
April 2013 Rev 2 1/25

AN2540
Application note
EEPROM emulation in

STR91xFxx devices

Introduction
Replacing external EEPROM with emulated EEPROM from the embedded-Flash memory of
the microcontroller is a complex development. This application note is aimed at readers that
are already familiar with the techniques used to secure the content of evolutive information
in the external EEPROM of embedded applications.This application note explains the
differences between external/internal EEPROMs and embedded-Flash memory. It also
gives advice on how to replace external EEPROM with emulated-EEPROM using the
on-chip Flash memory of STR91xFxx devices.

This document also focuses on some embedded aspects in emulated-EEPROM data
storage, that are assumed to be known by the reader.

Overview
Electrically erasable and programmable read-only memory (EEPROM) is a key component
in many embedded applications requiring non-volatile storage of data that are updated at a
byte, half-word or word granularity during run time.

On the other hand, the microcontrollers used in those systems are more and more based on
embedded-Flash memory. To eliminate components, save silicon area and reduce system
cost, the STR91xFxx Flash memory could eventually replace the external EEPROM for
simultaneous code and data storage.

However unlike Flash memory, external EEPROM does not require a block erase operation
to free up space before data can be rewritten. A special software management is required to
store data into Flash memory.

Obviously the emulation software scheme depends on many factors including the EEPROM
reliability, Flash memory architecture and product requirements. Two approaches to
implementation are described in detail in this application note using the on-chip Flash
memory of the STR91xFxx microcontrollers.

www.st.com

http://www.st.com

Contents AN2540 - Application note

2/25

Contents

1 Embedded Flash memory vs. EEPROM: main differences 5

1.1 Difference in write access time . 5

1.2 Difference in writing method . 5

1.3 Difference in erase time . 6

2 Appropriate solution for Emulated EEPROM in the STR91xFxx 7

2.1 STR91xFxx on-chip Flash memory features . 7

2.2 STR91xFxx Flash memory library . 7

3 Implementing the EEPROM emulation . 8

3.1 Principle . 8

3.2 1st method . 9

3.2.1 Application example . 9

3.2.2 EEPROM software description . 11

3.3 2nd method . 15

3.3.1 Application example . 15

3.3.2 EEPROM software description . 16

3.4 Program execution . 17

4 Embedded application aspects . 18

4.1 Data granularity management . 18

4.1.1 Programming on a word-by-word basis . 18

4.1.2 Programming on a byte-by-byte basis . 18

4.2 Wear-leveling: Flash endurance improvement . 19

4.2.1 Application example . 19

4.3 Sector header recovery in case of power loss . 20

4.4 Emulated EEPROM parameters . 21

4.4.1 Program/Erase parameter cycling . 21

4.4.2 Program timing . 22

5 Conclusion . 23

6 Revision history . 24

AN2540 - Application note List of tables

 3/25

List of tables

Table 1. Differences between Embedded Flash memory and EEPROM . 5
Table 2. EepromFormat . 12
Table 3. FindValidSector . 12
Table 4. ReadVariable . 12
Table 5. WriteVariable . 12
Table 6. WriteVerifyVariableFull . 13
Table 7. EepromSectorTransfer . 14
Table 8. Status combinations and actions to be taken . 21
Table 9. Write time related to the current implementation . 22
Table 10. Document revision history . 24

List of figures AN2540 - Application note

4/25

List of figures

Figure 1. Header field status switching between sector0 and 1. 8
Figure 2. Sector swap scheme: Sector1 erased . 10
Figure 3. Sector swap scheme: Sector0 erased . 11
Figure 4. 1st method: WriteVariable flowchart . 13
Figure 5. Data storage procedure . 15
Figure 6. Data update flow. 16
Figure 7. 2nd method: WriteVariable flowchart . 17
Figure 8. WriteOnebyte function description . 19
Figure 9. Sector swap scheme with four sectors . 20

AN2540 - Application note Embedded Flash memory vs. EEPROM: main differences

 5/25

1 Embedded Flash memory vs. EEPROM: main
differences

Before describing the proposed concept for EEPROM emulation, it is important to
remember the main differences between the embedded Flash memory of a microcontroller
and serial external EEPROMs. These differences are the same for any microcontroller (that
is they are not specific to STR91xFxx products). They are summarized in Table 1.

1.1 Difference in write access time
As the Flash memory has a shorter write access time, critical parameters can be stored
faster into the emulated EEPROM than into an external serial EEPROM. The use of the
Flash memory therefore improves the system robustness.

1.2 Difference in writing method
One of the major differences between external and emulated EEPROM for embedded
applications is the writing method.

● Standalone external EEPROM: once started by the CPU, the writing of a word cannot
be interrupted by a CPU reset. Only a power supply failure can interrupt the writing
process, so properly sizing the decoupling capacitors can secure the write process to a
standalone EEPROM.

● Emulated EEPROM from an embedded Flash memory: once started by the CPU, the
writing can be interrupted by a power failure and by a CPU reset. This difference should
be analyzed by system designers to understand the possible impact(s) in their
applications, and to determine a proper method to handle them.

Table 1. Differences between Embedded Flash memory and EEPROM

Feature External EEPROM
Emulated EEPROM using on-chip Flash

memory

Write time

A few ms

– random byte: 5 to 10 ms
– page: equivalent to a hundred µs per

word (5 to 10 ms per page)

A few µs

(e.g.: 20 µs per 16-bit word)

Erase time N/A seconds (e.g.: 1.5 s)

Write method
Once started, is not CPU-dependent,
needs only proper supply.

Once started, is CPU-dependent: a CPU
reset will stop the write process even if the
supply stays within specifications.

Read access
Serial: a hundred µs
random word: 92 µs

page: 22.5 µs/byte

Parallel: a hundred ns

very few CPU cycles per 16-bit word.

Embedded Flash memory vs. EEPROM: main differences AN2540 - Application note

6/25

1.3 Difference in erase time
The difference in erase time is the other major difference between standalone EEPROM and
emulated EEPROM with embedded Flash memory. Unlike Flash memory, EEPROM does
not require a block erase operation to free up space before writing. Moreover, as the erase
process of a block in the Flash memory takes a few seconds, power shut-down and other
spurious events that may interrupt the erase process (e.g.: reset) should be considered
when designing the Flash memory management software. This means that to design a
robust Flash memory management software it is necessary to have a good understanding of
the Flash memory erase process.

AN2540 - Application note Appropriate solution for Emulated EEPROM in the STR91xFxx

 7/25

2 Appropriate solution for Emulated EEPROM in the
STR91xFxx

The STR91xFxx microcontrollers support the hardware and software architecture necessary
to emulate EEPROM memory using the on-chip Flash memory.

2.1 STR91xFxx on-chip Flash memory features
■ The STR91x internal Flash memory consists of two banks: Main Flash memory (Bank 0)

and Secondary Flash memory (Bank 1). The Main Flash memory is up to 512 Kbytes in
size and includes up to eight 64-Kbyte sectors. The Secondary Flash memory is 32
Kbytes in size and consists of four 8-Kbyte sectors, it can be useful for the wear-leveling
feature (refer to Section 4.2).

■ One of the STR9 embedded Flash memory features is Read-while-Write (RWW) Dual
Bank operations. This means that the Main Flash memory (Bank0) can be used for code
storage and the smaller Secondary Flash memory, for data storage (EEPROM
emulation).

■ The Flash memory can be erased on a sector or bank basis, and programmed on a 16-
bit half-word basis.

■ Each bank can be programmed and erased over 100 000 cycles.

■ 20-year data retention.

■ Each sector can be individually protected and unprotected against program and erase
operations.

■ As the Flash memory has a shorter write access time, critical parameters can be stored
faster in the emulated EEPROM than in an external serial EEPROM.

■ Interrupt servicing during program/erase is possible.

■ CPU program does not need to be copied into RAM during program/erase: RAM less used
to perform EEPROM emulation.

■ Program/Erase Suspend and Resume commands supported. That is, Flash memory
sector erase may be suspended while data is read from other sectors in the same Flash
memory bank, and then resumed after reading.

2.2 STR91xFxx Flash memory library
The Flash memory programming library is a set of optimized C routines. It contains all that is
needed to program the Flash memory embedded in STR9 devices.

The Flash memory library contains the following source files:

■ 91x_fmi.c, that contains the function codes

■ 91x_fmi.h, that contains the function prototypes

To use the functions provided by the Flash memory library, these two files must be added to
the project. With the STR9 software (SW) library (FMI driver) it is easy to implement the
EEPROM emulation software.

Implementing the EEPROM emulation AN2540 - Application note

8/25

3 Implementing the EEPROM emulation

3.1 Principle
This emulation is performed in various ways by considering the Flash memory limitations
and the product requirements. Two approaches are described below in detail. Both require a
minimum of two Flash memory sectors of identical size, that are allocated to non-volatile
data. One that is initially erased and can be programmed byte by byte, and the other that is
ready to take over when the first sector needs to be garbage-collected.

Since the STR91xFxx on-chip Flash memory can be programmed on a 16-bit half-word
basis, the data granularity in this implementation is 16 bits.

A header field that occupies the first 16-bit half word of each sector indicates the sector
status.

Each sector has four possible states:

● ERASED: The sector is empty.

● RECEIVE_DATA: The sector is receiving data from the full sector.

● VALID_SECTOR: The sector contains valid data and its state will not change until valid
data are completely transferred to the erased sector.

● TRANSFER_COMPLETE: Transfer of data to the other sector is finished and this
sector is no longer in use. The system can then erase it and prepare it for future data.

Figure 1. shows how to switch from one state to another for both sectors.

Figure 1. Header field status switching between sector0 and 1

Valid0 Erased1

Valid0 Receive1

Transfer_
complete0

Valid1

Erased0 Valid1

Receive0 Valid1

Transfer_
complete1

Valid0

Sector0 Full

Transfer data from sector0 to sector1 complete

Erase0

Sector1 Full

Write data in sector0

Copy data from sector0

Erase1

to sector1

Copy data from sector1
to sector0

Write data in sector1

Transfer data from sector1 to sector0 complete

States related to sector1States related to sector0

ai14085

AN2540 - Application note Implementing the EEPROM emulation

 9/25

3.2 1st method
Parameter records stored in EEPROM vary in size and update frequency. Users using this
method would usually know the update frequency in advance.

In this method, sector0 and sector1 in Bank1 are used. These Flash memory sectors are
write-accessed in order to store several non-volatile variables. For this purpose, they have to
be divided identically into several parts, one per variable. The size of the memory space
allocated to each variable depends on the variable update frequency. The first 16-bit value
of each variable is stored at the base address of the memory space allocated to the
variable. When the variable is updated, the new value is stored at the next available
address: Base address + 2, base address + 4 and so on until no room remains in the
allocated memory space.

The 1st method Emulation driver meets the following requirements:

● At least two boot Flash memory sectors have to be used, more if possible for wear
leveling (refer to Section 4.2)

● Minimum use of SRAM

● Simple and easily updatable code model

● User API consisting of EepromFormat, FindValidSector, WriteVariable, ReadVariable.

● Clean-up and internal data management transparent to the user

● Code in Main Flash memory, data storage in Secondary Flash memory

3.2.1 Application example

Let us assume that in sector0, three variables: A, B and C, will be stored and updated.

■ The first variable A value is stored at t0 and variable A(t) is updated every tA.

■ The second variable B value is stored at t1 and variable B(t) is updated every tB.

■ The third variable C value is stored at t2 and variable C(t) is updated every tC.

In a typical application, the majority of non-volatile data are seldom updated, only a few data
are updated more frequently.

Let us consider tC < tA< tB. This means that C is updated more often than A and B, and that
A is updated more often than B. So more memory space should be allocated to C than to A
and B, and A should have more space than B (refer to Figure 2).

Implementing the EEPROM emulation AN2540 - Application note

10/25

Figure 2. Sector swap scheme: Sector1 erased

In this application, sector0 is divided up as follows:

■ 0x0000 0002 - 0x0000 04FF memory space is allocated to variable A

■ 0x0000 0500 - 0x0000 0510 memory space is allocated to variable B

■ 0x0000 0511 - 0x0000 1FFF memory space is allocated to variable C

In sector0, variables are stored until there the memory space left is not large enough to be
allocated to another variable (case of variable A in the following example).

Example: Let us assuming that variable A is to be updated at time t0 + (n+1) × tA to A(t0 +
(n+1) × tA). Addresses from 0x0000 0002 to 0x0000 04FF are all full, the next value is then
stored in the base address of the space allocated to variable A in sector1.

The latest stored values of all other variables (B and C) are transferred from their current
location in sector0 to the base address of their allocated space in sector1. After the transfer
of all variables is complete, sector0 is erased.

Variables are then stored and updated in sector1 in the same way as described for sector0.

When there is not enough memory space left for one of these variables in sector1, the
variables are transferred back to sector0 (now empty) as described above and so on. This
process is illustrated in Figure 3.

A(t) values

B(t) values

C(t) values

0x0000 0000

0x0000 1FFF

A(t0)

B(t0)

C(t0)

Sector0

Sector1 Header

A(t) values

B(t) values

C(t) values

0x0000 2000

0x0000 3FFF

Sector1 Erased

Update

Update

Update

Sector swap
(Erase one when using the other)

A(t0 + tA)

A(t0 + n × tA)

B(t0 + m × tB)

C(t0 + p × tC)

Sector0 Header

A(t0)

B(t0)

C(t0)

A(t0 + tA)

A(t0 + n × tA)

B(t0 + m × tB)

C(t0 + p × tC)

ai14086

AN2540 - Application note Implementing the EEPROM emulation

 11/25

Figure 3. Sector swap scheme: Sector0 erased

3.2.2 EEPROM software description

This section describes the driver implemented for EEPROM emulation using the
STR91xFxx Flash library provided by STMicroelectronics.

A demonstration program is also supplied to demonstrate and test the EEPROM Emulation
driver using the three variables A, B and C already defined.

The project contains three source files in addition to the FMI library source files:

● eeprom.c: containing C code for the following routines:

EepromFormat()

WriteVariable()

ReadVariable()

FindValidSector()

WriteVerifyVariableFull()

EepromSectorTransfer()

● eeprom.h: Containing the routines’ prototypes and some declarations.

● main.c: This application program is an example using the routines described in
eeprom.c.

A(t) values

B(t) values

C(t) values

0x0000 0000

0x0000 1FFF

A(t0)

B(t0)

C(t0)

Sector0 Erased

Sector1 Header

A(t) values

B(t) values

C(t) values

0x0000 2000

0x0000 3FFF

Sector1

Update

Update

Update

Sector swap
(Erase one when using the other)

A(t0 + tA)

A(t0 + n × tA)

B(t0 + m × tB)

C(t0 + p × tC)

Sector0 Header

0A(t + (n + 1) × tA)

B(t0 + m × tB)

0C(t + p × tC)

ai14087

Implementing the EEPROM emulation AN2540 - Application note

12/25

3.2.2.1 User API definition

Table 2. EepromFormat

Function Name EepromFormat

Function Prototype u8 EepromFormat(void);

Behavior Description
This function erases sector0 and sector1 and writes a
VALID_SECTOR header to sector0.

Input Parameter None

Return Parameter Status of the operation.

Called functions FMI_EraseSector,FMI_WaitForLastOperation,FMI_WriteHalfWord

Table 3. FindValidSector

Function Name FindValidSector

Function Prototype u8 FindValidSector(u8 operation);

Behavior Description
This function reads both sector’s headers and returns the sector
number which contains valid data.

Input Parameter
A byte indicating that we are looking for a valid sector for write or read
operation(READ_FROM_VALID_SECTOR or
WRITE_IN_VALID_SECTOR

Return Parameter Sector number.

Called functions FMI_ReadWord.

Table 4. ReadVariable

Function Name ReadVariable

Function Prototype u16 ReadVariable(u8 index, u32 *T);

Behavior Description
This function reads variable data. Only last update is read. The
function enters a loop in which it reads the variable entries until the
last one is found. Finally, the data is returned.

Input Parameter
– index: variable identifier

– T: variable array

Return Parameter Returns 16-bit read data on success or error code on failure.

Called functions FindValidSector.

Table 5. WriteVariable

Function Name WriteVariable

Function Prototype u8 WriteVariable(u8 index, u32 *T, u16 data);

Behavior Description This function is called by the user application to update a variable

Input Parameter

– index: variable identifier

– T: variable array
– data: 16-bit data to be written

Return Parameter Returns 1 on success or error code on failure

Called functions WriteVerifyVariableFull, EepromSectorTransfer.

AN2540 - Application note Implementing the EEPROM emulation

 13/25

The procedure of updating a variable entry in the EEPROM is shown in Figure 4.

Figure 4. 1st method: WriteVariable flowchart

If the data to be written is equal to 0xFFFF, it is necessary to find the last data equal to
0xFFFF and to write 0x0000 into the next location to indicate that 0xFFFF represents data
and not a blank location. If the data to be written is different from 0xFFFF, it is then written to
the last location that contains 0xFFFFh (the following location should not contain 0x0000).
This function returns 0 on success, VARIABLE_FULL if there is not enough memory space
for a variable update, or a Flash error code indicating an operation failure (erase or
program).

Table 6. WriteVerifyVariableFull

Function Name WriteVerifyVariableFull

Function Prototype u16 WriteVerifyVariableFull(u8 index, u32 *T, u16Data);

Behavior
Description

If a write operation takes place, the write process must either update a variable,
or create the first instance of a variable.

Input Parameter

– variable index, in the demonstration example provided: (0 for A, 1 for B or 2
for C).

– T: variable Array

– 16-bit data to be written

Return Parameter Returns 1 on success or 0x80 if variable is full or Flash error code

Called functions FindValidSector,FMI_ReadWord,FMI_WriteHalfWord

Add element request

full
current record

Add new element at
the 1st empty element
place in the current
record of active sector

Erase previous active sector

End

EndChange the active sector

Find Valid sector

Yes No

FindValidSector()

WriteVerifyVariableFull()
Copy each latest element of
each available record by
reading from bottom taking
into account the new
updated element.

EepromSectorTransfer()

ReadVariable()

Function call

ai14088

Implementing the EEPROM emulation AN2540 - Application note

14/25

At the beginning, the function determines the active sector which is the sector to be
transferred from. The new sector header field is defined and written (new sector status is
RECEIVE_DATA given that it is in the process of receiving data). When the data transfer is
complete, the new sector header is marked VALID_SECTOR and the old one
TRANSFER_COMPLETE. At the end, the old sector is erased.

3.2.2.2 Key features of the 1st method

– User-configured emulated EEPROM size.
– The number of Flash program/erase cycles used can be minimized by permanently

allocating a large memory space to the most frequently updated non-volatile data
variables.

– ReadVariable and WriteVariable functions to access variables.
– The whole available memory space is used to store data: no need for virtual

addresses.
– Fast read access to any variable since this simply implies going to the corresponding

allocated memory space.
– Interrupt servicing during program/erase is possible.

Table 7. EepromSectorTransfer

Function Name EepromSectorTransfer

Function Prototype u8 EepromSectorTransfer(u8 index, u32 *T, u16 data);

Behavior Description
It transfers the most recent data (Last variable updates) plus the new
data from a full sector to an empty one.

Input Parameter

– index: variable identifier (0, 1, 2...)

– T: variable array
– data: 16-bit data to be written

Return Parameter Returns 1 on success or error code on failure

Called functions
 FindValidSector,FMI_WriteHalfWord, WriteVerifyVariableFull,

ReadVariable, FMI_EraseSector.

AN2540 - Application note Implementing the EEPROM emulation

 15/25

3.3 2nd method
Generally when using this method, the user does not known in advance the update
frequency of the variables. To emulate the EEPROM, two sector data structures are used.

Each data element is defined by a virtual address and its value to be stored into Flash
memory locations for subsequent retrieval or update. When data is modified, the data
associated with the earlier virtual address is stored into a new Flash memory location.
During data retrieval, the modified data, in the latest Flash memory location is returned.

Figure 5. Data storage procedure

3.3.1 Application example

This example shows three EEPROM variables with the following virtual addresses:

● var1: AAAAh

● var2: 5555h

● var3: DDAAh

The data update flow is shown in Figure 6.

EEPROM Virtual @ (16 bits)

sector1sector0

32 bits

2048 elements (8 KB)

EEPROM Data (16 bits)

EEPROM element = 32-bit word

ai14089

Implementing the EEPROM emulation AN2540 - Application note

16/25

Figure 6. Data update flow

3.3.2 EEPROM software description

The user API function naming is the same as in the 1st method routines, the main
differences are shown in the WriteVariable flowchart given in Figure 7.

12 32
DD AA
12 45
DD AA
BC BC
AA AA

FF FF

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF

FF FF

34 34

55 55

12 32

DD AA
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF

FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF
FF FF

FF FF
FF FF

12 32
DD AA
12 45
DD AA
BC BC
AA AA

FF FF

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF
FF FF
FF FF
FF FF

FF FF
FF FF

FF FF

FF FF
FF FF
FF FF
FF FF

FF FF
FF FF

FF FF

Sector0 Sector1

Active sector = sector0

FF FF
FF FF

FF FF
FF FF

32 32
DD AA
22 45

DD AA
BD BD
AA AA

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF
FF FF

54 54
55 55

12 32
DD AA

Add var3
=1232h

Add var3
=1245h

Add var1
=BCBCh

Add var2
=6464h

Erase
sector0

Add var2 =3434h

The most recent data (Last
variable updates) are transferred
from sector0(as full sector) to
sector1 (as empty sector).

Sector0 Sector1

Active sector = sector0

Sector0 Sector1

Active sector = sector0

12 32
DD AA
12 45
DD AA
FF FF

FF FF

FF FF

FF FF
FF FF
FF FF
FF FF
FF FF

FF FF

FF FF

FF FF
FF FF

FF FF
FF FF

Sector0 Sector1

Active sector = sector0

Sector0 Sector1

Active sector = sector0

Sector0 Sector1

Active sector = sector0

Sector0 Sector1

Active sector = sector0

32 32
DD AA
22 45
DD AA
BD BD
AA AA

64 64
55 55
22 45

DD AA
BD BD
AA AA

FF FF

FF FF
FF FF

54 54
55 55

12 32
DD AA

Sector0 Sector1

Active sector = sector0

FF FF
FF FF
FF FF
FF FF
FF FF
FF FF

FF FF
FF FF
FF FF

FF FF
FF FF
FF FF

FF FF

FF FF
FF FF

FF FF
FF FF

FF FF
FF FF

ai14090

AN2540 - Application note Implementing the EEPROM emulation

 17/25

Figure 7. 2nd method: WriteVariable flowchart

3.3.2.1 Key features of the 2nd method

– User-configured emulated EEPROM size.
– Increased Flash memory endurance: Sector erased only once it is full.
– Non-volatile data variables can be updated infrequently
– No need to perform a write operation if the updated value is the same.
– Interrupt servicing during program/erase is possible.

3.4 Program execution
Independently of the implementation scheme, the STR91xFxx internal Flash memory offers
the ability to update a bank while code is executed from the other bank. Therefore, there is
no need to transfer Flash memory operations (Program/Erase) to RAM. However when the
CPU frequency is higher then 25 MHZ it is recommended to copy some routines into RAM
This means that before erasing and programming, a few software routines have to be copied
from the Flash memory into the on-chip RAM. Should be copied at least the routines used
for the erase and program operations, and the routines that run while the erase or program
operation is ongoing.

Add element request

full
current active

sector
Add new element at
the 1st empty element
place in the current
active sector

Erase previous active sector

End

EndChange the active sector

Find Valid sector

Yes No

FindValidSector()

WriteVerifyVariableFull()
Copy all current elements by
reading the active sector
from the bottom, taking
into account the new
updated element.

EepromSectorTransfer()

ReadVariable()

Function call

ai14091

Check
value

same different

End

Embedded application aspects AN2540 - Application note

18/25

4 Embedded application aspects

This section gives some advice on how to overcome software limitations in embedded
applications and to fulfill the needs of different applications.

4.1 Data granularity management
The emulated EEPROM can be used in embedded applications where non-volatile storage
of data updated with a byte, half-word or word granularity is required. It generally depends
on the user requirements and Flash architecture, such as stored data length, write access,
etc.

The STR91xFxx on-chip Flash memory allows 16-bit, half-word programming. Data can
however be programmed by bytes or words by using some software techniques.

4.1.1 Programming on a word-by-word basis

To write 32 bits of data "FMI_Data" to the desired Flash memory address "FMI_Address" in
Bank1 for example, the process is the following:

■ Write the LSB part of the data (the first two bytes) to the desired Flash memory address.

■ Write the MSB part of the data (the last two bytes) to the Flash memory address
incremented twice.

4.1.2 Programming on a byte-by-byte basis

Writing by bytes offers the user the possibility to cover the entire memory space and,
therefore, to store more data. The performance may however be reduced.

A simple example can be useful to understand how to implement such a feature.

Let us assume for example that we want to write one byte of data "0xDD" into Bank1 at the
FMI_Address. This can be achieved as follows:

If FMI_Address is even, then 0xFFDD is written. If FMI_Address is odd, 0xDDFF is written.
The generic scheme is shown in Figure 8.

u16 LSB=FMI_Data;

u16 MSB= FMI_Data >>16;

FMI_WriteHalfWord (FMI_Address, LSB);
FMI_WaitForLastOperation(FMI_BANK_1);

FMI_WriteHalfWord (FMI_Address+2,
MSB);FMI_WaitForLastOperation(FMI_BANK_1);

AN2540 - Application note Embedded application aspects

 19/25

Figure 8. WriteOnebyte function description

The above function is used to write the "FMI_Data" data byte to the "FMI_Address" address.

4.2 Wear-leveling: Flash endurance improvement
In the STR91xFxx on-chip Flash memory, each sector can be programmed or erased
reliably over 100 000 times.

For write-intensive applications that use more than two sectors (3 or 4) for the emulated
EEPROM, it is recommended to implement a wear-leveling algorithm to monitor and
distribute the number of write cycles among the sectors.
When no wear-leveling algorithm is used, the sectors are not used at the same rate. Sectors
with long-lived data do not endure as many write cycles as sectors that contain frequently
updated data. The wear-leveling algorithm ensures that equal use is made of all the
available write cycles for each sector.

4.2.1 Application example

In this example, in order to enhance the emulated EEPROM capacity, four sectors will be
used.

To implement the wear-leveling algorithm with the 2nd method scheme, the procedure is the
following: when sector n is full, switch to sector n+1. Sector n is then garbage-collected. Let
us consider the four sectors of the example: when sector3 is full, the device goes back to
sector0, then sector 3 is garbage-collected and so on (refer to Figure 9.).

void WriteVariable(u32 FMI_Address,u8 FMI_Data)
{
if (FMI_Address &1)
 {
 FMI_WriteHalfWord(FMI_Address,((FMI_Data << 8) | 0xFF));
 FMI_WaitForLastOperation(FMI_BANK_1);
 }
 else
 {
 FMI_WriteHalfWord(FMI_Address,(0xFF00 |FMI_Data));
 FMI_WaitForLastOperation(FMI_BANK_1);
 }
}

Embedded application aspects AN2540 - Application note

20/25

Figure 9. Sector swap scheme with four sectors

The previous algorithm can be implemented in the FindValidSector(...) function.

4.3 Sector header recovery in case of power loss
Data or sector header corruption is possible in case of a power loss during a variable
update, a sector erase or a transfer.

To detect this corruption and recover it, an initialization routine should be called immediately
after power-up.

After power loss, this routine is used to check the sector header status and to perform repair
if necessary. There are 16 possible status combinations, half of which are invalid. The
following table shows the actions that should be taken based on the sector states upon
power-up.

12 32

DD AA

FF FF

FF FF

FF FF

FF FF

FF FF

Active sector

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

FF FF

Erased Erased Erased

Sector0 Sector1 Sector2 Sector3

ai14092

AN2540 - Application note Embedded application aspects

 21/25

4.4 Emulated EEPROM parameters

4.4.1 Program/Erase parameter cycling

One program/erase cycle consists of one or more write accesses and one sector erase
operation.

When the EEPROM technology is used, each byte can be programmed and erased a finite
number of times, typically in the range of 10 000 to 100 000.

However, when the Flash memory is used, the minimum erase size is the sector and the
number of Program/Erase cycles applied to a sector is the number of erase cycles. The
STR91xFxx electrical characteristics guarantee 100 000 Program/Erase cycles per sector.

Generally the maximum life of the EEPROM is thereby limited to the update rate of the most
frequently written parameter.

In the 1st scheme application example, two sectors of 8 Kbytes are used and programming
is done on a 16-bit half-word basis. If we consider that the memory space allocated to
variable C is always filled before the memory spaces allocated to variables A and B, the
expected number of erase cycles depends on variable C. As 6896 bytes are allocated to C,
the variable can be updated 3448 times before it is switched to the other sector and the first
sector is erased. Two sectors are used that can be erased 100 000 times so the total
number of cycles we can expect for C is:

3448 × 2 × 100 000 = 689 600 000 cycles.

Table 8. Status combinations and actions to be taken

Sector 1

Sector 0

 ERASED RECEIVE_DATA VALID_DATA
TRANSFER
COMPLETE

ERASED

Invalid state so
erase both
sectors and

format sector 0

Invalid state so
erase both
sectors and

format sector 0

Use sector 0 as
valid sector and
erase sector 1

Invalid state: erase
both sectors and
format sector 0

RECEIVE_DATA

Invalid state:
erase both
sectors and

format sector 0

Invalid state:
erase both
sectors and

format sector 0

Use sector 0 as
valid sector &
erase sector1 &
transfer data from
sector0 to sector1

Use sector 1 as valid
sector & erase sector 0

 VALID_DATA
Use sector 1 as
valid sector and
erase sector 0

Use sector 1 as
valid sector &
erase sector 0 &
transfer data from
sector1 to sector0

Invalid state:
erase both sectors

and format
sector0

Use sector 1 as valid
sector and erase
sector 0

TRANSFER
COMPLETE

Invalid state:
erase both
sectors and

format sector 0

Use sector 0 as
valid sector and
erase sector 1

Use sector 0 as
valid sector and
erase sector 1

Invalid state: erase
both sectors and
format sector 0

Embedded application aspects AN2540 - Application note

22/25

4.4.2 Program timing

The following table gives an idea about the emulated EEPROM write time related to the
current implementation.

It is clear that updating a variable with the 1st method scheme takes less time than with the
2nd method scheme since only the corresponding allocated memory space is accessed in
the first case and not the whole sector.

Table 9. Write time related to the current implementation

Implemented scheme
Parameter

Write time (typical) Write time (max)(1)

1. This is the time taken to update a variable that makes a call to the EepromSectorTransfer(..) function. It is
nearly equal to the sector erase time.

1st method scheme 20 µs 300 ms

2nd method scheme 30 µs 300 ms

AN2540 - Application note Conclusion

 23/25

5 Conclusion

The external EEPROM can be replaced by an emulated EEPROM using the on-chip Flash
memory of STR91xFxx devices. With the shorter Flash memory write access time, critical
parameters are stored faster into the emulated EEPROM than into an external serial
EEPROM. However, because the Flash memory needs to be erased before being written,
some form of software management is required to store data into the emulated EEPROM.

Two methods are used to implement an emulated EEPROM: both require a minimum of two
Flash memory sectors of identical size, allocated to non-volatile data. One that is initially
erased and can be programmed byte by byte, and the other that is ready to take over when
the first sector needs to be garbage-collected.

The emulated EEPROM can be used in embedded applications where non-volatile data
storage is required, with a byte, half-word or word granularity. The STR91xFxx on-chip Flash
memory allows 16-bit, half-word programming. Data can however be programmed by bytes
or words by using some software techniques.

For write-intensive applications that use more than two sectors (3 or 4) for the emulated
EEPROM, it is recommended to implement a wear-leveling algorithm to monitor and
distribute the number of write cycles among the sectors.

Revision history AN2540 - Application note

24/25

6 Revision history

Table 10. Document revision history

Date Revision Changes

01-Jun-2007 1 Initial release.

05-Apr-2013 2
Changed part number to STR91xFxx.
Updated Disclaimer.

AN2540 - Application note

 25/25

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE
IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH
PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR
ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED
FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN
WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE,
AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS.
PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE
CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

