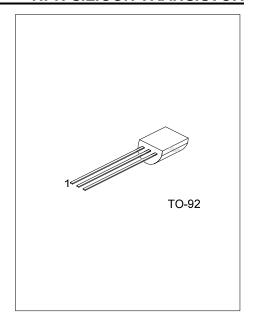
UTC UNISONIC TECHNOLOGIES CO., LTD

13002AG **Preliminary**

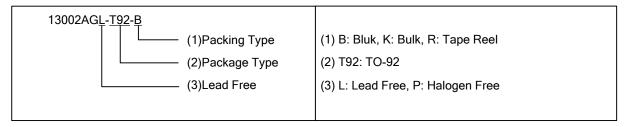

NPN SILICON TRANSISTOR

HIGH VOLTAGE FAST SWITCHING NPN POWER APPLICATIONS

DESCRIPTION

The device is manufactured using High Voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability.

The UTC 13002AG is designed for use in Compact Fluorescent Lamps.



FEATURES

- * High Voltage Capability
- * Low Spread of Dynamic Parameters
- * Very High Switching Speed

ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free Plating	Halogen Free	Package	1	2	3	Packing	
13002AGL-T92-B	13002AGP-T92-B	TO-92	Е	С	В	Tape Box	
13002AGL-T92-K	13002AGP-T92-K	TO-92	Е	С	В	Bulk	
13002AGL-T92-R	13002AGP-T92-R	TO-92	Е	С	В	Tape Reel	

MARKING INFORMATION

PACKAGE	MARKING			
TO-92	UTC 13002AG P: Halogen Free Data Code			

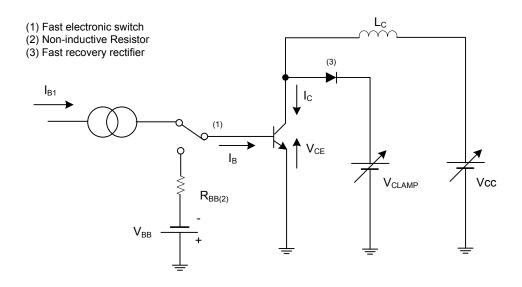
www.unisonic.com.tw 1 of 4

■ ABSOLUTE MAXIMUM RATINGS (T_A = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector Emitter Voltage (V _{BE} = 0)	V _{CES}	700	V
Collector Emitter Voltage (I _B = 0)	V_{CEO}	400	V
Emitter Base Voltage (I _C = 0)	V_{EBO}	9	V
Collector Current	Ic	0.75	Α
Collector Peak Current (tp < 5 ms)	I _{CM}	0.5	Α
Base Current	I _B	0.4	Α
Base Peak Current (t _p < 5 ms)	I _{BM}	0.75	Α
Total Dissipation at Ta = 25°C	P_{D}	0.95	W
Junction Temperature	T_J	+150	°C
Storage Temperature	T _{STG}	-40 ~ +150	Ĵ

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERAMAL DATA


PARAMETER	SYMBOL	RATINGS	UNIT	
Thermal Resistance Junction-ambient	θ_{JA}	130	°C /W	

■ **ELECTRICAL CHARACTERISTICS** (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector Emitter Sustaining Voltage (I _B = 0) (Note)	V _{CEO(SUS)}	I _C = 1 mA	700			V
	V _{CE(SAT)}	$I_C = 0.2 \text{ A}$, $I_B = 40 \text{ mA}$		0.2	0.5	V
Collector Emitter Saturation Voltage (Note)		$I_C = 0.3 \text{ A}$, $I_B = 75 \text{ mA}$		0.3	1	
		I _C = 0.4 A , I _B = 135 mA		0.4	1.5	
Page Emitter Seturation Voltage (Note)		$I_C = 0.2 \text{ A}$, $I_B = 40 \text{ mA}$			1	V
Base Emitter Saturation Voltage (Note)	$V_{BE(SAT)}$	$I_C = 0.3 A$, $I_B = 75 mA$			1.2	
Emitter Cut off Current (I _C = 0)	I _{EBO}	V _{EB} = 9 V			1	mA
Collector Cut off Current (V _{BE} = -1.5V)	I _{CEV}	V _{CE} = 700 V			250	μΑ
DC Current Gain	h _{FE} ∗	$I_C = 0.2 \text{ A}, V_{CE} = 5 \text{ V}$	12		27	
DC Current Gain		$I_C = 0.4 A, V_{CE} = 5 V$	7		20	
Inductive Load Fall Time	t _F	I _C = 0.2 A , V _{CLAMP} = 300 V I _{B1} = -I _{B2} = 40 mA , L = 3 mH		0.3		μs

Note: Pulsed: Pulse duration = $300\mu s$, duty cycle = 1.5%

■ INDUCTIVE LOAD SWITCHING TEST CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.