

September 2010

FDMS3604S Dual N-Channel PowerTrench[®] MOSFET N-Channel: 30 V, 30 A, 6.8 m Ω N-Channel: 30 V, 40 A, 2.6 m Ω

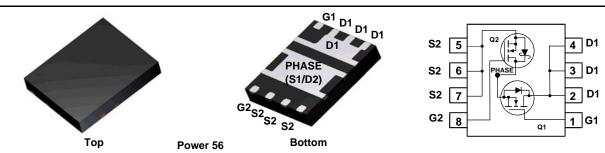
Features

Q1: N-Channel

- Max $r_{DS(on)} = 6.8 \text{ m}\Omega \text{ at } V_{GS} = 10 \text{ V}, I_D = 13 \text{ A}$
- Max r_{DS(on)} = 9.8 mΩ at V_{GS} = 4.5 V, I_D = 11 A

Q2: N-Channel

- Max $r_{DS(on)}$ = 2.6 m Ω at V_{GS} = 10 V, I_D = 23 A
- Max $r_{DS(on)}$ = 3.5 m Ω at V_{GS} = 4.5 V, I_D = 21 A
- Low inductance packaging shortens rise/fall times, resulting in lower switching losses
- MOSFET integration enables optimum layout for lower circuit inductance and reduced switch node ringing
- RoHS Compliant



General Description

This device includes two specialized N-Channel MOSFETs in a dual PQFN package. The switch node has been internally connected to enable easy placement and routing of synchronous buck converters. The control MOSFET (Q1) and synchronous SyncFET (Q2) have been designed to provide optimal power efficiency.

Applications

- Computing
- Communications
- General Purpose Point of Load
- Notebook VCORE

MOSFET Maximum Ratings T_A = 25 °C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units
V _{DS}	Drain to Source Voltage		30	30	V
V _{GS}	Gate to Source Voltage	(Note 3)	±20	±20	V
	Drain Current -Continuous (Package limited)	T _C = 25 °C	30	40	
I _D	-Continuous (Silicon limited)	T _C = 25 °C	60	130	
	-Continuous	T _A = 25 °C	13 ^{1a}	23 ^{1b}	A
	-Pulsed		40	100	
E _{AS}	Single Pulse Avalanche Energy		40 ⁴	112 ⁵	mJ
P	Power Dissipation for Single Operation	T _A = 25 °C	2.2 ^{1a}	2.5 ^{1b}	14/
P _D	Power Dissipation for Single Operation	T _A = 25 °C	1.0 ^{1c}	1.0 ^{1d}	W
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C

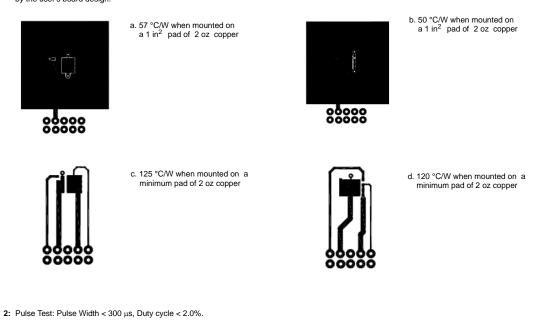
Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	57 ^{1a}	50 ^{1b}	
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	125 ^{1c}	120 ^{1d}	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction to Case	3.5	2	

Package Marking and Ordering Information

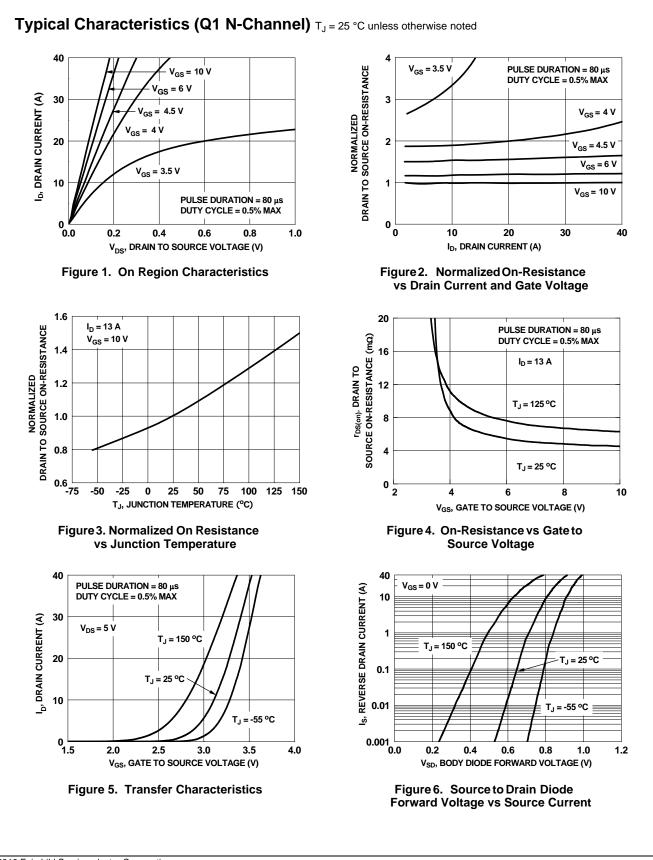
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
22CA N7CC	FDMS3604S	Power 56	13 "	12 mm	3000 units

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Off Chara	acteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, \ V_{GS} = 0 \ V$ $I_D = 1 \ mA, \ V_{GS} = 0 \ V$		30 30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = 10 \ m$ A, referenced to 25 °C	Q1 Q2		15 12		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 V, V_{GS} = 0 V$	Q1 Q2			1 500	μΑ μΑ
I _{GSS}	Gate to Source Leakage Current, Forwad	V _{GS} = 20 V, V _{DS} = 0 V	Q1 Q2			100 100	nA nA
On Chara	acteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_D = 250 \ \mu A$ $V_{GS} = V_{DS}, I_D = 1 \ m A$	Q1 Q2	1.1 1.1	2 1.8	2.7 3	V
			~ 1				
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25 °C $I_D = 10 \ m$ A, referenced to 25 °C	Q1 Q2		-6 -5		mV/°C
ΔTJ	Temperature Coefficient				-	6.8 9.8 9.2	
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	5	$I_{D} = 10 \text{ mA, referenced to } 25 \text{ °C}$ $V_{GS} = 10 \text{ V, } I_{D} = 13 \text{ A}$ $V_{GS} = 4.5 \text{ V, } I_{D} = 11 \text{ A}$	Q2		-5 5.2 7.5	9.8	mV/°C

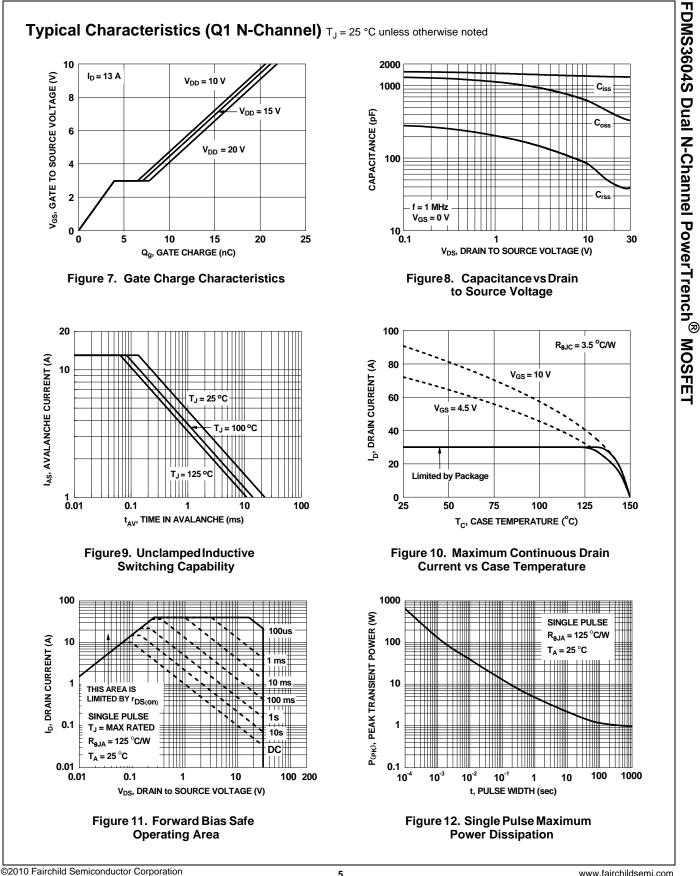

Dynamic Characteristics

C _{iss}	Input Capacitance	Q1: V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		1340 3240	1785 4310	pF
C _{oss}	Output Capacitance	Q2:	Q1 Q2		485 1230	645 1635	pF
C _{rss}	Reverse Transfer Capacitance	V _{DS} = 15 V, V _{GS} = 0 V, f = 1 MHZ	Q1 Q2		53 103	80 155	pF
R _g	Gate Resistance		Q1 Q2	0.2 0.2	0.6 0.8	2.0 3.0	Ω

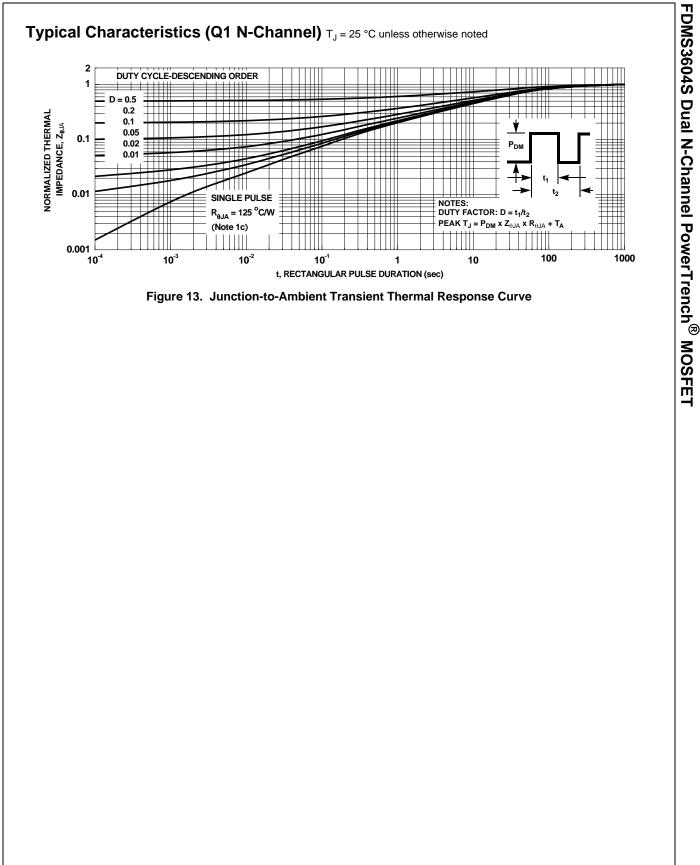
Switching Characteristics

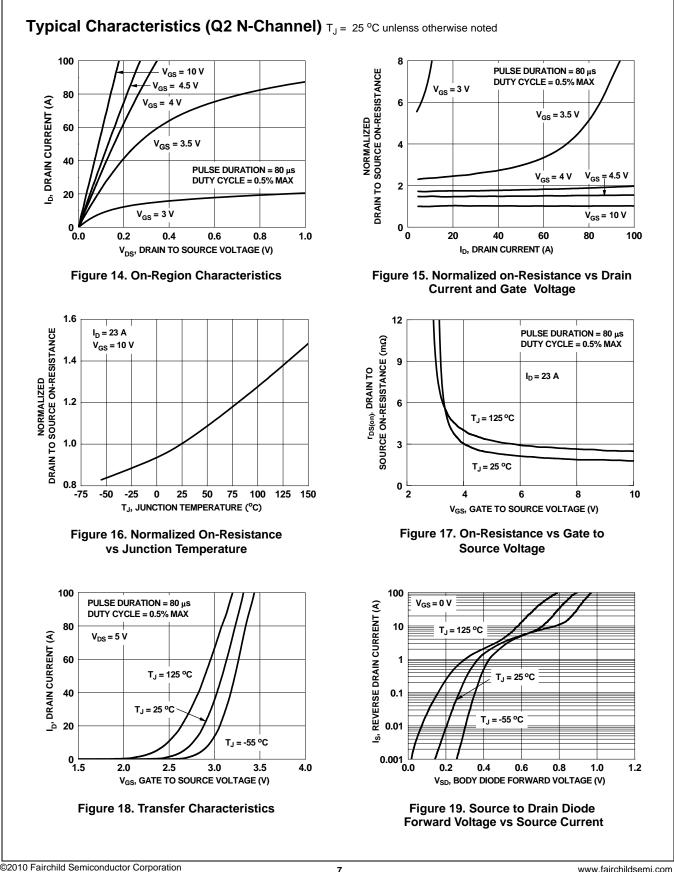

t _{d(on)}	Turn-On Delay Time			Q1 Q2	8.2 13	16 23	ns
t _r	Rise Time	Q1: V _{DD} = 15 V, I _D = 13	A, $R_{GEN} = 6 \Omega$	Q1 Q2	2.5 4.8	10 10	ns
t _{d(off)}	Turn-Off Delay Time	Q2:		Q1 Q2	20 31	32 50	ns
t _f	Fall Time	V _{DD} = 15 V, I _D = 23	A, $R_{GEN} = 6 \Omega$	Q1 Q2	2.2 3.4	10 10	ns
Qg	Total Gate Charge	$V_{GS} = 0$ V to 10 V	Q1	Q1 Q2	21 47	29 66	nC
Qg	Total Gate Charge	$V_{GS} = 0$ V to 4.5 V	V _{DD} = 15 V, I _D = 13 A	Q1 Q2	10 22	14 31	nC
Q _{gs}	Gate to Source Gate Charge		Q2 V _{DD} = 15 V,	Q1 Q2	3.9 9		nC
Q _{gd}	Gate to Drain "Miller" Charge		$V_{DD} = 13 V,$ $I_{D} = 23 A$	Q1 Q2	3.1 5.5		nC

Symbol	Parameter	Test Conditions	Туре	Min	Тур	Max	Units
Drain-Sou	urce Diode Characteristics						
N/	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 13 A$ (Note 2)	Q1		0.8	1.2	V
V SD		$V_{GS} = 0 V, I_S = 23A$ (Note 2)	Q2		0.8	1.2	v
		Q1	Q1		25	40	
Lrr	Reverse Recovery Time	I _F = 13 A, di/dt = 100 A/μs	Q2		32	51	ns
0	Reverse Reservery Charge	Q2	Q1		9	18	~ ^ ^
Q _{rr} Reverse Recovery Charge		I _F = 23 A, di/dt = 300 A/μs	Q2		39	62	nC

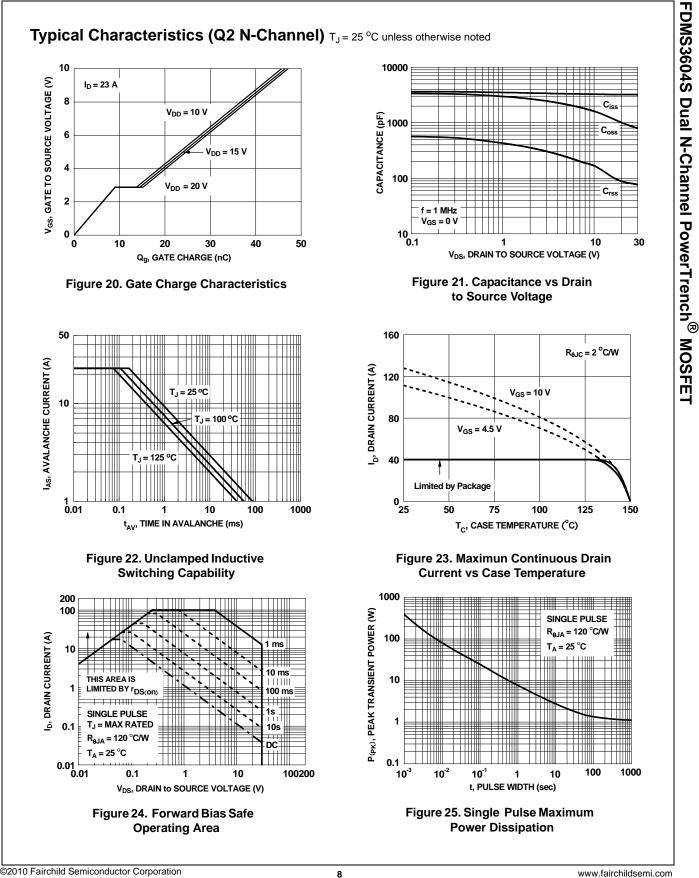

- 3: As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.
- 4: E_{AS} of 40 mJ is based on starting T_J = 25 °C; N-ch: L = 1 mH, I_{AS} = 9 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L= 0.3 mH, I_{AS} = 14 A.
- 5: E_{AS} of 112 mJ is based on starting T_J = 25 °C; N-ch: L = 1 mH, I_{AS} = 15 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L= 0.3 mH, I_{AS} = 22 A.

FDMS3604S Dual N-Channel PowerTrench[®] MOSFET

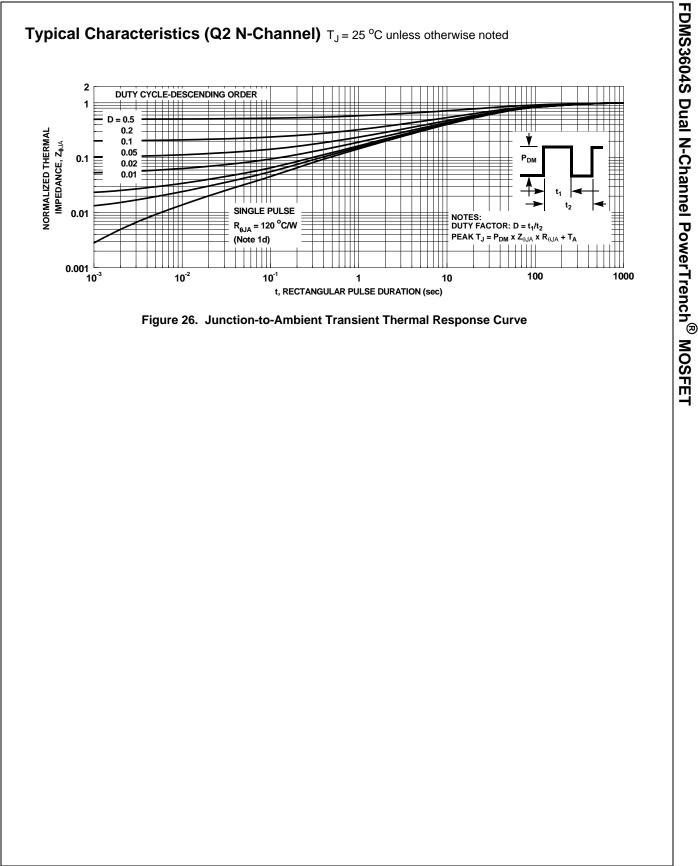



©2010 Fairchild Semiconductor Corporation FDMS3604S Rev.B4

4



FDMS3604S Rev.B4



FDMS3604S Rev.B4

FDMS3604S Rev.B4

Typical Characteristics (continued)

SyncFET Schottky body diode Characteristics

Fairchild's SyncFET process embeds a Schottky diode in parallel with PowerTrench MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 27 shows the reverse recovery characteristic of the FDMS3604S.

Figure 27. FDMS3604S SyncFET body diode reverse recovery characteristic

Schottky barrier diodes exhibit significant leakage at high temperature and high reverse voltage. This will increase the power in the device.

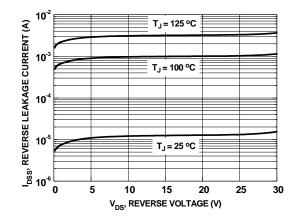
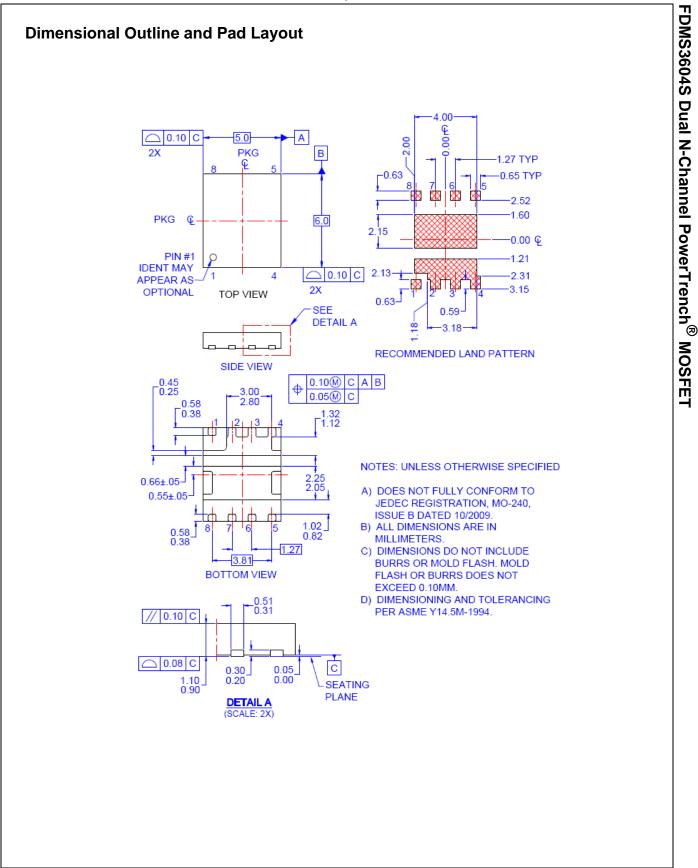
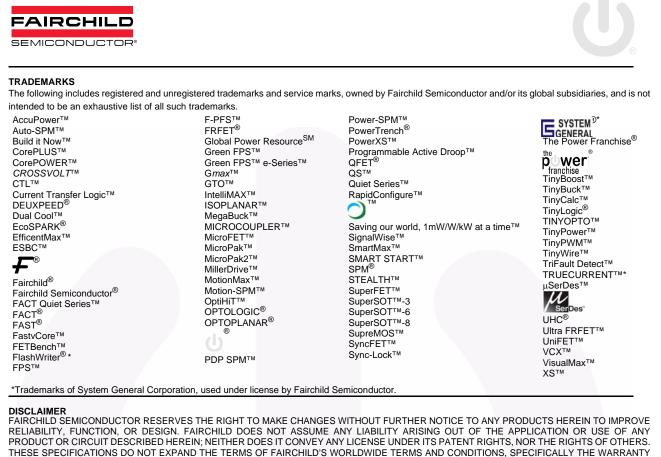




Figure 28. SyncFET body diode reverse leakage versus drain-source voltage

©2010 Fairchild Semiconductor Corporation FDMS3604S Rev.B4

©2010 Fairchild Semiconductor Corporation FDMS3604S Rev.B4

THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- 1 Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev.

FDMS3604S Dual N-Channel PowerTrench[®] MOSFE