New Jersey Semi-Conductor Products, Inc.

20 STERN AVE. SPRINGFIELD, NEW JERSEY 07081 U.S.A.

TELEPHONE: (973) 376-2922

(212) 227-6005

FAX: (973) 376-8960

TIS75

N-Channel General Purpose Amplifier

- · This device is designed for low level analog switching, sample and hold circuits and chopper stabilized amplifiers.
- Sourced from process 54.

TO-92

1. Gate 2. Source 3. Drain

Absolute Maximum Ratings * Ta=25°C unless otherwise noted

Symbol	Parameter	Value	Units
√ _{DG}	Drain-Gate Voltage	30	V
V _{GS}	Gate-Source Voltage	-30	V
GF	Forward Gate Current	10	mA
T _J , T _{STG}	Operating and Storage Junction Temperature Range	-55 ~ +150	°C

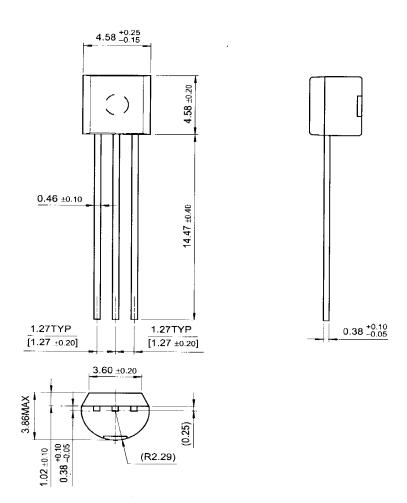
^{*} These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
Off Charac	teristics			•		
V _{(BR)GSS}	Gate-Source Breakdown Voltage	$I_G = 1.0 \mu A, V_{DS} = 0$	-30			V
I _{GSS}	Gate Reverse Current	V _{GS} = 15V, V _{DS} = 0 V _{GS} = 15V, V _{DS} = 0, T _a = 100°C			-2.0 -5.0	nA μA
I _D (off)	Drain Cutoff Leakage Current	V _{DS} = 15V, V _{GS} = -10V V _{DS} = 15V, V _{GS} = -10V, T _a = 100°C			-2.0 -5.0	nA μA
V _{GS} (off)	Gate-Source Cutoff Voltage	V _{DS} = 20V, I _D = 4.0nA	-0.8		-4.0	V
On Charac	teristics *					
I _{DSS}	Zero-Gate Voltage Drain Current *	V _{DS} = 15V, V _{GS} = 0	8		80	mA
r _{DS} (on)	Drain-Source On Resistance	$V_{DS} \le 0.1V, V_{GS} = 0$			60	Ω
Small Sigr	nal Characteristics					-
C _{iss}	Input Capacitance	V _{DS} = 0, V _{GS} = -10V, f = 1.0MHz			18	pF
C _{rss}	Reverse Transfer Capacitance	$V_{DS} = 0$, $V_{GS} = -10V$, $f = 1.0MHz$			8.0	ρF
Switching	Characteristics			•		-
t _r	Rise Time	$V_{GS}(off) = -4.0V, V_{GS}(on) = 0,$			10	ns
ton	Turn-On Time	I _D = 5.0mA, V _{DS} = 10V			10	ns
t _{off}	Turn-Off Time				100	ns

* Pulse Test: Pulse Width < 300µs, Duty Cycle < 3.0%

NJ Semi-Conductors reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by NJ Semi-Conductors is believed to be both accurate and reliable at the time of going to press. However, NJ Semi-Conductors assumes no responsibility for any errors or omissions discovered in its use. NJ Semi-Conductors encourages customers to verify that datasheets are current before placing orders.



These ratings are based on a maximum junction temperature of 150 degrees C.
These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.

Thermal Characteristics $T_a=25\,^{\circ}\text{C}$ unless otherwise noted

Symbol	Parameter	Max.	Units	
PD	Total Device Dissipation	350	mW	
	Derate above 25°C	2.8	mW/°C	
R _{eJC}	Thermal Resistance, Junction to Case	125	°C/W	
$R_{\theta JA}$	Thermal Resistance, Junction to Ambient	357	°C/W	

TO-92

