Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

MOS INTEGRATED CIRCUIT μ PD178046, 178048

8-BIT SINGLE-CHIP MICROCONTROLLER

DESCRIPTION

The µPD178046 and 178048 are 8-bit single-chip CMOS microcontrollers with hardware for digital tuning systems. Employing the 78K/0 architecture as the CPU, these microcontrollers provide easy control access to the internal memories and peripheral hardware. The instructions are high-speed 78K/0 instructions suitable for system control. As the peripheral hardware, an OSD (on-screen display) controller and PWM (pulse width modulation) output for TV use, as well as many I/O ports, timers, A/D converter, serial interface, and power-ON clear circuit are provided. A flash memory model, µPD178F048, that can operate on the same supply voltage as the mask ROM models, and many development tools are under development.

The functions of these microcontrollers are described in detail in the following User's Manuals. Be sure to read these manuals when you design your system.

 μ PD178048 Subseries User's Manual : Planned to be published 78K/0 Series User's Manual - Instruction : U12326E

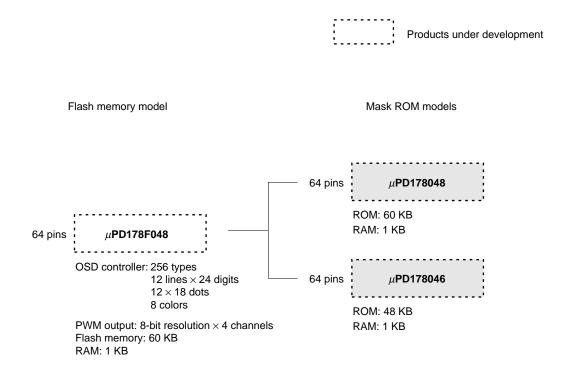
FEATURES

• ROM and RAM capacities

ltem	Program Memory	Character ROM	Data N	Video RAM	
	(ROM)	(CROM)	Internal high-speed	Internal expansion	(VRAM)
Part Number			RAM	RAM	
μPD178046	48K bytes	6912 bytes	512 bytes	512 bytes	482 bytes (12 \times 24
μPD178048	60K bytes	(256 characters)			characters MAX.)

- Instruction cycle: 0.4 μs (with 5.0-MHz crystal resonator)
- Many peripheral hardware circuits
 General-purpose I/O ports, A/D converter, serial interface, timers, power-ON clear circuit
- OSD controller and PWM output
- Vectored interrupts: 17
- Supply voltage: VDD = 4.5 to 5.5 V

APPLICATION FIELD


ΤV

ORDERING INFORMATION

Part Number	Package
μ PD178046CW- \times ×	64-pin plastic shrink DIP (750 mil)
μ PD178048CW- \times \times	64-pin plastic shrink DIP (750 mil)

Remark xxx indicates ROM code suffix. The ROM code suffix is Exx when an I^2C bus is used.

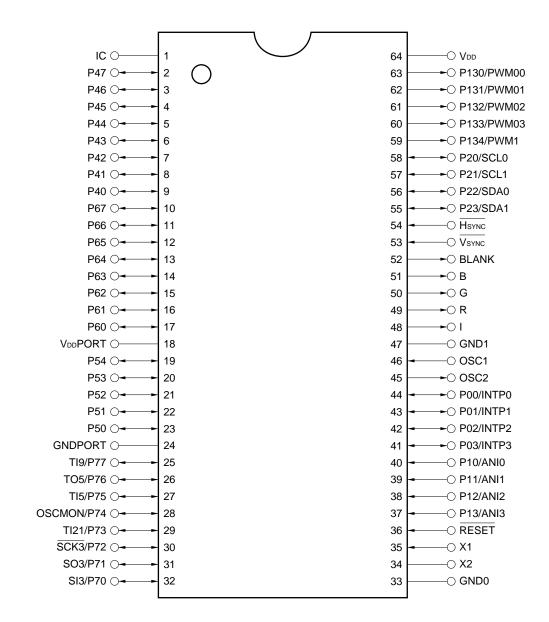
DEVELOPMENT OF μ PD178048 SUBSERIES

(1/2)

FUNCTION OUTLINE

	Part Number	μPD178046	μPD178048			
Item						
Internal	ROM	48K bytes	60K bytes			
memory	Character ROM (CROM)	6912 bytes (256 characters)				
	High-speed RAM	512 bytes				
	Expansion RAM	512 bytes				
	Video RAM (VRAM)	432 bytes (12 \times 24 characters MAX.)				
General-	burpose register	8 bits \times 32 registers (8 bits \times 8 bits \times	4 banks)			
Minimum	instruction execution time	0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (wi	th 5.0-MHz crystal resonator)			
Instructio	n set	 16-bit operation Multiplication/division (8 bits × 8 bits, 16 bits ÷ 8 bits) Bit manipulation (set, reset, test, Boolean operation) BCD adjustment, etc. 				
I/O ports		Total: 46 pins• CMOS input: 4 pins• CMOS I/O: 37 pins• N-ch open-drain output: 5 pins				
A/D conv	erter	8-bit resolution × 4 channels				
Serial interface		I ² C bus mode ^{Note} : 2 channels (shift register: 1 channel) 3-wire serial I/O mode : 1 channel				
Timer		 8-bit timer 8-bit event counter 1 8-bit remote control timer 1 	channel channel channel channel channel channel			

Note If the I²C bus mode is used (including when it is implemented in software without using the peripheral hardware), inform NEC when you order a mask.

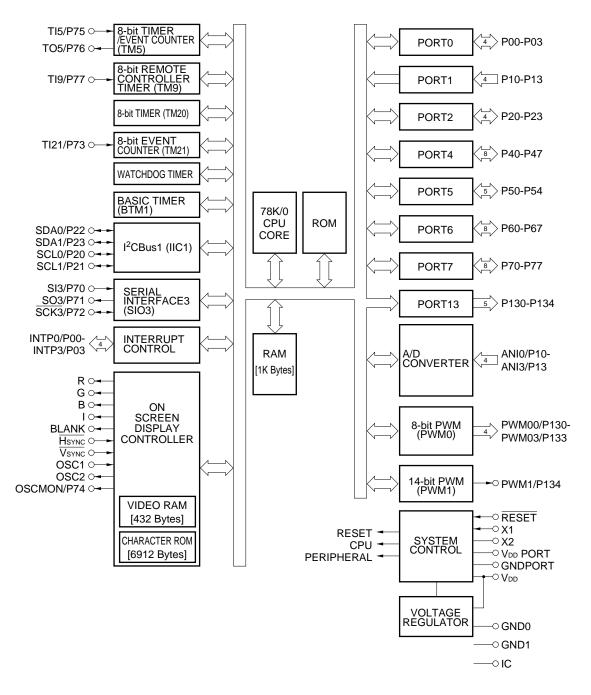

(2/2)

	Part Number	μPD178046 μPD178048				
Item						
PWM outp	put	• 8-bit resolution × 4 channel				
		• 14-bit resolution × 1 channel				
OSD	Number of display characters	288 characters MAX. per screen (12 lines	s × 24 digits)			
controller	Character type	256 types (stored in CROM)				
	Character format	12 (width) \times 18 (height) dots				
	Character size	$1\times1,2\times2,3\times3,\text{or}4\times4$ selectable				
	Character color	8 colors				
	Character frame	Framed or non-framed characters selected	ed in screen units			
	Background	No background, blank, or filled selectable. Background color (8 colors) can be specified.				
	Half blanking	Can be specified in character units.				
ROM corre	ection	2 places				
Vectored	Maskable	Internal: 11, external: 5				
interrupt	Non-maskable	Internal: 1				
source	Software	1				
Standby fu	unction	• HALT mode				
		STOP mode				
Reset		 Reset by RESET pin Internal reset by watchdog timer 				
		Reset by power-ON clear circuit				
			CPU operation and on power application)			
		Detection of less than 2.5 V ^{Note} (in STOP mode)				
Supply vo	Itage	V _{DD} = 4.5 to 5.5 V				
Package		64-pin plastic shrink DIP (750 mil)				

Note These values are the maximum values. Actually, reset is effected at lower voltages.

PIN CONFIGURATION (Top View)

 64-pin plastic shrink DIP (750 mil) μPD178046CW-××× μPD178048CW-×××



- Cautions 1. Directly connect IC (Internally Connected) pins to GND0 or GND1.
 - 2. Keep the voltage at the VDDPORT pin the same as the VDD pin.
 - 3. Keep the voltage at the GNDPORT pin the same as GND0 or GND1.

PIN NAMES

ANI0-ANI3	: A/D converter input	P70-P77 :	Port 7
	•		
В	: Character signal output	P130-P134 :	Port 13
BLANK	: Blanking signal output	PWM00-PWM03:	8-bit PWM output
G	: Character signal output	PWM1 :	14-bit PWM output
GND0, GND1	: Ground	R :	Character signal output
GNDPORT	: Port ground	RESET :	Reset input
HSYNC	: Horizontal sync signal input	SCK3 :	Serial clock input/output
I	: Character signal output	SCL0, SCL1 :	Serial clock input/output
IC	: Internally connected	SDA0, SDA1 :	Serial data input/output
INTP0-INTP3	: Interrupt input	SI3 :	Serial data input
OSC1, OSC2	: LC connection for OSD dot clock	SO3 :	Serial data output
	oscillation	TI5, TI9, TI21 :	8-bit timer clock input
OSCMON	: OSD clock output	TO5 :	8-bit timer output
P00-P03	: Port 0	Vdd :	Power supply
P10-P13	: Port 1	VDDPORT :	Port power supply
P20-P23	: Port 2	VSYNC :	Vertical sync signal input
P40-P47	: Port 4	X1, X2 :	Crystal resonator connection for
P50-P54	: Port 5		system clock oscillation
P60-P67	: Port 6		

BLOCK DIAGRAM

Remark The internal ROM capacity differs depending on the model.

TABLE OF CONTENTS

1.	PIN FUNCTIONS	10
	1.1 Port Pins	10
	1.2 Pins Other Than Port Pins	11
	1.3 I/O Circuits of Respective Pins and Recommended Connection of Unused Pins	12
2.	MEMORY SPACE	15
	2.1 Memory Size Select Register (IMS)	16
	2.2 Internal Expansion RAM Size Select Register (IXS)	17
3.	FEATURES OF PERIPHERAL HARDWARE FUNCTIONS	18
	3.1 Ports	18
	3.2 Clock Generation Circuit	19
	3.3 Timers	19
	3.4 A/D Converter	22
	3.5 Serial Interface	23
	3.6 OSD Controller	24
	3.7 PWM Output	25
4.	INTERRUPT FUNCTION	26
5.	ROM CORRECTION	28
6.	STANDBY FUNCTION	29
7.	RESET FUNCTION	29
8.	INSTRUCTION SET	30
9.	PACKAGE DRAWING	33
AF	PPENDIX A. DEVELOPMENT TOOLS	34
AF	PPENDIX B. RELATED DOCUMENTS	36

1. PIN FUNCTIONS

1.1 Port Pins

Pin Name	I/O	Function	At Reset	Shared with:
P00-P03	I/O	Port 0. 4-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	INTP0-INTP3
P10-P13	Input	Port 1. 4-bit input port.	Input	ANI0-ANI3
P20, P21	I/O	Port 2.	Input	SCL0, SCL1
P22, P23	_	4-bit I/O port. Can be set in input or output mode in 1-bit units.		SDA0, SDA1
P40-P47	I/O	Port 4. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	_
P50-P54	I/O	Port 5. 5-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	_
P60-P67	I/O	Port 6. 8-bit I/O port. Can be set in input or output mode in 1-bit units.	Input	_
P70	I/O	Port 7.	Input	SI3
P71		8-bit I/O port.		SO3
P72		Can be set in input or output mode in 1-bit units.		SCK3
P73				TI21
P74				OSCMON
P75				TI5
P76				TO5
P77	1			ТІЭ
P130-P133	Output	Port 13. 5-bit output port.	-	PWM00-PWM03
P134		N-ch open-drain output port (5 V withstand voltage).		PWM1

Pin Name I/O Function At Reset Shared with: INTP0-INTP3 External maskable interrupt input whose valid edge can be P00-P03 Input Input specified (rising edge, falling edge, or both rising and falling edges) P70 SI3 Input Serial data input to serial interface Input SO3 Output Serial data output from serial interface Input P71 SDA0, SDA1 I/O Serial data input/output to/from N-ch open-drain I/O Input P22, P23 serial interface SCK3 I/O Serial clock input/output to/from serial interface P72 Input SCL0, SCL1 I/O N-ch open-drain I/O Input P20, P21 P75 TI5 External count clock input to 8-bit timer/event counter (TM5) Input Input TI9 P77 External count clock input to 8-bit remote control timer (TM9) TI21 External count clock input to 8-bit event counter (TM21) P73 TO5 Output 8-bit timer/event counter (TM5) output Input P76 P10-P13 ANI0-ANI3 Input Analog input to A/D converter Input PWM00-Output 8-bit PWM output N-ch open-drain I/O P130-P133 ____ PWM03 PWM1 14-bit PWM output P134 P74 OSCMON Output OSD clock output Input VSYNC Input OSD vertical sync signal input Input HSYNC OSD horizontal sync signal input R Output RED output for OSD characters and background Low-level output G GREEN output for OSD characters and background В BLUE output for OSD characters and background T Character background output for OSD characters and blank background mode **BLANK** OSD blanking signal output _ RESET Input System reset input _ _ X1 Crystal resonator connection for system clock oscillation Input ____ Х2 _ _ OSC1 Input LC connection for OSD dot clock oscillation _ OSC2 Output Vdd Positive power supply GND0, GND1 Ground **VDDPORT** Port power supply GNDPORT Port ground IC Internally connected. Directly connect this pin to GND0 or GND1.

1.2 Pins Other Than Port Pins

1.3 I/O Circuits of Respective Pins and Recommended Connection of Unused Pins

Table 1-1 shows the I/O circuit type of each pin and the recommended connection of unused pins. For the configuration of each I/O circuit, refer to **Figure 1-1**.

Table 1-1. I/O Circuits	of Respective Pins and Recommended Connection of Unused Pins
-------------------------	--

Pin Name	I/O Circuit Type	I/O	Recommended Connection of Unused Pins
P00/INTP0-P03/INTP3	8	I/O	Set in general-purpose input port mode by software, and individually connect to GND0, GND1, or GNDPORT via resistor.
P10/ANI0-P13/ANI3	25	Input	Individually connect to VDD, VDDPORT, GND0, GND1, and GNDPORT via resistor.
P20/SCL0, P21/SCL1	10-D	I/O	Set in general-purpose input port mode by software, and individually
P22/SDA0, P23/SDA1			connect to V_{DD} , V_{DD} PORT, GND0, GND1, or GNDPORT via resistor.
P40-P47	5]	
P50-P54			
P60-P67			
P70/SI3	5-K]	
P71/SO3	5]	
P72/SCK3	5-K	1	
P73/TI21			
P74/OSCMON	5	1	
P75/TI5	5-K	1	
P76/TO5	5]	
P77/TI9	5-K]	
P130/PWM00 -P133/PWM03	19	Output	Set to low-level output by software and leave unconnected.
P134/PWM1			
VSYNC	2	Input	Individually connect to GND0 or GND1 via resistor.
HSYNC			
R	3	Output	Set OSD display to OFF by software and leave unconnected.
G			
В			
1			
BLANK]		
RESET	2	Input	_
OSC1	28	Input	Set LC oscillation to OFF by software and leave unconnected.
OSC2]	Output	Leave unconnected.
IC	_		Directly connect to GND0 or GND1.

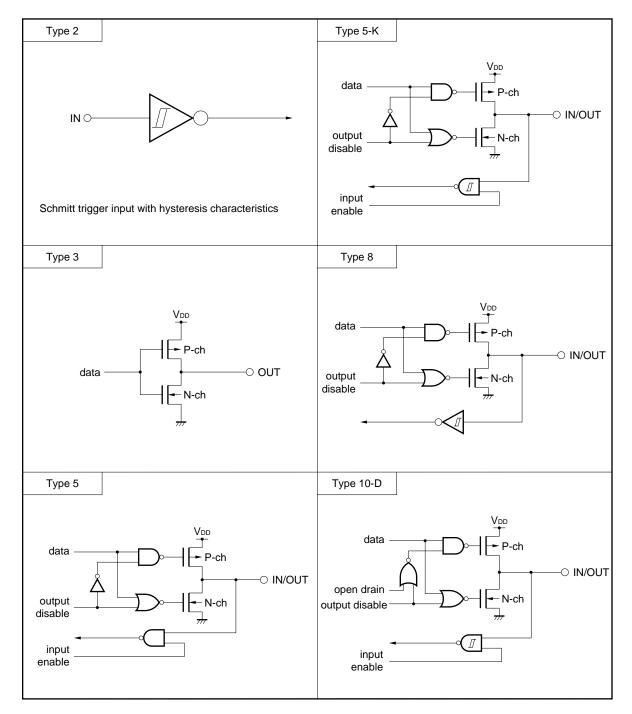
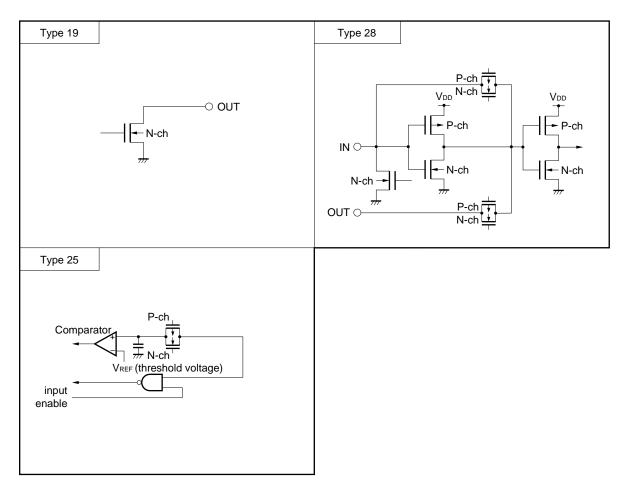
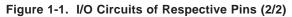
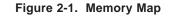
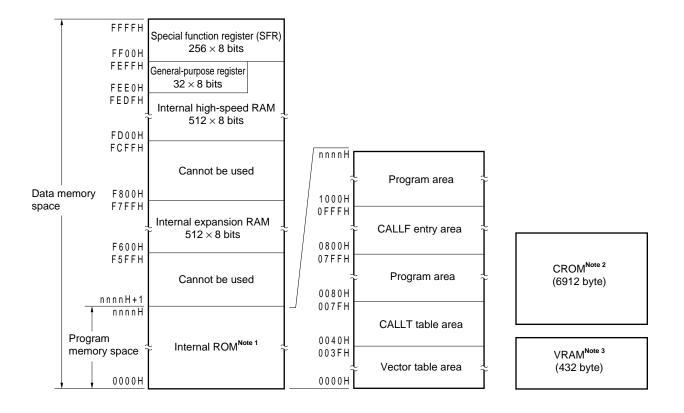




Figure 1-1. I/O Circuits of Respective Pins (1/2)

Remark VDD and GND are positive power supply and ground pins for ports. Take them as VDD PORT and GNDPORT.





Remark VDD and GND are positive power supply and ground pins for ports. Take them as VDD PORT and GNDPORT.

2. MEMORY SPACE

Figure 2-1 shows the memory map of the μ PD178046 and 178048.

Notes 1. The internal ROM capacity differs depending on the model (refer to the table below).

Part Number	Internal ROM End Address nnnnH
μPD178046	BFFFH
μPD178048	EFFFH

- 2. CROM cannot be read by software.
- 3. VRAM can be written via SFR.

2.1 Memory Size Select Register (IMS)

The internal memory capacities can be changed by using the memory size select register (IMS). Set IMS to the value shown in Table 2-1 depending on the internal memory capacity of each model. Use an 8-bit memory manipulation instruction to set this register. IMS is set to CFH at reset.

Figure 2-2. Format of Memory Size Select Register (IMS)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
IMS	RAM2	RAM1	RAM0	0	ROM3	ROM2	ROM1	ROM0	FFF0H	CFH	R/W

RAM2	RAM1	RAM0	Selects internal high-speed RAM capacity
0	1	0	512 bytes
Others			Setting prohibited

RAM3	RAM2	RAM1	RAM0	Selects internal ROM capacity
1	1	0	0	48K bytes
1	1	1	1	60K bytes
Others				Setting prohibited

Table 2-1. Set Value of Memory Size Select Register (IMS)

Part Number	Set Value of IMS					
μPD178046	4CH					
μPD178048	4FH					

2.2 Internal Expansion RAM Size Select Register (IXS)

The internal expansion RAM capacity can be selected by using the internal expansion RAM size select register. This register of the μ PD178046 and 178048 must be set to 0BH.

Use an 8-bit memory manipulation instruction to set IXS.

The value of this register is set to 0CH at reset.

Figure 2-3. Format of Internal Expansion RAM Size Select Register (IXS)

Symbol	7	6	5	4	3	2	1	0	Address	At reset	R/W
IXS	0	0	0	IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	FFF4H	0CH	R/W

IXRAM4	IXRAM3	IXRAM2	IXRAM1	IXRAM0	Selects internal expansion RAM capacity
0	1	0	1	1	512 bytes
Others	Others				Setting prohibited

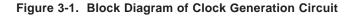
3. FEATURES OF PERIPHERAL HARDWARE FUNCTIONS

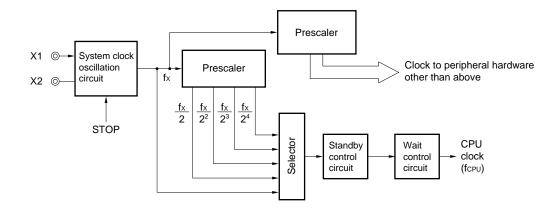
3.1 Ports

The following three types of I/O ports are available:

•	CMOS input (port 1)	:	4 pins
•	CMOS I/O (ports 0 and 2 through 7)	:	37 pins
•	N-ch open-drain output (port 13)	:	5 pins

Total : 46 pins

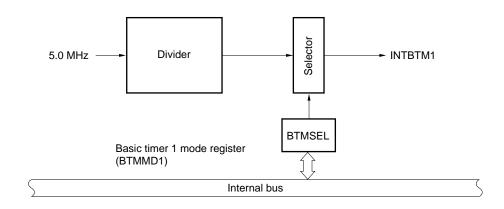

Table 3-1. Port Functions


Name	Pin Name	Function
Port 0	P00-P03	I/O port. Can be set in input or output mode in 1-bit units.
Port 1	P10-P13	Input port
Port 2	P20-P23	I/O port. Can be set in input or output mode in 1-bit units.
Port 4	P40-P47	I/O port. Can be set in input or output mode in 1-bit units.
Port 5	P50-P54	I/O port. Can be set in input or output mode in 1-bit units.
Port 6	P60-P67	I/O port. Can be set in input or output mode in 1-bit units.
Port 7	P70-P77	I/O port. Can be set in input or output mode in 1-bit units.
Port 13	P130-P134	N-ch open-drain output port

3.2 Clock Generation Circuit

The instruction execution time can be changed as follows:

0.4 μs/0.8 μs/1.6 μs/3.2 μs/6.4 μs (system clock: 5.0-MHz crystal resonator)



3.3 Timers

Six timer channels are provided.

- Basic timer : 1 channel
- 8-bit timer/event counter : 1 channel
- 8-bit timer : 1 channel
- 8-bit event counter : 1 channel
- 8-bit remote control timer : 1 channel
- Watchdog timer : 1 channel

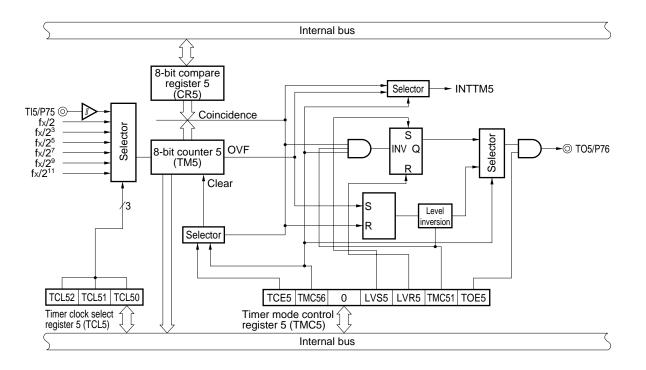
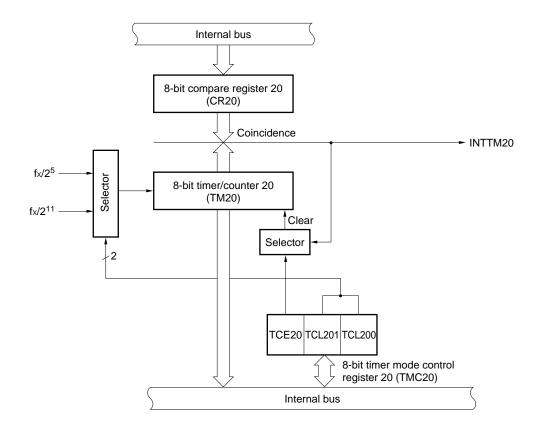



Figure 3-3. Block Diagram of 8-Bit Timer/Event Counter (TM5)

Figure 3-4. Block Diagram of 8-Bit Timer (TM20)

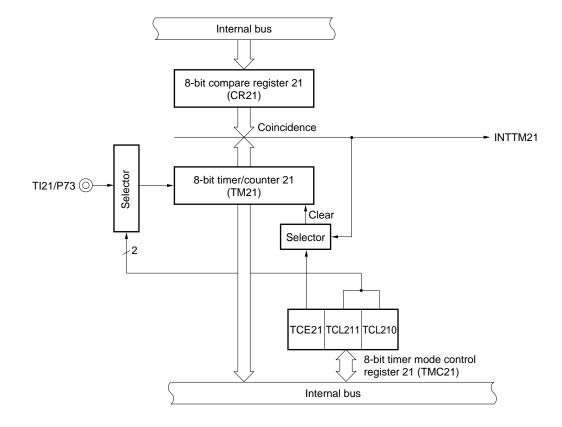
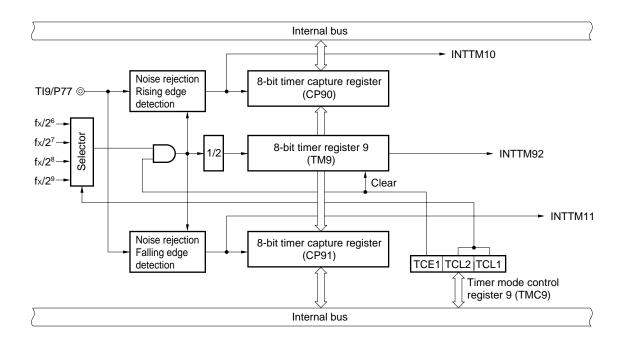



Figure 3-5. Block Diagram of 8-Bit Event Counter (TM21)

Remark The 8-bit event counter (TM21) can be also used as an HSYNC counter.

Figure 3-6. Block Diagram of 8-Bit Remote Control Timer (TM9)

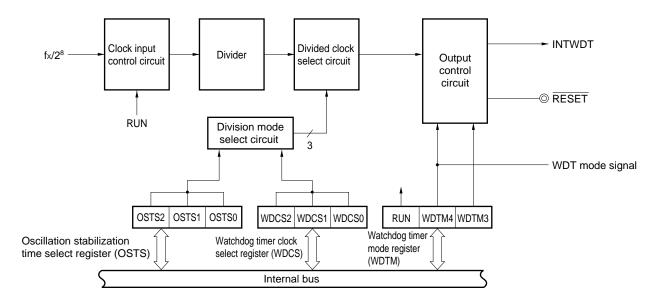
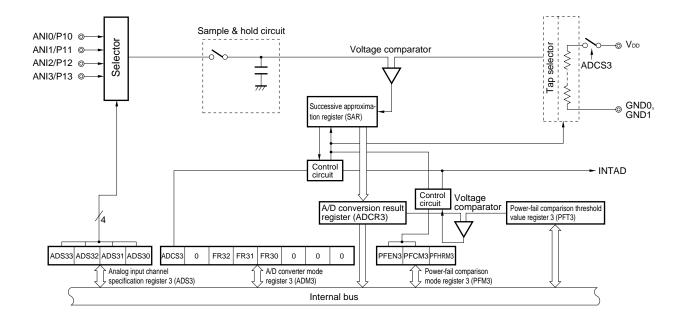
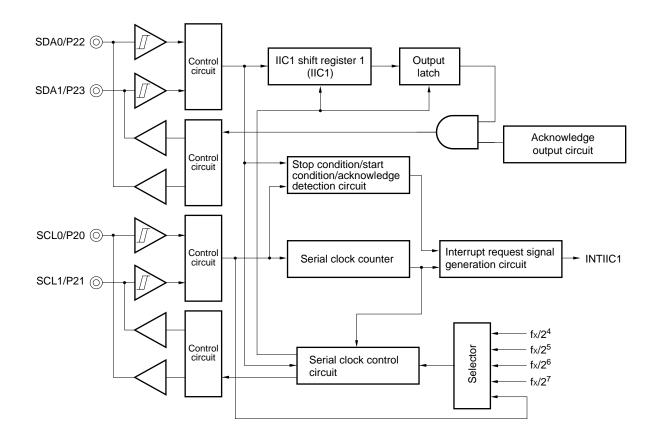



Figure 3-7. Block Diagram of Watchdog Timer

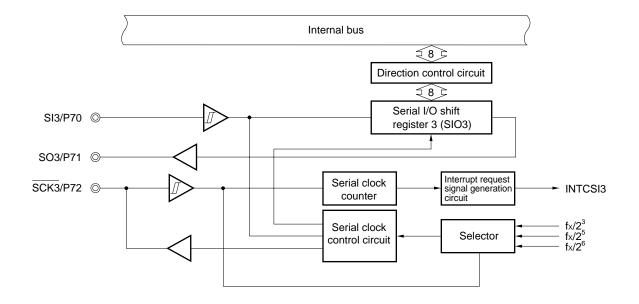
3.4 A/D Converter

An A/D converter with a resolution of 8 bits and 4 channels is provided.

3.5 Serial Interface


Two serial interface channels are provided.

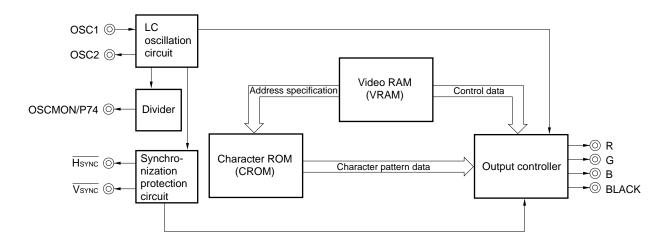
- Serial interface (IIC1)
- Serial interface (SIO3)


Table 3-2. Types and Functions of Serial Interfaces

Function	IIC1	SIO3		
I ² C bus mode	◯ (MSB first)	—		
3-wire serial I/O mode	_	◯ (MSB first)		

Figure 3-9. Block Diagram of Serial Interface (IIC1)

Figure 3-10. Block Diagram of Serial Interface (SIO3)



3.6 OSD Controller

OSD (On-screen display) is a function to display the channel number, volume, and time on the TV screen. Userprogrammable display patterns for OSD are defied in the CROM (character ROM) area.

The patterns actually displayed are stored in VRAM (video RAM).

3.7 PWM Output

Four 8-bit PWM output channels and one 14-bit PWM output channel are provided.

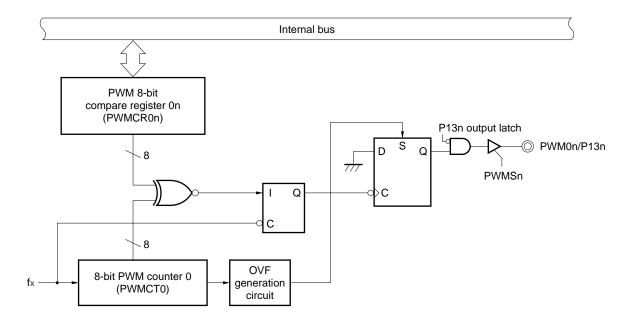
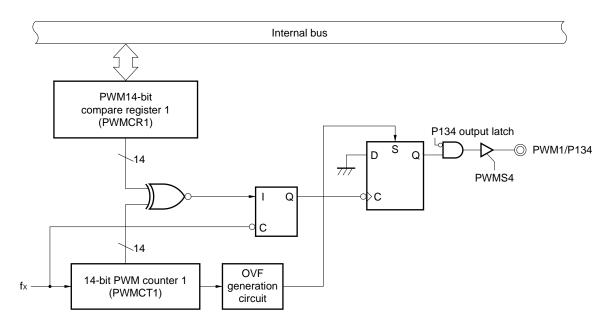



Figure 3-12. Block Diagram of 8-Bit PWM (PWM0)

Remark PWMSn: Bit n of PWM output select register (PWMS) n = 0 to 3

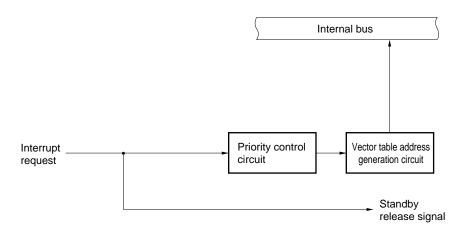
Remark PWMS4: Bit 4 of PWM output select register (PWMS)

4. INTERRUPT FUNCTION

The following three types and 17 sources of interrupts are available:

- Non-maskable : 1 Note
- Maskable : 16 Note
- Software : 1
- **Note** One of two types of interrupt sources (INTWDT), non-maskable and maskable (internal) is selectable as the watchdog timer interrupt source.

Interrupt Type	Default Priority ^{Note 1}		Interrupt Source	Internal/ External	Vector Table	Basic Configuration
		Name	Trigger		Address	Type ^{Note 2}
Non- maskable	_	INTWDT	Overflow of watchdog timer (when non-maskable interrupt is selected)	Internal	0004H	(A)
Maskable	0	INTWDT	Overflow of watchdog timer (when interval timer mode is selected)			(B)
-	1	INTP0	Detection of edge input to pin	External	0006H	(C)
	2	INTP1			0008H	
	3	INTP2			000AH	
	4	INTP3			000CH	
	5	INTTM90	Detection of 8-bit remote control timer (TM9) edge	Internal	000EH	(B)
	6	INTTM91			0010H	
	7	INTVSYNC	Detection of VSYNC signal edge	External	0012H	(C)
	8	INTTM21	Generation of coincidence signal from 8-bit event counter (TM21)	Internal	0014H	(B)
	9	INTIIC1	End of transfer of serial interface (IIC1)		0016H	
	10	INTTM92	Overflow of 8-bit remote control timer (TM9)		0018H	
	11	INTCSI3	End of transfer of serial interface (SIO3)		001AH	
	12	INTTM5	Generation of coincidence signal from 8-bit timer/event counter (TM5)		001CH	
	13	INTTM20	Generation of coincidence signal from 8-bit timer (TM20)		001EH	
	14	INTBTM1	Signal generation by basic timer (BTM1) at 1- or 10-ms intervals		0020H	
	15	INTAD	End of conversion of A/D converter		0022H	
Software	_	BRK	Execution of BRK instruction		003EH	(D)


Table 4-1. Interrupt Sources

Notes 1. The default priority is used if two or more maskable interrupts occur at the same time. 0 is the highest and 15 is the lowest.

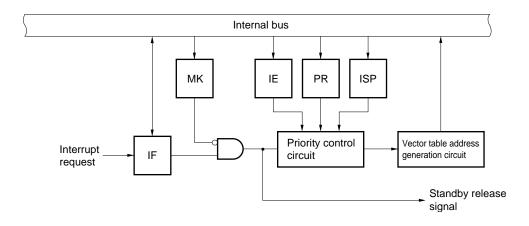
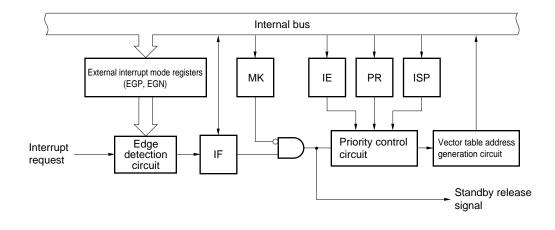
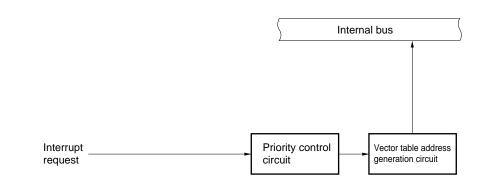

2. (A) through (D) in Basic Configuration Type correspond to (A) through (D) in Figure 4-1.

Figure 4-1. Basic Configuration of Interrupt Functions (1/2)


(A) Internal non-maskable interrupt

(B) Internal maskable interrupt



(C) External maskable interrupt

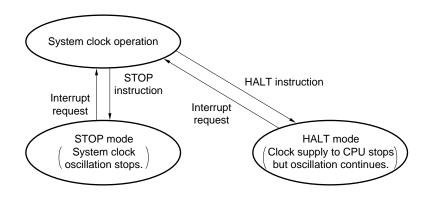
Figure 4-1. Basic Configuration of Interrupt Functions (2/2)

(D) Software interrupt

- IE : Interrupt enable flag
 - ISP: In-service priority flag
 - MK : Interrupt mask flag
 - PR : Priority specification flag

5. ROM CORRECTION

The μ PD178046 and 178048 allow part of the program in the mask ROM to be replaced with a program in the internal expansion RAM for execution.


By using this ROM correction function, bugs found in the mask ROM can be removed and program flow can be changed.

The ROM correction function can be used at up to two places in the internal ROM (program).

6. STANDBY FUNCTION

The standby function is used to reduce the current power consumption and can be used in the following two modes.

- HALT mode : The operation clock of the CPU is stopped in this mode. The average current consumption can be reduced by using this mode in combination with the normal operation mode and operating intermittently.
- STOP mode: The oscillation of the system clock is stopped in this mode. All the operations using the system clock are stopped and therefore, the current consumption can be substantially reduced.

7. RESET FUNCTION

The μ PD178046 and 178048 can be reset in the following three ways:

- External reset by using the RESET pin
- · Internal reset by detecting hang-up time of the watchdog timer
- Internal reset by means of power-ON clear (POC)

8. INSTRUCTION SET

(1) 8-bit instructions

MOV, XCH, ADD, ADDC, SUB, SUBC, AND, OR, XOR, CMP, MULU, DIVUW, INC, DEC, ROR, ROL, RORC, ROLC, ROR4, ROL4, PUSH, POP, DBNZ

Second	#byte	А	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte]	\$addr16	1	None
Operand										[HL+B]			
First										[HL+C]			
Operand													
A	ADD		MOV	MOV	MOV	MOV	MOV	MOV	MOV	MOV		ROR	
	ADDC		хсн	хсн	хсн	ХСН		хсн	хсн	хсн		ROL	
	SUB		ADD		ADD	ADD			ADD	ADD		RORC	
	SUBC		ADDC		ADDC	ADDC			ADDC	ADDC		ROLC	
	AND		SUB		SUB	SUB			SUB	SUB			
	OR		SUBC		SUBC	SUBC			SUBC	SUBC			
	XOR		AND		AND	AND			AND	AND			
	CMP		OR		OR	OR			OR	OR			
			XOR		XOR	XOR			XOR	XOR			
			CMP		CMP	CMP			CMP	CMP			
r	MOV	MOV											INC
		ADD											DEC
		ADDC											
		SUB											
		SUBC											
		AND											
		OR											
		XOR											
		CMP											
B, C											DBNZ		
sfr	MOV	MOV											
saddr	MOV	MOV									DBNZ		INC
	ADD												DEC
	ADDC												
	SUB												
	SUBC												
	AND												
	OR												
	XOR												
	CMP												
!addr16		MOV											
PSW	MOV	MOV											PUSH
													POP
[DE]													

Note Except r = A

Second	#byte	А	r ^{Note}	sfr	saddr	!addr16	PSW	[DE]	[HL]	[HL+byte]	\$addr16	1	None
Operand										[HL+B]			
First										[HL+C]			
Operand													
[HL]		MOV											ROR4
													ROL4
[HL+byte]		MOV											
[HL+B]													
[HL+C]													
Х													MULU
С													DIVUW

Note Except r = A

(2) 16-bit instructions

MOVW, XCHW, ADDW, SUBW, CMPW, PUSH, POP, INCW, DECW

Second	#word	AX	rp ^{Note}	sfrp	saddrp	!addr16	SP	None
Operand								
First								
Operand								
AX	ADDW		MOVW	MOVW	MOVW	MOVW	MOVW	
	SUBW		XCHW					
	CMPW							
rp	MOVW	MOVW ^{Note}						INCW
								DECW
								PUSH
								POP
sfrp	MOVW	MOVW						
saddrp	MOVW	MOVW						
!addr16		MOVW						
SP	MOVW	MOVW						

Note Only when rp = BC, DE, or HL

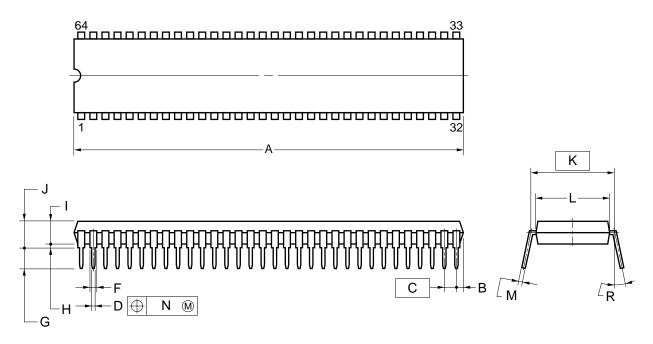
(3) Bit manipulation instruction

MOV1, AND1, OR1, XOR1, SET1, CLR1, NOT1, BT, BF, BTCLR

Second	A.bit	sfr.bit	saddr.bit	PSW.bit	[HL].bit	CY	\$addr16	None
Operand								
First								
Operand \								
A.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
sfr.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
saddr.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
PSW.bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
[HL].bit						MOV1	BT	SET1
							BF	CLR1
							BTCLR	
CY	MOV1	MOV1	MOV1	MOV1	MOV1			SET1
	AND1	AND1	AND1	AND1	AND1			CLR1
	OR1	OR1	OR1	OR1	OR1			NOT1
	XOR1	XOR1	XOR1	XOR1	XOR1			

(4) Call instruction/branch instruction

CALL, CALLF, CALLT, BR, BC, BNC, BZ, BNZ, BT, BF, BTCLR, DBNZ


Second	AX	!addr16	!addr11	[addr5]	\$addr16
Operand					
First					
Operand					
Basic	BR	CALL	CALLF	CALLT	BR, BC,
instruction		BR			BNC
					BZ, BNZ
Compound					BT, BF
instruction					BTCLR
					DBNZ

(5) Other instructions

ADJBA, ADJBS, BRK, RET, RETI, RETB, SEL, NOP, EI, DI, HALT, STOP

9. PACKAGE DRAWING

64 PIN PLASTIC SHRINK DIP (750 mil)

NOTES

- 1. Controlling dimension millimeter.
- 2. Each lead centerline is located within 0.17 mm (0.007 inch) of its true position (T.P.) at maximum material condition.
- 3. Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
А	$58.0^{+0.68}_{-0.20}$	2.283 ^{+0.028} -0.008
В	1.78 MAX.	0.070 MAX.
С	1.778 (T.P.)	0.070 (T.P.)
D	0.50±0.10	$0.020^{+0.004}_{-0.005}$
F	0.9 MIN.	0.035 MIN.
G	3.2±0.3	0.126±0.012
Н	0.51 MIN.	0.020 MIN.
I	$4.05_{-0.20}^{+0.26}$	$0.159^{+0.011}_{-0.008}$
J	5.08 MAX.	0.200 MAX.
К	19.05 (T.P.)	0.750 (T.P.)
L	17.0±0.2	$0.669^{+0.009}_{-0.008}$
М	$0.25^{+0.10}_{-0.05}$	$0.010^{+0.004}_{-0.003}$
Ν	0.17	0.007
R	0 to 15°	0 to 15°
	F	P64C-70-750A,C-3

APPENDIX A. DEVELOPMENT TOOLS

The following systems are available for developing a system using the μ PD178046 and 178048. Also refer to (5) Note on using development tools.

(1) Language processor software

RA78K/0	Common 78K/0 series assembler package
CC78K/0	Common 78K/0 series C compiler package
DF178048 ^{Note}	Device file for μ PD178048 subseries
CC78K/0-L	Common 78K/0 series C compiler library source file

(2) Flash memory writing tools

Flashpro II	Dedicated Flash Pro
Product name pending ^{Note}	Flash writing adapter

(3) Debugging tools

IE-78K0-NS	Common 78K/0 series in-circuit emulator
IE-70000-MC-PS-B	Power supply unit for IE-78K0-NS
IE-70000-98-IF-C	Interface adapter when PC-9800 series (except notebook type) is used as host machine
IE-70000-CD-IF	PC card and interface cable when notebook type of PC-9800 series is used as host machine
IE-70000-PC-IF-C	Interface adapter when IBM PC/AT TM or compatible machine is used as host machine
IE-178048-NS-EM1 ^{Note}	Emulation board for emulating μ PD178048 subseries
Product name pending ^{Note}	Emulation probe for 64-pin plastic shrink DIP
ID78K0-NS ^{Note}	Integrated debugger for IE-78K0-NS
SM78K0	Common system simulator for 78K/0 series
DF178048 ^{Note}	Device file for μ PD178048 subseries

Note Under development

(4) Real-time OS

RX78K/0	Real-time OS for 78K/0 series
MX78K0	OS for 78K/0 series

(5) Notes on using development tools

- Use the ID78K0-NS and SM78K0 with the DF178048.
- Use the RX78K/0 with the RA78K/0 and DF178048.
- The Flashpro II, flash writing adapter (product name pending), and emulation probe (product name pending) are products of Naito Densei Machida Mfg. Co., Ltd. (TEL (044) 822-3813). Consult NEC when purchasing these products.
- For a description of development tools from the third parties, refer to 78K/0 Series Selection Guide (U11126E).
- The host machine and OS corresponding to each software package are as follows:

Host Machine	PC	EWS
[OS] Software	PC-9800 series [Japanese Windows™] IBM PC/AT and compatible machine [Japanese/English Windows]	HP9000 series 700 [™] [HP-UX [™]] SPARCstation [™] [SunOS [™]] NEWS (RISC) [™] [NEWS-OS [™]]
RA78K/0	Note	0
CC78K/0	○ Note	0
ID78K0-NS	0	_
SM78K0	0	—
RX78K/0	○ Note	0
MX78K0	○ Note	0

Note DOS-based software

APPENDIX B. RELATED DOCUMENTS

Device-related documents

Document Name		Document No.	
		Japanese	English
µPD178F048 Preliminary Product Information		U13056J	Planned
µPD178048 Subseries User's Manual		Planned	Planned
78K/0 Series User's Manual - Instruction		U12326J	U12326E
78K/0 Series Instruction Set		U10904J	_
78K/0 Series Instruction Table		U10903J	_
μPD178048 Subseries Special Function Register Table		Planned	_
78K/0 Series Application Note	Fundamentals (I)	U12704J	IEA-1288

Documents on development tools (User's Manuals)

Document Name		Document No.	
		Japanese	English
RA78K0 Assembler Package	Operation	U11802J	U11802E
	Assembly language	U11801J	U11801E
	Structured assembly language	U11789J	U11789E
RA78K Series Structured Assembler Preprocessor		U12323J	EEU-1402
CC78K0 C Compiler	Operation	U11517J	U11517E
	Language	U11518J	U11518E
CC78K0 C Compiler Application Note	Programming Know-How	U13034J	EEA-1208
CC78K Series Library Source File		U12322J	_
IE-78K0-NS		Planned	Planned
IE-178048-NS-EM1		Planned	Planned
SM78K0 System Simulator Windows Based	Reference	U10181J	U10181E
SM78K Series System Simulator	External part user open interface specifications	U10092J	10092E
ID78K0-NS Integrated Debugger PC Based	Reference	U12900J	Planned

Caution The contents of the above documents are subject to change without notice. Be sure to use the latest edition of each document for designing.

Documents on embedded software (User's Manuals)

Document Name		Document No.	
		Japanese	English
78K/0 Series Real-Time OS	Fundamentals	U11537J	U11537E
	Installation	U11536J	U11536E
78K/0 Series OS MX78K0	Fundamentals	U12257J	U12257E

Other related documents

Document Name	Document No.	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Guide to Prevent Damage for Semiconductor Devices by Electrostatic Discharge (ESD)	C11892J	C11892E
Semiconductor Device Quality/Reliability Handbook	C12769J	Under preparation
Microcomputer Product Series Guide	U11416J	_

Caution The contents of the above documents are subject to change without notice. Be sure to use the latest edition of each document for designing.

- NOTES FOR CMOS DEVICES -

① PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Purchase of NEC I²C components conveys a license under the Philips I²C Patent Rights to use these components in an I²C system, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Windows and Windows NT are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or countries.

PC/AT is a trademark of IBM Corporation.

HP9000 series 700 and HP-UX are trademarks of Hewlett-Packard Company.

SPARCstation is a trademark of SPARC International, Inc.

SunOS is a trademark of Sun Microsystems, Inc.

NEWS and NEWS-OS are trademarks of Sony Corporation.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Germany) GmbH

Duesseldorf, Germany Tel: 0211-65 03 02 Fax: 0211-65 03 490

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Italiana s.r.1.

Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (Germany) GmbH Benelux Office Eindhoven, The Netherlands Tel: 040-2445845 Fax: 040-2444580

NEC Electronics (France) S.A. Velizy-Villacoublay, France Tel: 01-30-67 58 00 Fax: 01-30-67 58 99

NEC Electronics (France) S.A. Spain Office Madrid, Spain Tel: 01-504-2787 Fax: 01-504-2860

NEC Electronics (Germany) GmbH

Scandinavia Office Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388 **NEC Electronics Hong Kong Ltd.** Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea

Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

United Square, Singapore 1130 Tel: 65-253-8311 Fax: 65-250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-719-2377 Fax: 02-719-5951

NEC do Brasil S.A.

Cumbica-Guarulhos-SP, Brasil Tel: 011-6465-6810 Fax: 011-6465-6829 The related documents referred to in this publication may include preliminary versions. However, preliminary versions are not marked as such.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.

NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.

While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.

NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Anti-radioactive design is not implemented in this product.