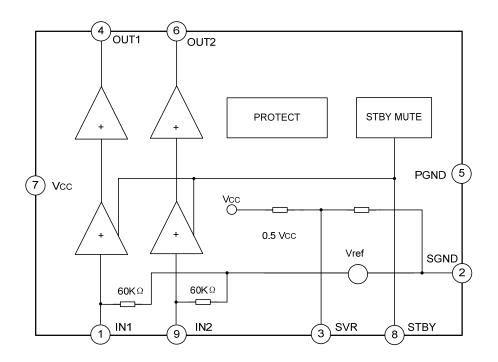

2×6W AUDIO POWER AMPLIFIER

DESCRIPTION

SA7454 is a Class AB dual audio power amplifier. It adopts HSIP-9 or DIP-18IH-300-2.54 package.

FEATURES

- * High output power: 6 + 6W @ THD=10%, RL=4 Ω ,VCC=14.4V
- * Fixed gain
- * Good power supply ripple rejection
- * Standby and Mute functions
- * Low ON/OFF POPO noise
- * Few external components
- * Short circuit protection
- * Inverting polarity protection
- * Thermal protection


ORDERING INFORMATION

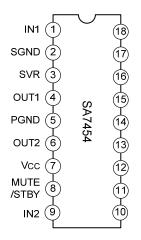
Device	Package
SA7454	DIP-18IH-300-2.54
SA7454H	HSIP-9

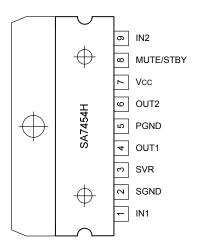
APPLICATIONS

- * Multimedia system
- * LCD-TV

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS


Characteristics	Symbol	Conditions	Rating	Unit	
Power Supply	Vs	Operating state	18	V	
		No signal	20		
Max. Voltage of Inverting Polarity	Vs(r)		6	V	
Output Pin Endurance Capability	ERGo	Vs=0V	200	mJ	
Output Peak Current	losm	No repeat	4	А	
	lorm	Repeat	2.5		
Total Power Dissipation	Ptot		15	W	
Storage Temperature	Tstg		-55~+150	°C	
Operating Ambient Temperature	Tamb		-40~+85	°C	
Junction Temperature	Tj		+150	°C	
Thermal Resistance from	Du a	SA7454H	8	°C/W	
Junction to Case	Rth(j-c)	SA7454	15		


ELECTRICAL CHARACTERISTICS (Unless otherwise specified, Vs=14.4V; RL=4Ω; f=1KHz; Tamb=25°C)

Characteristics	Symbol	Test conditions	Min.	Тур.	Max.	Unit
Power Supply	Vs		8.5	14.4	18.0	V
Total Quiescent Current	lq			40	80	mA
Output DC Level	Vo			7.00		V
Output Power	Po	THD=0.5%	4	4.7		W
		THD=10%	5.5	6.0		
Total Harmonic Distortion	THD	Po=1W		0.1		%
Low Cut-Off Frequency	flr	-3dB		45		Hz
High Cut-Off Frequency	fhr	-1dB	20			kHz
Closed Loop Gain	Gv		19	20	21	dB
Cumbic Valtage Dinale Deigetien		Operating	48			dB
Supply Voltage Ripple Rejection	SVRR	Mute	48			
Ratio		Stand-by	80			
Input Resistance	Zi		50	60	75	kΩ
	Vno	Operating, Rs= 0Ω		50		μV
Output Noise		Operating, Rs=10 Ω		70	100	
		Mute		50		
Channel Separation	CS	Rs=0Ω	40			dB
Channel Balance	СВ			0.1	1	dB
Thermal Protection	Тр			150		°C
Mute Function						
Mute/Play Threshold	VTMUTE		3.3		6.4	V
Output DC Level When Mute	Vo				2	mV
Stand-By Function						
Stand-By/Mute Threshold	VTst-by		0		2.0	V
Stand-By Quiescent Current	lq ST-BY			3.0	100	μА
Stand-By Bias Current	lb ST-BY			15	40	μΑ

PIN CONFIGURATION

PIN DESCRIPTIONS

Pin No.	Pin Name	I/O	Pin Description	
1	IN1	I	Non inverting input 1	
2	SGND	ł	Signal ground	
3	SVR	0	Supply voltage ripple rejection pin	
4	OUT1	0	Output 1	
5	PGND	ł	Power ground	
6	OUT2	0	Output 2	
7	Vcc	ł	Power supply	
8	MUTE/STBY		Standby and mute pin	
9	IN2	I	Non inverting input 2	

FUNCTION DESCRIPTION

Stand-by and mute function

The MUTE/STBY controls the amplifier state by different voltages.

- When MUTE/STBY is 0 -2V, the amplifier is in standby mode, and the circuit is in power down mode;
- ➤ When MUTE/STBY is 3.3 -6.4V, the amplifier is in mute mode;
- ➤ When MUTE/STBY is higher than 8.5V, the amplifier is in operating mode.

Power Dissipation and Heat Sinking

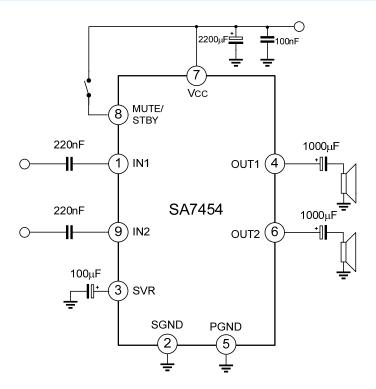
When the load is a resistor, the maximum average power that SA7454 will be required to dissipate is approximately:

PD(MAX)=
$$Vs^2/\pi^2RL+PQ$$

Where Vs is the power supply, RL is the load resistance, PQ is the quiescent power dissipation. The above equation is only an approximation which assume SA7454 an "ideal" class B output stage and power dissipation in all other parts of the circuit is constant. As an example, if the SA7454 is operated on a 14.4V power supply with a resistive load of 4Ω , it can develop up to 6W of internal power dissipation. If the die temperature is to remain below 150°C for ambient temperatures up to 50°C, the total junction-to-ambient thermal resistance must be less

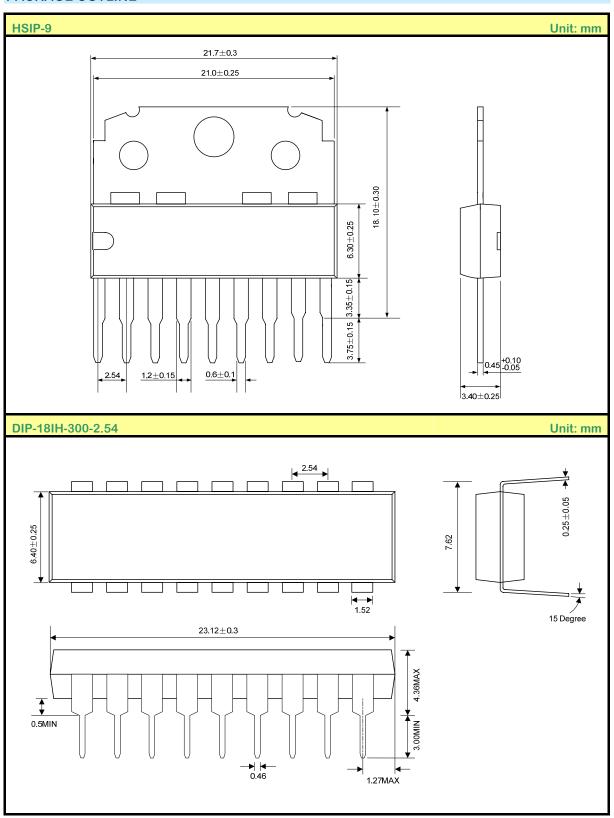
than:

$$(150^{\circ}C-50^{\circ}C)/6W=16.7^{\circ}C/W$$


For HSIP-9 package, the die-to-package thermal resistance is $Rth(j-c) = 8^{\circ}C/W$, then the package-to-ambient thermal resistance should be lower than $8.7^{\circ}C/W$. So we need heat sink to reduce the package-to-ambient thermal resistance.

For DIP-18IH-300-2.54 package, the die-to-package thermal resistance is Rth(j-c) = 15° C/W, then the package-to-ambient thermal resistance should be lower than 1.7° C/W, that will make heat sinking difficult, in addition, DIP-18IH-300-2.54 can not add effective heat sink, so we need to reduce the power dissipation by reducing load. For example, with a 8Ω load, it can develop up to 3W of internal power dissipation, and the package-to-ambient thermal resistance should be lower than:

$$(150^{\circ}C-50^{\circ}C)/3W-15^{\circ}C/W=18.3^{\circ}C/W$$


The thermal requirements can become more difficult when SA7454 is driving a reactive load. As a general rule, the power dissipation of an amplifier driving a 60° reactive load (usually considered to be a worst-case loudspeaker load) will be roughly that of the same amplifier driving the resistive part of that load. For example, a loudspeaker may at some frequency have an impedance with a magnitude of 8Ω and a phase angle of 60° . The real part of this load will then be 4Ω , and the amplifier power dissipation equal to the power dissipation with a 4Ω load.

TYPICAL APPLICATION CIRCUIT

PACKAGE OUTLINE

Note: Silan reserves the right to make changes without notice in this specification for the improvement of the design and performance. Silan will supply the best possible product for customers.