI 
communication. In this document, the SYN, SCL, and SDA operation as part of the SPI 
interface is described.

SCS, SYN, and SCL are all input pins while SDA can be input or output depending on 
whether the SPI is in write or read mode.

The internal registers are not directly accessible, rather, a 32-bit of transmission latches are 
used to pre-load the data before being read or written to the internal registers.

The condition in which SCS, SYN, and SCL inputs are set to a high level determines the idle 
state of the SPI interface and no data transfer occurs. Any SPI operation should start from 
this idle state. The exception to this rule is when the STPMC1 has been put into standalone 
application mode. In such mode it is possible that pin states of the SCL, SDA, and SYN are 
not high due to the states of corresponding internal status bits.

● SCS: enables SPI operation when low, both in standalone and in peripheral operating 
mode. This means that the master can abort any task in any phase by deactivation of 
SCS. In standalone mode SCS high enables SYN, SCL, and SDA to output the meter 
status.

● SYN: when SCS is low, the SYN pin status selects if the SPI is in read (SYN=1) or write 
mode (SYN=0). When SCS is high and SYN is also high, the results of the input or 
output data are transferred to the transmission latches.

● SCL: is the clock pin of the SPI interface. This pin function is also controlled by the SCS 
status. If SCS is low, SCL is the input of the serial bit synchronization clock signal. 
When SCS is high, SCL is also high, determining the idle state of the SPI. 
Configuration bit SCLP controls the polarity of the clock. SCLP=0 sets the clock idle 
state SCL=1, while SCLP=1 sets the clock idle state SCL=0.

● SDA: is the data pin. If SCS is low, the operation of SDA is dependent on the status of 
the SYN pin. If SYN is high, SDA is the output of serial bit data (read mode). If SYN is 
low, SDA is the input of serial bit data signal (write mode). If SCS is high, SDA is idle. 

When SCS is active (low), the signal SDA should change its state at the trailing edge of 
signal SCL and the signal SDA should be stable at the next leading edge of signal SCL. 
The first valid bit of SDA is always started with activation of signal SCL. This is valid if 
SCLP=0, otherwise the polarity of the clock is inverted.

A high level signal for these pins means a voltage level higher than 0.75 x VCC, while a low 
level signal means a voltage value lower than 0.25 x VCC.
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1.1 Connection to microcontroller
The SPI master should be implemented by a host system, a PC, or a microcontroller.

The microcontroller’s SPI bus is usually a 4-wire bus with full duplex functionality, whose 
signals are usually named as:

● SCLK: serial clock (output from master)

● MOSI: master output, slave input (output from master)

● MISO: master input, slave output (output from slave)

● SS: slave select (active low, output from master)

The best way to connect this standard SPI port to the STPMC1 SPI is to have SCS and SYN 
driven from some general purpose I/O port and SCL and SDA driven from SPI pins. 

The suggested connection between the microcontroller and the STPMC1 is the following:

● MISO connected to SDA 

● MOSI not connected

● SCLK connected to SCL

● SS connected to SCS

● a general purpose I/O pin connected to SYN.

In this way, the SPI peripheral unit of the microprocessor should operate as 2-wire (simplex 
synchronous transfers) SPI.

The microprocessor SPI peripheral can be used during STPMC1 device reading, while 
during the writing process it is possible to implement the SPI protocol via firmware.

In fact, in real applications the meter is calibrated and configured during meter production, 
so the main microcontroller task is to read from the device and, more rarely, to reset the 
device.

Moreover the reading time is crucial for a correct evaluation of the device data, it is advisable 
to emulate the writing procedure by firmware and to read using the SPI peripheral 
functionality, therefore exploiting all the port performances to reach very fast reading.
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2 SPI interface timings

In Table 1 above, fXTAL1 is the oscillator clock frequency (see the STPMC1 datasheet for 
details).

Table 1. SPI interface timings

Symbol Parameter Min. Typ. Max. Unit

FSCLKr Data read speed 32 MHz

FSCLKw Data write speed 100 kHz

tDS Data setup time 20 ns

tDH Data hold time 0 ns

tON Data driver on time 20 ns

tOFF Data driver off time 20 ns

tSYN SYN active width 2/fXTAL1 s



SPI operations AN3254

6/24 Doc ID 17783 Rev 1

3 SPI operations

3.1 Remote reset request
The STPMC1 has no reset pin. It is automatically reset by the power on reset (POR) circuit 
when the VCC crosses the 2.5 V value but it can be reset also through the SPI interface 
giving a dedicated command, the timing diagram is shown in Figure 2.

The reset through SPI (remote reset request - RRR) is sent from the onboard 
microprocessor when a malfunction of the metering device has been detected.

Unlike the POR, the RRR signal does not cause the 30 ms retarded restart of the analog 
module and the 120 ms retarded restart of the digital module. This reset does not clear the 
mode signals.

Note: All the time intervals must be longer than 30 ns. t7 →t8 is the reset time, this interval must 
also be longer than 30 ns.

3.2 Data registers writing
Each writable bit (configuration and mode signals bits) of the STPMC1 has its own 7-bit 
absolute address (see the STPMC1 datasheet for configuration bits map).

In order to change the state of some pins, a byte of data via the SPI must be sent to the 
device. This byte consists of 1-bit data to be written (MSB), followed by a 7-bit address of 
the destination bit, which makes a command byte.

Figure 2. Remote reset request timing
         

t10t2t1 t4t3 t6t5 t8t7 t9
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For example, to set the STPMC1 configuration bit 47 (part of the R-phase current channel 
calibrator) to 1, the decimal 47 must be converted to its 7-bit binary value: 0101111. The 
byte command is then composed as:

1 bit DATA value+7 bits address = 10101111 (0xAF) 

The same procedure should be applied for the mode signals, which also have their specific 
address.

The LSB of the command is also called EXE bit because, instead of a data bit value, the 
corresponding serial clock pulse is used to generate the necessary latching signal. In this 
way, the writing mechanism does not need the measurement clock in order to operate, 
which makes the operation of the SPI module of the STPMC1 completely independent from 
the rest of the device logic, except from the signal POR.

The writing procedure timing is shown in Figure 3.

t1 →t2 (> 30 ns): SPI out of idle state

t2 →t3 (> 30 ns): SPI enabled for write operation

t3: data value is placed in SDA

t4: SDA value is stable and shifted into the device

t3 →t5 (> 10 µs): writing clock period

t3 →t5: 1-bit data value

t5 →t6: 6-bit address of the destination latch

t6 →t7: 1-bit EXE command

t8: end of SPI writing

t9: SPI enters idle state

Figure 3. Timing for writing configuration bits and mode signals
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Commands for changing configuration bits and system signals should be sent during active 
signals SCS and SYN, as it is shown in Figure 3. 

The SYN must be put low in order to disable the SDA output driver of the device and to 
make the SDA an input pin. A string of commands can be sent within one period of active 
signals SCS and SYN or a command can be followed by reading the data record but, in this 
case, the SYN should be deactivated in order to enable the SDA output driver and a SYN 
pulse should be applied before activation of the SCS in order to latch the data.

Given the connection between the STPMC1 and a microcontroller, as shown in the previous 
paragraph, it is possible to implement the writing procedure in the firmware through the 
following steps:

1. disable the SPI peripheral

2. set MISO, SCLK, and SS to be output 

3. set the pin which is connected to SYN to be output high

4. activate SCS first and then SYN

5. activate SCL

6. apply a bit value to SDA and deactivate SCL

7. repeat the last two steps seven times to complete one byte transfer

8. repeat the last three steps for any remaining byte transfer

9. deactivate SYN and the SCS

10. enable again the SPI module.

To temporarily set any bit, it is necessary to set the RD system signal before any other bit. 
This bit determines the device functioning from OTP shadow latches and not from OTP 
memory. The procedure to set this signal is that shown above. 

In the case of a precharge command (0xFF), emulation of the above is not necessary, it can 
be sent before any reading command. In fact, due to the pull up device on the SDA pin the 
processor needs to perform the following steps:

1. activate SYN first in order to latch the results

2. after at least 1 µs activate SCS

3. write one byte to the transmitter of SPI this produces 8 pulses on the SCL with SDA=1

4. deactivate SYN

5. read the data records as shown in Section 3.4 (the sequence of reading is altered)

6. deactivate SCS.

3.3 Data registers permanent writing
In order to make a permanent set in OTP memory of some configuration bits, the following 
procedure should be conducted:
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1. collect all addresses of bits to be permanently set into some list

2. clear all OTP shadow latches

3. set the system signal RD

4. connect a current source of at least +14 V, 1 mA to 3 mA to the VOTP pin

5. wait until VOTP voltage is stable

6. write one of the bits from the list (as the RD signal is set, the bit is written in the 
corresponding OTP shadow latch)

7. set the system signal WE

8. wait for 300 µs

9. clear the system signal WE

10. clear the OTP shadow latch which was set in step 6

11. until all wanted bits are permanently set, repeat steps 5 to 10

12. disconnect the current source

13. wait until VOTP voltage is less than 3 V

14. clear the system signal RD

15. read all data records, in the last two there is read back of all configuration bits

16. if verification of CFG bits fails and there is still a chance to pass, repeat steps 1 to 16.

For the steps above which ask of set or clear, apply the timing shown in Figure 3 with proper 
data on the SDA.

For step 15 apply the timing shown in Figure 4.

For a permanent set of the TSTD bit, which locks the device, the procedure above must be 
conducted in such a way that steps 6 to 13 are performed in series during a single period of 
active SCS because the idle state of SCS would make the signal TSTD immediately 
effective. 

This would abort the procedure, and it would possibly destroy the device.

In fact the clearing of system signal RD would connect all gates of 3 V NMOS sense 
amplifiers of already permanently set bits to the VOTP source.

3.4 Reading data registers
There are two phases of reading, called latching and shifting.

● Latching is used to sample results into transmission latches. This is done with the 
active pulse on SYN when SCS is idle. The length of pulse on SYN must be longer than 
2 periods of the measurement clock, i.e. more than 500 ns.

● Shifting starts when SCS becomes active. In the beginning of this phase another, but 
much shorter pulse (30 ns) on SYN should be applied. An alternative way is to extend 
the pulse on SYN into the second phase of reading. Latching and shifting finish at the 
dotted line in the timing diagram shown in Figure 4.
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t1 → t2: latching phase. Interval value > 2 / fXTAL1

t2 → t3: data latched, SPI idle. Interval value > 30 ns

t3 → t4: enable SPI for read operation. Interval value > 30 ns

t4 → t5: serial clock counter is reset. Interval value > 30 ns

t5 → t6: SPI reset and enabled for read operation. Interval value > 30 ns

t7: internal data transferred to SDA

t8: SDA data is stable and can be read

After the shifting phase, it is possible to read data, applying 32 serial clocks per data record. 
Up to 28 data records can be read this way.

There are seven groups of four data records available, each consisting of a parity nibble 
(see Section 3.2) and a 28-bit data field. Figure 5 and Figure 6 show the records structure 
and the information they hold in the default sequence of reading.

The system which reads the data record from the STPMC1 should check the integrity of 
each data record. If the check fails, the reading should be repeated, but this time only the 
shifting phase should be applied otherwise a new data would be latched into the 
transmission latches and the previous reading would be incorrectly lost.

Most of the registers contain the values of the electrical parameters and the status of the 
signals, except the registers CF0, CF1, CF2, and CF3 which represent the configuration 
bitmap.

The data records have a fixed position of reading. This means that no addressing of records 
is necessary.

The sequence of data records during the reading operation is fixed. However, an application 
may apply a precharge command prior to the reading phase. This command increases the 
group pointer forcing the device to respond with the next group data records sequence. In 
this way, a faster access to later groups is possible.

Figure 4. Timing for reading data registers
         

t2t1 t4t3 t6t5 t8t7

last bit of 32nd byte1st byte1st byte
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Figure 5. STPMC1 data registers
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Figure 6. STPMC1 data registers
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4 Data processing

4.1 Reading process
As previously mentioned, to start an SPI communication with the STPMC1 to read new 
values of registers, it is necessary to apply a latching phase first. Then a shifting phase 
starts, as described in Figure 4.

After that, 32 pulses of serial clocks need to be applied to pin SCL in order to read the DAP 
register. If an additional 32 pulses are applied to pin SCL, the DRP register is read.

Reading can be continued by applying 32 clocks per register until all registers of interest are 
read or a precharge command is applied first (8 pulses to pin SCLNLC while SYN=0 and 
SDA=1) which moves ahead the internal group pointer to group 1 (register DMR) which 
effectively skips DFP and PRD registers, and then reading may be continued.

The internal group pointer is incremented by 1 after each precharge command sent. If, for 
example, in the previous case two precharge commands are sent, the pointer will be set to 
group 2 (register DER).

It is up to an application to decide how many records should be read out from the device.

After all the registers are read, SCS can be returned to idle state which ends the shifting 
phase.

The shifting phase can be repeated and it should read the same values. This repetition is 
used to improve the reliability of successful reading in a strong EMI environment.

Every register is packed into 4 bytes where the most significant nibble (4 bits) is reserved for 
parity code and the rest of the 28 bits are used for data. This means that every register is 
protected by its own parity bit.

As shown in Figure 7, the first read out byte of the data record is the least significant byte 
(LSB) of the data value and the fourth is the most significant byte (MSB) of the data value, 
then it is necessary to re-order the four bytes after reading.

Figure 7. STPMC1 data register assembling
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Normally, each byte is read out as the most significant bit (MSB) first. But this can be 
changed by setting the MSBF configuration bit. If this is done, each byte is read out as the 
least significant bit (LSB) first.

4.1.1 Data register assembling example

The following is an example of the reading and re-arranging of STPMC1 registers.

On the left there are the eight data records as they are read, represented as hexadecimal 
bytes while MSBF was cleared, on the right is the corresponding register.

1. 65 7A 7C 82                  DAP = 82 7C 7A 65 

2. 00 7A 0C E0                  DRP = E0 0C 7A 00

3. 00 00 8C 92                   DFP = 92 8C 0 00 

4. 00 06 6E 22                              PRD = 22 6E 06 00

5. …

4.2 Parity check
Each bit of parity nibble is defined as odd parity of all seven corresponding bits of data 
nibbles. In order to check the data record integrity, the application should execute something 
similar to the following C code, given as an example:

int BadParity (unsigned char *bp)

{

register unsigned char prty = grp;  

/* temporary register set to group # 
(0..6)*/

prty  = *bp,                  /* take the 1st byte of data */

prty ^= *(bp+1),              /* XOR it with the 2nd byte */

prty ^= *(bp+2),              /* and with the 3rd byte */

prty ^= *(bp+3),              /* and with the 4th byte */

prty ^= prty<<4, prty &= 0xF0;/* combine and remove the lower 
nibble */

return (prty != 0xF0);        /* returns 1, if bad parity */

}

If the parity nibble check fails, the reading task should be repeated, but this time without the 
request of latching, otherwise a new data would be latched and the previous reading would 
be incorrectly lost.

In a very harsh EMI environment, it would be a good practice to read the data records twice 
and then compare both readings. In this way, the probability of detecting bad readings would 
be significantly improved. However, a single piece of bad data can be discarded because no 
meaningful information is lost as long as the reading frequency is about 30 ms.
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4.2.1 Parity check example

Let us calculate the parity of DMR, the first register of the second group:

DMR:    02         80         00         C8

prty = grp = 1                /* prty set to 1 - group #*/

prty  = *bp = 3             /* xor it with 1st byte of data 02 */

prty ^= *(bp+1) = 83        /* xor it with the 2nd byte 80*/

prty ^= *(bp+2) = 83        /* and with the 3rd byte 00 */

prty ^= *(bp+3) = 4B        /* and with the 4th byte C8 */

prty ^= prty<<4 = FB        /* and with B0 */

prty &= 0xF0 = F0           /* parity is ok */

4.3 Unpacking data
After reading (and the following re-ordering of bytes read), each register should be 
unpacked in order to obtain all individual values.

For this purpose it is necessary to mask the 28 bits according to the register map shown in 
Figure 5 and Figure 6.

For example, the DAP register is unpacked into an 8-bit value of status (least significant 
byte) and a 20-bit value of the 3-phase active energy counter (the remaining upper 3 bytes 
with parity code masked out).
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5 Converting readings into measured values

5.1 Energies
The first three registers contain 20-bit values of the internal 3-phase energy up/down 
counters, and in the following groups there are the registers containing each phase energy 
counter.

The value of the least significant bit of every energy counter is related to power meter 
constant P, which is the number of pulses per kWh that the meter, through calibration, is 
configured to provide to the LED pin.

This means that this value changes with the application and relative calibration.

Given P, the number of pulses per kWh provided, the energy registers LSB value is indicated 
in Table 2 below:

For example, the energy registers LSB values for SYS = 0, 1, 2, 4, 5, 6, 7 when P = 64000 
pulses/kWh = 17.7 Hz*kW are:

KP = KF = 15.258 *10-6 Wh

KQ = KR = 15.258 *10-6 VArh

The energy registers LSB values for SYS = 3 and the same P are:

KP = 15.258 *10-6 Wh

KF = 30.517 *10-6 Wh

KQ = KR = 30.517 *10-6 VArh

Table 2. Energy registers LSB value

Register SYS = 0,1,2,4,5,6,7 SYS = 3

3-ph Active Energy Wide Band (P)

3-ph Reactive Energy Wide Band (Q)

3-ph Active Energy Fundamental (F)

3-ph Reactive Energy Fundamental (R)

KP
1000

P 210⋅
----------------- Wh[ ]= KP

1000

P 210⋅
----------------- Wh[ ]=

KQ
1000

P 210⋅
----------------- VArh[ ]= KQ

1000

P 29⋅
-------------- VArh[ ]=

KF
1000

P 210⋅
----------------- Wh[ ]= KF

1000

P 29⋅
-------------- Wh[ ]=

KR
1000

P 210⋅
----------------- VArh[ ]= KR

1000

P 29⋅
-------------- VArh[ ]=
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This also means that the STPMC1 energy counters hold a very small energy value (in the 
example above, when LSB represents 15.258 µWh, the whole register stores 16 Wh), and 
further energy integration must be performed inside the application.

To accomplish this task, the procedure below should be followed.

Because all energy counters rollover in approximately 1 s when they are integrating maximal 
power, the reading must be done frequently enough. It is suggested to read the registers at 
least 32 times per second.

For each energy type, a variable e should be allocated, having the following structure (below 
is the variable definition for an ST7 microcontroller):

typedef struct energ { 

unsigned long old;     /* previous energy value - 32 bits */

unsigned int quot;     /* quant/16 - 16 bits */

signed int quant;      /* new - old, measure of power - 16 bits */

signed long frac;      /* fractional part of energy integrator - 
32 bits */

signed long integ;     /* integer part of energy integrator - 32 
bits */

} ENERG;

The application should keep the previous value of each energy counter in order to evaluate 
the difference of readings, from which also a direction of energy flow can be obtained. This 
value should be stored in e→ old before a reading. After the reading, the new energy 
register reading should be stored in e→ new.

To calculate consummated energy the software should implement a 32-bit integrator. The 
suggested integrator is two stages, with e→ frac and e→ integ 32-bit signed integer 
variables. Into e→  frac is added the value e→ quant, obtained as the difference between e →  
old and e→ new energy values; then the e→ old value should be rewritten with the e→ new 
value in order to enable a correct e→ quant computation next time.

When e→ frac collects a certain amount of energy, let’s say 10 Wh for active energy 
(corresponding to a certain threshold value according to KP), e→ integ should change for 1 
bit and the e→ frac should change by the threshold value.

In this way, e→ frac stores 0.01 KWh, after which e→ integ is increased by one, and the e→ 
integ variable holds accumulated energy of which the least significant bit represents 10 Wh.

Considering an active energy meter where P = 64000 imp/kWh, for a step of 0.01 KWh = 10 
Wh, as each bit of e→ quant represents KP Wh (it is the same resolution of the internal 
energy counter, because e→ quant is calculated as a difference of two energy counter 
values), the threshold value is 10/KP = 10/15.258*206 = 0xA0021.

In a microcontroller based application, a high priority timer interrupt should be set to perform 
measuring tasks every 1/512 s. Within this interrupt service 16 different subtasks could be 
established in order to break the whole meter task into 16 shorter consecutive subtasks 
(reading of device register, checking the data read, and, if ok, computing the value of e→ 
quant). In this way, the main program and other interrupt services are not blocked for more 
than a few 100 us every 2 ms, and the meter task is completed in 16 steps - that is in 1/32 s.
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The interrupt service should do the following:

● update e→ frac and e→ integ of the energy variable using e→ quot = e→ quant / 16

● generate output pulses (if needed) from e→ frac
● call the next subtask

● perform other tasks (if needed)

In this way the addition of e→ quant is split in 16 times. This generates a microcontroller 
output pulse that has a 16 times better accuracy of position in time, which would reduce the 
jitter of an eventual LED output.

5.2 Other values

5.2.1 Voltage, current, and frequency calculation

The ratio between the register value and the actual voltage, current, or frequency value is a 
function of the voltage and current sensor sensitivity and of the device internal parameters, 
like analog amplification, reference voltage, measurement frequency, calibrator, attenuation 
of each stage of decimation filter, and power meter constant.

Formulas to convert the readings into meaningful values are reported below.

For details on the device configuration bits mentioned below, please refer to the STPMC1 
datasheet.

In any case, as the internal parameter values, here given as constants, are subject to 
process drift, and the sensors sensitivity are subject to tolerance, even if these fluctuations 
are compensated by the calibrators, the best way to obtain the proper parameters is to 
measure known signals and calculate the ratio between the register value and actual value. 
The device linearity ensures that the ratio remains constant.

Figure 8, 9, and 10 below show the signal processing chains for each phase current and 
voltage.

         

Figure 8. Voltage signal path
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Each block of the path contributes to the signal processing with the parameters shown 
below.

Table 3 shows the variable parameters that must be considered as inputs for the following 
calculation, while Table 4 shows the device internal constant parameters.

x_i can be one of the current readings in the registers from DMR to DEN (iR MOM, iS MOM, 
etc., sI RMS, iR RMS, iS RMS, etc.), and x_u can be one of the voltage readings in the 
registers from PRD to DEN (DC uN, uR MOM, uS MOM, etc., uR RMS, uS RMS, etc.).

x_period is the 12 bits value in the PRD register.

Figure 9. Current conditioning
         

Figure 10. Current signal path
         

Table 3. Input parameters

Parameter Meaning

R1, R2 Voltage Divider Resistors Value [Ohm]

Ks Current Sensor Sensitivity Value [V/A]

x_i Current Register Value expressed as decimal

x_u Voltage Register Value expressed as decimal

x_period Period Register Value expressed as decimal

Ai Current Channel Gain
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Line frequency is calculated as follows:

frequency = Fm /( x_period * 25)

The integrator and differentiator gains are calculated as follows:

Kint = 2 * x_period * 25/ (p * 216)

Kdif = 1/ (2 * Kint)

Typical values for these gains are:

Table 4. STPMC1 internal parameters value

Parameter Value Meaning

Ku
0,875 Voltage calibrator ideal value if PM = 0 (1)

0,9375 Voltage calibrator ideal value if PM = 1 

Ki
0,875 Current calibrator ideal value if PM = 0 

0,9375 Current calibrator ideal value if PM = 1 

Kisum 0,875 Calibrator ideal value for sI RMS (sum of currents)(2)

Au 4 Voltage channel gain

len_i 216 Current register length

len_u 212 Voltage register length

len_isum 212 sI RMS (sum of currents) register length

Kint_comp 1,004 Gain of decimation filter

π 3.14159

Fm

4 * 106 If oscillator frequency is 4.000 or 8.000 MHz

222 If oscillator frequency is 4.194 or 8.388 MHz

4915200 If oscillator frequency is 4.915 or 9.830 MHz

Kut
2 For CT/Shunt

1 For Rogowski coil

Vref 1.23 Internal voltage reference

1. PM is CFG 21, it sets the meter precision (Class 1 or Class 0.1)

2. 12 bits in DMN register

Table 5. Kint and Kdif typical values

Kdif
0,6135 Gain of differentiator @ line frequency = 50 Hz

0.7359 Gain of differentiator @ line frequency = 60 Hz

Kint
0,815 Gain of integrator @ line frequency = 50 Hz

0.679 Gain of integrator @ line frequency = 60 Hz
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From these values the following scaling parameters are calculated for Rogowski Coil 
sensor:

Kf = frequency / 50

Kdspu = 1

Kdspi = Kf

and for CT or Shunt current sensors:

Kdspu = Kdif * Kint

Kdspi = Kdif

The uN RMS value (12 bits in DEN register) conversion formula is:

u = x_u * 2 / len_u

For the sum of RMS currents sI RMS (12 bits in DMN register) the value is obtained as 
follows:

si = x_i * Vref/(Ks * Kisum * Ai * len_isum * Kint * Kint_comp * 
Kdspi)

For the data from the momentary registers, as the related momentary voltage and current 
parameters are signed (they can be positive or negative), it is necessary to evaluate the sign 
with the following task. This does not apply to the RMS values:

if (x_i & (len_i>>1)) // positive current 

x_i = x_i & ((len_i>>1)-1); 

else // negative current

{

x_i = (len_i>>1) - x_i;

x_i = x_i * (-1);

}

if (x_u & (len_u>>1)) // positive voltage 

x_u = x_u & ((len_u>>1)-1);

else // negative voltage 

{

x_u = (len_u>>1) - x_u;

x_u = x_u * (-1);

}

Both RMS and momentary current and voltage conversion formulas then are:

u = (1+R1/R2)* x_u * Vref /(Kut * Ku * Au * len_u * kint_comp*  
Kdspu)

i = x_i * Vref/(Ks * Ki * Ai * len_i * Kint * Kint_comp * Kdspi)
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For SYS configuration bits 2 or 3 (no neutral wire) the voltage value should be further 
multiplied by 2: 

u = u * 2

5.2.2 Other values

The ACR, ACS, and ACT registers hold the information needed for this calculation. 

Concatenating ACT[7:0], ACS[7:0], and ACR[7:0] bytes, two 12-bit vectors, defined below, 
are obtained:

ACT[7:0], ACS[7:0], ACR[7:0] = Asr[11, 10:0], Art[11, 10:0]

The delay times are calculated with the following formulas:

where fMCLK depends upon the oscillator value according to Table 6:

The phase delays in degrees can be calculated as follows:

timeAsr Asr 10 0;[ ] 211( )
Asr 11[ ]

– 1+( ) 8
fMCLK
---------------⋅=

timeArt Art 10 0;[ ] 211( )
Asr 11[ ]

– 1+( ) 8
fMCLK
---------------⋅=

Table 6. fMCLK value 

fXTAL1 MDIV fMCLK

4.000 MHz 0 8.000 MHz

4.194 MHz 0 8.192 MHz

4.915 MHz 0 9.830 MHz

8.000 MHz 1 8.000 MHz

8.192 MHz 1 8.192 MHz

9.830 MHz 1 9.830 MHz

ϕ° time
fline
------------ 360°⋅=
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6 Revision history

Table 7. Document revision history

Date Version Description

19-Nov-2010 1 First release
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