

MAGIC LED PLB010050 Series

Product Datasheet

Description

Plessey MAGIC PLB010050 die are designed for a wide range of low power applications such as decorative lighting, automotive interior, signage and indicators. The light is emitted from the top surface only and close to a Lambertian distribution. The die is suitable for assembling as single devices, or in strings or arrays for specific applications. The dies are supplied on a blue tape in single intensity and colour bin, to provide close uniformity.

Features

- Blue LED die
- GaN-on-Si technology
- Single surface top-emitting
- Wide wavelength range

Applications

- Decoration Lighting
- Instrument panel backlighting
- Illumination symbols
- Signage
- Displays
- Phosphor driving

		Dominant Wavelength (nm)		
Variant	Colour	Min.	Max.	
PLB010050M	Blue Phosphor	450	460	
PLB010050P	Blue Visible	460	470	
PLB010050T	Blue Visible	470	480	

Absolute Maximum Ratings

 $T_{amb} = +25^{\circ}C$ unless otherwise stated

Parameter	Symbol	Minimum	Maximum	Unit
DC Forward Current	I _F	-	90	mA
Peak Pulse Forward Current ^[1]	I _{FP}	-	120	mA
Reverse Voltage	V _R	-	5	V
Storage Temperature	T _{stg}	-40	+105	°C
Junction Temperature	Ti	-40	+105	°C

^[1] Pulse width ≤10ms, duty cycle ≤10%

Electro-optical Characteristics

 $T_{amb} = +25$ °C unless otherwise stated

Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Forward Voltage	V _F	$I_F = 60 \text{mA}$	2.8	3.1	3.6	V
Reverse Current	I _R	$V_R = 5V$	-	-	10	μΑ
			450	_	460	
Dominant wavelength	λ_{d}	$I_F = 60 \text{mA}$	460	_	470	nm
			470	-	480	
Thermal Resistance	R _{thj-m} ^[1]		-	11	-	K/W

^[1] Junction to mounting face (excluding package)

Ordering Information

Name	Order code	Colour Range	Luminous Intensity Range
PLB010050M	PLB010050MAJ000	M1, M2, M3 & M4	1B, 2B & 3B
PLB010050P	PLB010050PAJ000	P1, P2	2B, 3B & 4B
PLB010050T	PLB010050TAJ000	T1, T2	3B, 4B & 5B

Intensity Bin Groups

 $I_F = 60 \text{mA}$, $T_{amb} = +25 ^{\circ}\text{C}$, unless otherwise stated

Variant	Group	Luminous Intensity Iv [1] (mcd)		Radiant Power Range (mW) [1]	
		Min.	Max.	Min.	Max.
	1B	-	-	42	47
PLB010050M	2B	-	-	47	52
	3B	-	-	52	57
	2B	440	475	-	-
PLB010050P	3B	475	600		
& BL B040050T	4B	600	750	-	_
PLB010050T	5B	750	1060	_	_

^[1] Tolerance ±11% and packaged with a 1 millimeter radius silicone dome lens (R.I. 1.41)

Dominant Wavelength Bin Groups

 $I_F = 60 \text{mA}$, $T_{amb} = +25 ^{\circ}\text{C}$, unless otherwise stated

0	λ _d ^[1]	λ _d ^[1] (nm)		
Group	Min.	Max.		
M1	450	452.5		
M2	452.5	455		
M3	455	457.5		
M4	457.5	460		
P1	460	465		
P2	465	470		
T1	470	475		
T2	475	480		

^[1] Tolerance ±1nm

Characteristic Curves

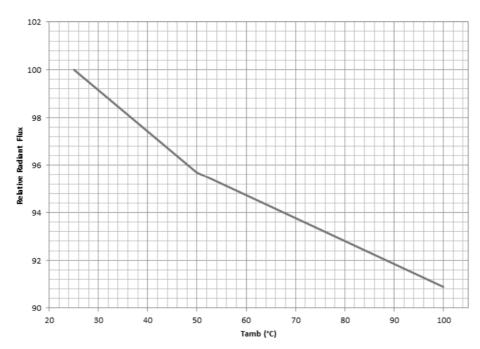


Figure 1: Relative radiant power at I_F =60mA versus ambient temperature.

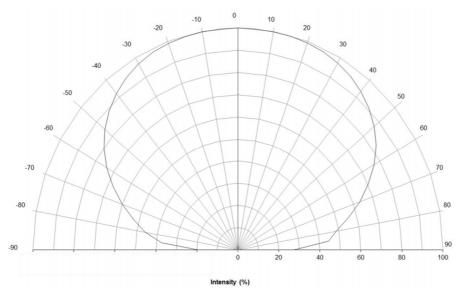


Figure 2: Normalised radiant intensity pattern distribution of a random die sample with a dome lens encapsulation (R.I. 1.4).

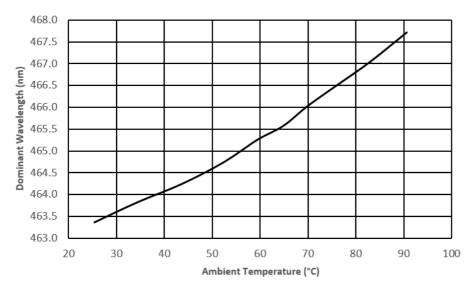


Figure 3: Dominant wavelength versus ambient temperature.

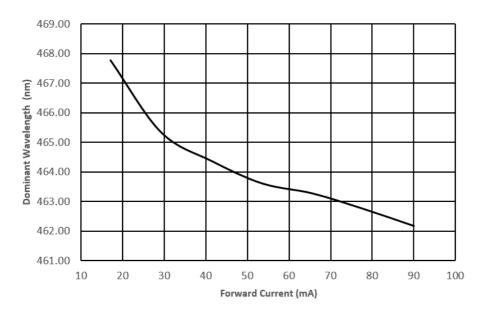


Figure 4: Dominant wavelength versus forward current at +25°C ambient.

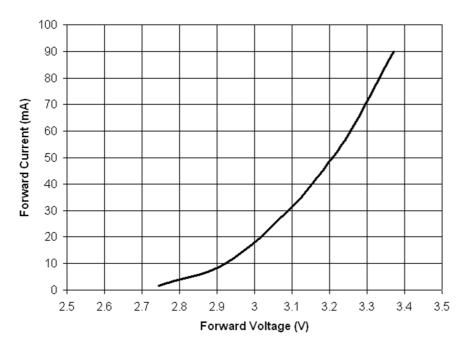


Figure 5. Typical forward voltage versus forward current.

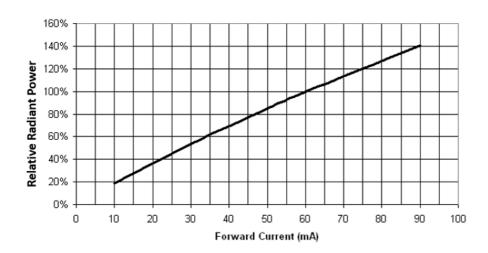


Figure 6. Relative radiant power versus forward current

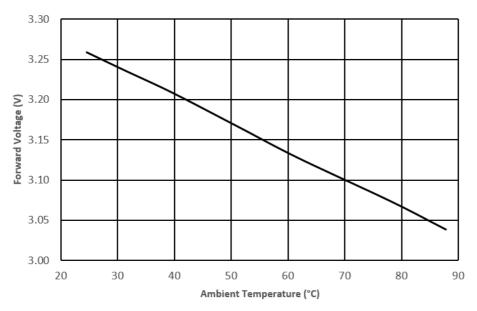
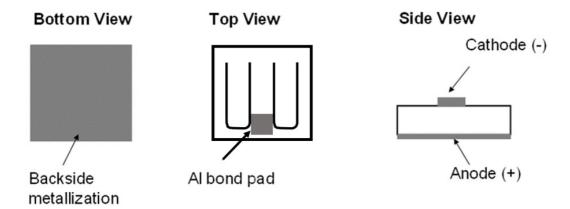



Figure 7. Forward voltage versus ambient temperature

Mechanical Specifications

Description	Dimensions (µm)	Tolerance (µm)
Chip Area	510 x 510	± 10
Chip Thickness	150	± 10
Diameter of top (Al) Bond Pad	100 x 100	± 10
Al Bond Pad Thickness	2	± 0.2
Back Contact Metal (Au) Area	510 x 510	± 10
Back Contact Metal Thickness	1.1	±0.05

Handling Instructions

Plessey LEDs are not designed to operate with reverse bias.

Precautions are required to prevent reverse bias in applications and during handling.

Legal Notice

Product information provided by Plessey Semiconductors Limited ("Plessey") in this document is believed to be correct and accurate. Plessey reserves the right to change/correct the specifications and other data or information relating to products without notice but Plessey accepts no liability for errors that may appear in this document, howsoever occurring, or liability arising from the use or application of any information or data provided herein. Neither the supply of such information, nor the purchase or use of products conveys any licence or permission under patent, copyright, trademark or other intellectual property right of Plessey or third parties.

Products sold by Plessey are subject to its standard Terms and Conditions of Sale that are available on request. No warranty is given that products do not infringe the intellectual property rights of third parties, and furthermore, the use of products in certain ways or in combination with Plessey, or non-Plessey furnished equipments/components may infringe intellectual property rights of Plessey.

The purpose of this document is to provide information only and it may not be used, applied or reproduced (in whole or in part) for any purpose nor be taken as a representation relating to the products in question. No warranty or guarantee express or implied is made concerning the capability, performance or suitability of any product, and information concerning possible applications or methods of use is provided for guidance only and not as a recommendation. The user is solely responsible for determining the performance and suitability of the product in any application and checking that any specification or data it seeks to rely on has not been superseded.

Products are intended for normal commercial applications. For applications requiring unusual environmental requirements, extended temperature range, or high reliability capability (e.g. military, or medical applications), special processing/testing/conditions of sale may be available on application to Plessey.

Contact

Customer Support +44 1752 693000 | support@plesseysemi.com www.plesseysemi.com

Plessey Semiconductors Ltd | Plymouth Tamerton Road, Roborough Plymouth, Devon PL6 7BQ United Kingdom

P: +44 1752 693000 F: +44 1752 693700 Plessey Semiconductors Ltd | Swindon Design & Technology Centre, Delta 500, Delta Business Park, Swindon SN5 7XE United Kingdom

P: +44 1793 518000 F: +44 1793 518030