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INTRODUCTION
Because of the much high efficiency that can be achieved (higher than the traditional PWM) and the re-
duction of the high frequency electromagnetic interference (thanks to the utilization of parasitic parameters
of the circuit), the interest for resonant topologies is recently growing in power conversion market. In fact
this kind of topologies allows high power/weight ratio and low power dissipation of the power parts. 
Several power supply application segments such as Adapters, Television, Monitor, Telecom and Car Ra-
dio can benefit by using converters based on the topology. 
The L6598 is designed for half bridge configuration.
This paper deals on how to use this device. At the end, it will be discussed concerning some design criteria
and application tips.

FEATURED DEVICE DESCRIPTION
The device, whose internal block diagram is shown in fig.1, is an integrated circuit realized in Off-Line tech-
nology. Able to drive Powermos or IGBT, in half bridge topology, it is provided with all the features (such
as VCO, Soft-Start, OP-Amp and Enables) needed to implement and control properly a resonant SMPS
with the minimum components count. 
Even though the device is able to withstand high voltage, it can operate at low voltage starting from its
operative supply. It is available in DIP16 and SO16N packages.
The most significant peculiarities are:

– High voltage rail (up to 600V) and   immunity (± 50 V/ns) at full temperature range.

– 250 mA (source) / 450 mA (sink) driver current capability. 
– Under voltage lockout.
– Precise current controlled oscillator and frequency shift for soft-star function.
– Integrated bootstrap driver for C-boot charging.

Figure 1. Internal Block diagram
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DEVICE PINS FUNCTION

Pin # Name Description

1 CSS Soft Start Timing Capacitor. The device is provided with Soft Start features. The capacitor CSS
sets the soft start time, according to the relations: TSS = kSS · CSS (typ. kSS = 0.15 s/µF). In
steady state the voltage at pin1 is 5V. During TSS a current Iss, function of Ifstart, charges the
capacitor. Anyway TSS, set at kSS · CSS depends only on CSS value. See pin-2 and timing
description in the data-sheet.

2 Rfstart Maximum Oscillation Frequency Setting. A resistance connected between this pin and ground
sets the fstart value, fixing the difference between fstart and fmin (fstart > fmin). The voltage at this
pin is fixed at VREF = 2V, so Rfstart programs the Ifstart current = VREF/Rfstart. The Rfstart value is
recommended to be not less than 18 - 20 kOhm.

3 Cf Oscillator Frequency Setting. The CF capacitor, with Rfstart and Rfmin, sets fstart and fmin. In
normal operation this pin shows a triangular wave. See timing and oscillator section in the data-
sheet.

4 Rfmin Minimum Oscillation Frequency Setting. A resistance connected between this pin and ground
sets the fmin value. The voltage at this pin is fixed at VREF =2V, so Rfmin sets the Ifmin current
equal to VREF/Rfmin. To set precise frequency, the Rfmin value is recommended not to be less
than 20 kOhm.

5 OPout Out of the operational amplifier. Characterized with 1M-gain bandwidth product, this Op Amp is a
free feature for any need. To implement a feedback control loop this pin can be connected to the
Remind pin by means of an appropriate circuitry.

6 OPIN- Inverting Input of the operational amplifier.

7 OPIN+ Non Inverting Input of the operational amplifier.

8 EN1 Enable 1.  This pin forces the device in latched shutdown state (The same as in under voltage
conditions). Active high, the typical threshold level is 0.6V. There are two ways to resume normal
operation. The first is to reduce the supply voltage below the under voltage threshold and then
increase it again until the valid supply is recognized. The second is activating EN2 input. The
enable-1 is especially designed for strong fault (e.g. in case of short circuit or open load).

9 EN2 Enable 2. Enable input (active high at 1.2V threshold level). When activated, this function forces
the soft-start sequence to be executed. The EN2 is prevalent on EN1 and so; it is possible to
cancel the latched enable (EN1).

10 GND Ground

11 LVG Low Side Driver Output. This pin must be connected to the low side power MOSFET gate of the
half bridge. A resistor connected between this pin and the power MOS gate can be used to
reduce the peak current.

12 Vs Supply Voltage. This pin will be connected to the supply filter capacitor. An internal clamp (15.6V
typical) limits the supply voltage.

13 N.C. Not Connected. This pin is not internally connected thus increasing the distance between the
high voltage and low voltage circuitry. The increased distance gives benefit for insulation. 

14 OUT High Side Driver Floating Reference. This pin must be connected close to the source of the high
side power MOS or IGBT. 

15 HVG High Side Driver Output. This pin must be connected to the high side power MOSFET gate of the
half bridge. A resistor connected between this pin and the power MOS gate can be used to
reduce the peak current.

16 Vboot Bootstrapped Supply Voltage. The bootstrap capacitor must be connected between this pin and
VS. A patented integrated circuitry replaces the high voltage external diode. This feature is
achieved by means of a high voltage DMOS, synchronously driven with the low side power
MOSFET. See Bootstrap section in the data-sheet for details.
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DEVICE OPERATION.
The device will start its function as the supply voltage reaches the UVLO threshold.
Before the supply threshold is O.K., both the external half bridge's Powermos are cut off thank to the low
impedance of the drivers. As the supply is valid, the circuit starts to run; the low side driver is active during
the first half period so that the boost capacitor will be fully charged.
The oscillator is based on a current controlled oscillator. Choosing the appropriate biasing at Rfmin and
Rfstart we can define the minimum and maximum frequency operation limits. The device is provided with
soft start function (ss); connecting a delay capacitor at CSS, it can be controlled ss time. At start up the
frequency is set to the maximum value (Fmax) and will gradually decrease to the operative one during the
startup time.
The oscillator controls the power stage circuit by the Low and High side gate drivers, connected to the
external Power MOS . The control of the frequency can be done acting on the Rfmin in closed loop con-
trolled condition.
The significant current capability of both, the high and low side drivers (typically 450mA source and 250mA
sink), allows many different power MOS size to be driven maintaining fast switching transition. The internal
logic ensures a dead time between the gate turn off of the high/low side and the low/high side gate turn
on. This important feature allows to easily operating in zero voltage-switching mode, minimizing the tran-
sistor switching losses and the electromagnetic interference (see below in the soft switching section). The
built-in dead time is typical 300ns; the transition will be completed within this time.
The integrated Bootstrap function, allows avoiding the need of the external fast diode for charge the boot-
strap capacitor (required to supply the floating driver).
The internal operational amplifier can be useful in closed loop control or protection function. 

SOFT START AND OSCILLATOR.  
The soft start function consists in a period of time, TSS, in which the switching frequency shifts from fstart
to fmin. This feature is detailed explained below (ref. to fig.2).

Figure 2. Soft start timing and Oscillator to drivers phase.

During the soft start time the current ISS charges the capacitor CSS, generating a voltage ramp which is
delivered to a trans conductive amplifier, as shown in fig. 2. Thus this voltage signal is converted in a grow-
ing current, which is subtracted to Ifstart. Therefore the current, which drives the oscillator to set the fre-
quency during the soft start, is equal to:
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Where:

[2]

At the start-up (t=0) the L6598 oscillates (see also fig3 and relation [7]) at fstart:

[3]   set by:

[3b]

At the end of soft start (t = TSS) the second term of eq.1 decreases to zero and the switching frequency is
set only by Imin (i.e. Rƒmin):

[4]

Since the second term of eq.1 is equal to zero, we have:

[5]

Note: there is not a fixed threshold of the voltage on CSS in which the soft start finishes (i.e. the end of the
frequency shifting), and TSS depends on CSS, Iƒstart, gm, and ISS (eq. 5). Making TSS independent of
Iƒstart, the ISS current has been designed to be a fraction of Iƒstart, so:

[6]

In this way the soft_start time depends only on the capacitor CSS. The typical value of the kSS constant
(Soft Start Timing Constant) is 0.15 s/µF.
The current Iosc is fed to the oscillator as shown in fig. 3. It is twice mirrored (x4 and x8) generating the
triangular wave on the oscillator capacitor Cf. Referring to the internal structure of the oscillator (fig.3):

[7]

Where:  IOSC = 4 · IRƒmin ;  ∆VC is the peak to valley oscillator value (≈2.84V).
A good relationship to compute an approximate value of the oscillator frequency in normal operation is:

[7b]

The degree of approximation depends on the frequency value, but it remains much good in the range from
30kHz to 100kHz (fig.4).
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Figure 3. Oscillator Block

Figure 4. Frequency Diagrams

BOOTSTRAP SECTION.
The supply of the high voltage section is obtained by means of a bootstrap circuitry. This solution normally
requires a high voltage fast recovery diode for charging the bootstrap capacitor (fig. 5a). In the device a
patented integrated structure, replaces this external diode. It is realised by means of a high voltage DMOS,
driven synchronously with the low side driver (LVG), with in series a diode, as shown in fig. 5b.

+

TSS

CSS

Cf

ISS Ifstart Ifmin

IOSC

S

R

Vth+

Vth-

+

+

X4

X8

D03IN1444

0
0 200 400 Cf(pF)

200

400

fmin
(KHz)

Rf=90KΩ - calc.

Rf=90KΩ - meas.

Rf=19.9KΩ - calc.

Rf=19.9KΩ - meas.

D03IN1442

20 40 60 80 100 Rfmin(KΩ)
20

40

60

80

100

fmin
(KHz)

D98IN891



AN1673 APPLICATION NOTE

6/24

Figure 5. Bootstrap driver.

To drive the synchronised DMOS it is necessary a voltage higher than the supply voltage VS. This voltage
is obtained by means of an internal charge pump.
The diode connected in series to the DMOS has been added to avoid undesirable turn on of it. The intro-
duction of the diode prevents any current can flow from the Vboot pin to the VS one in case that the supply
is quickly turned off when the internal capacitor of the pump is not fully discharged.
The bootstrap driver introduces a voltage drop during the recharging time of the capacitor Cboot (when the
low side driver is on), which increases with the frequency and with the size of the external power MOS. It
is the sum of the drop across the RDSON and of the diode threshold voltage. At low frequency this drop is
very small and can be neglected. Anyway increasing the frequency it must be taken in to account. In fact
the drop, reducing the amplitude of the driving signal, can significantly increase the RDSON of the external
power MOS (and so the dissipation). 
To be considered that in resonant power supplies the current, which flows in the power, MOS decreases
increasing the switching frequency and generally the increases of RDSON are not a problem because pow-
er dissipation is negligible. The following equation is useful to compute the drop on the bootstrap driver:

[8]

Where Qg is the gate charge of the external power MOS, Rdson is the on resistance of the bootstrap
DMOS, and Tcharge is the time in which the bootstrap driver remains on (about the semi period of the
switching frequency minus the dead time). The typical resistance value of the bootstrap DMOS is 150
Ohm. For example using a power MOS with a total gate charge of 30nC the drop on the bootstrap driver
is about 2.5V, at a switching frequency of 200kHz. In fact:

[9]  

In practice, if a significant drop on the bootstrap driver (at high switching frequency when large power MOS
are used) represents a problem, an external diode can be used, avoiding the voltage reduction on the
Cboot.
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ENABLE FUNCTIONS.
The L6598 is provided with two different enable inputs, EN1 (pin8) and EN2 (pin 9), suitable for a flexible
control of the application.
The Enable 1 (active high) threshold is typically 0.6V. When activated, it forces the device in a latched shut
down state in which the oscillator is stopped and both HVG and LVG are cut off, like in the under voltage
condition. In this state the device sinks from the supply a low quiescent current (250µA max.). There are
two ways to restart the device: one is reducing the supply voltage below the turn off threshold (then turning
it on again).  The second is activating Enable 2 input (fig.6). Latched O.V.P function can be achieved using
this function.

Figure 6. Enable 1 timing diagrams

The En2, active high, has a typical threshold of 1.2V. It restarts the start up sequence and, if the En1 has
been previously activated, it resumes from the latched condition (fig.7).

Figure 7. Enable 2 timing diagrams
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RESONANT APPLICATIONS.
In the switched mode power conversion, the resonant converters can be distinguished from the non-res-
onant ones observing the waveforms, specifically seen by the power switches and parasitic elements with-
in the converter. In practice, in contrast to a traditional PWM (typically rectangular/trapezoidal shaped),
the resonant converters waveforms contain pieces of sinusoidal ringing waveforms.
The resonant conversion technique can be applied for all the converter topologies (buck, boost, flay-back). 
It is possible to classify this kind of converters in different classes: 
– Series or parallel load of the resonant circuit.

– Fixed or variable frequency operation.

– Continuous or discontinuous resonance. 

– Full resonant, half resonant (resonant switches) converters.

This technical paper can't discuss about the variety of many different topologies.
We can define resonant the converters that takes advantage of the L-C network resonance and the con-
cerning possibility to switching in zero-voltage or zero-current condition.
Zero voltage switching is generally considered essential in high frequency-high voltage applications be-
cause of the parasitic capacitors of the power devices. 
The ZVS topology can suffer from high voltage stresses related to the ringing switch voltage wave-form,
but the recent efficient way to realize the half bridge connection of the power switches, offers the soft
switching features in both, "ON" and "OFF" edges off commutation and so, the full resonant converters to
be easy realized.
The device is designed for the applications based on half-bridge topology, working with 50% duty cycle at
variable frequency. In this type of converters the control of the output parameters will be accomplished by
varying the switching frequency. 
The most popular Load Resonant Converters (SR series resonant, PR parallel resonant, LCL type series
resonant and so on) can be implemented using this configuration (See fig. 8).

Figure 8. Half Bridge Connection.

In the present discussion (for highest interest on it), we will normally refer to applications realized by using
a transformer (T) in charge of to separate the load from the mains. 
Moreover, because of the device operation mode, the continuous mode resonant converter is the config-
uration of our interest (Ref fig.9). In particular, we will refer to the LCL.
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Figure 9. Insulated LCL converter

Resonant circuits.
Any resonant circuit includes capacitors and inductors. Since we deal about applications using the trans-
former, it can be useful to recall the equivalent scheme of the transformer (fig.10), with its simplification
and parameters. 
The stray inductance is the one that can be measured from the primary side with the secondary winding
in short circuit connection. The magnetizing inductance is the one that can be measured from the primary
opening the secondary. The parasitic capacitors will not be considered. 
The simplified diagram of the transformer is acceptable for the present circuits discussion.

Figure 10. Transformer equivalent circuit

We can now define some basic resonance circuits and their inherent impact on the application, (ref. to
fig.11).
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Figure 11. Resonance's LCL-Resonant Converter

In the diagram at Fig.11, it can be observed the net circuit (seen from the OUT node) driven by the half
bridge totem pole. The circuit path consists in the series of a determine inductors (L_RES1), the primary of
the transformer (LMag. // Load) and the resonant capacitor (CRES). We call the series of the L_RES1   and
the Magnetizing inductance (LMag.) L_RES2. 
The COS, placed between OUT and ground, is the equivalent capacitance seen at the driving node (related
to the power switches and to the circuit's distributed capacitors). 
Let's start calling basic resonance the one concerning the circuit path net COS +  L_RES +  CRES.  
Where L_RES can range between L_RES1 and L_RES2 depending on the Load value.
Assuming the CRES  (tens or hundreds nF) value much higher than the COS one (COS is normally in the
range of nF or lower values), we can just consider the series COS +  L_RES.
This basic resonance concerns the soft switching operation.

Soft switching.
Still referring to figure 10: The external active switch (QH) is cut off before the current across the induc-
tance reaches its zero (the active time is less than half period), the current is so forced to flow from the
node OUT; initially discharging COS then, as the voltage cross the voltage threshold, throw the free wheel-
ing diode DL. 
After a short time (≈ 300ns), when the Drain-Source voltage of QL is close to zero, the inherent gate driver
will be activated confirming its "ON" state.
The same will arises at the second half period: Driving off the active QL produces the commutation of the
node Out thanks to the energy transferred from the coil L_RES to the capacitance Cox and the resulting
activation of the opposite diode DH. 
Both the rising and falling edges of the commutation can be considered as portions of the "above defined
basic resonance.  In Fig.12 it can be observed the portion of sine shaped of the Out node commutations. 

LEXT LSTRAY LMAGN

DRIVER-H

LOAD

OUT

QH

+HV-BUS
H.B. RESONANCES

DH

L-RES1

L-RES2

DL COS CRES
QL

DRIVER-L

D03IN1431



11/24

AN1673 APPLICATION NOTE

Figure 12. Soft switching

This way to operate allows the "zero-voltage switching" thus dramatically reducing the switching losses
and improving the noise immunity of the system.
To operate in soft switching, it has to be ensured that the gate cut-off is forced before the current, flowing
in the load, reaches the zero or its polarity is reversed. As can be easy realized, care will be taken in order
to do not disconnect the OUT node.
The basic resonance and its consistent soft switching operation, is essential for resonant converters even
if it is not involved in the energy regulation.

Varying the frequency for the regulation.
As the soft switching condition can be ensured, let us proceed describing the resonant circuitry that allows
controlling the output by varying the switching frequency. 
The resonant path is inherent to the circuit   L_RES + L-MAGNETIZING//LOAD + CRES   (see fig. 13) and its
resonance is applicable to modulate the energy transferred to the output (Load), varying the frequency.

Figure 13. LCL resonant path

The Load block (connected in parallel to the magnetizing inductor) includes the load "seen at the second-
ary" reflected back to the primary. 
Now, we must consider that the load could vary much (the extreme limits are the short circuit and the open
load). Moreover, in the real converter (see fig14), the load includes a rectifier section and the output filter.
Therefore, even in the limits of the single cycle, the load changes much and the L-MAGNETIZING can be
seen in parallel to a very low impedance during the diode conduction (charging Co) and to very high im-
pedance as the diode is cut off (i.e. as the instantaneous voltage at the anode drops down lower than the
output one). 

100nsec/div.

0

200

400

600

VOUT
(V)

D03IN1445

L-MAGNETIZING

L-SERIES

LOAD

CRES

D03IN1432



AN1673 APPLICATION NOTE

12/24

Figure 14. Simplified real converter

Consistent with the above consideration, we can see the circuit as a multiple resonant path. 
E.g. in the family of curves depicted in fig.15, it can be observed the trend of the admittance as a function
of the frequency, for different resistive load. 

Figure 15. Multiple Resonance

We have two separate peak of resonance: 
The first peak (F01, lower in frequency) is inherent to the magnetizing inductance (in series with the L.Ext.
if one is connected) it is the case with the load open.  The second resonance (F02) depends on the series
inductance L_SERIES (case in which the load is much heavy or during the rectifier's conduction phase).
Both the resonance play a role in the energy transferred to the load and its control.
We can start to discuss assuming the value of the magnetizing inductance (L-MAGNETIZING) is so high that
its current is negligible for the frequency range of our interest. 
In this hypothesis, it is evident that the maximum current will occurs at the peak of F02 resonance; it should
not be reasonable to operate at frequency lower than F02 in order do not loosing the zero-voltage switch-
ing and also because the energy transferred to the load should not longer be increased reducing the fre-
quency.  
In the practice, for the real transformer, the magnetizing inductance can't be negligible (its value will not
be so high). Anyway it should be possible to control its value making so it possible to operate at switching
frequency lower than the F02 (See fig16).
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Figure 16. Vout + I(Cres) characteristics.

The control of magnetizing inductance (in the LCL topology) can play an important role in the energy man-
agement; its value (and its ratio with L-SERIES) will affect more than one behavior of the application.
Assuming the load is disconnected, the maximum current occurs at the peak of F01 resonance that con-
cerns the path LMAGNETIZING  + CRES.  
The value of the magnetizing inductance will be (usually) significantly higher than the series inductance,
consistently; the "lowest" resonance (F01) is mainly dependant on its values.
We can define F01 "lowest" resonance to well remind that the switching frequency must not be lower than
its value. 
In fact, forcing the half bridge working at lower frequency (F01), the series circuit represents a capacitive
load. This condition cannot be accepted in the application for the following reasons:
– In capacitive load the "zero voltage switch operation" is lost with resulting significant power dissipation

(hard switching).

– In closed loop, the transfer function should be reversed (when going in below resonance) and the con-
trol should be lost.

To summarize:
It is needed to operate in the "inductive region" of the curve. In this way, the higher frequency applied to
the resonant net, the lower is the resulting power. 
It is remarkable that, working in the deep inductive mode (far from the peak of resonance), the current
moves from sinusoidal shape to triangular and wide frequency change is requested to control the regula-
tion.
On the contrary, working as close as possible to the resonance, for a given load change, the frequency
variation will be minimized.
If the application is designed to operate between to the "lowest" resonance (F01) and the second reso-
nance (F02), it will be verified that the primary current (at the switch off time of one of the two Powermos),
should not be too low in order to ensure the energy needed for soft switching in all condition. 
The L6598 function and the resonance's effects in the regulation have been discussed. Now we can start
to describe some design criteria.
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DESIGN CRITERIA AND APPLICATION TIPS.
The description of design flow is referred to the implementation of the demo-board prototype used for eval-
uation. The whole schematic that comes from the design process below described is shown in fig. 17. 

Figure 17. Diagram of the application
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For the PFC portion of the entire application, it will be dedicated a small section with a concise description
and a reference for the specific application note. 
The following design discussion will be limited to the resonant converter.

Design process:
The converter block diagram can be separate in some basic blocks as in fig.18.

Figure 18. LCL. Resonant converter

Output rectification and filtering; Transformer and resonant parts (Lres-Cres); Half Bridge; Driver Controls
The target specification is given for 70W AC Adapter, here follows the parameters and requirements: -
– Output voltage VO=18V and maximum rated current controlled at IO=3.8 to 4A. 

– Wide range mains input 85V to 264 V.

– High power factor required (P.F.C. needed); +Vbus should be 360V to 420V

Based on these values we can start designing the output stage filter:
– The current relations at the secondary side ("contiguous sine shaped" hypothesis):

[10]  

Output filter and rectification.

Need to be used good quality electrolytic capacitors; the output voltage ripple is function of the equivalent
series resistor (ESR) (the contribution of the capacitance is negligible).
Set the limit to <1% using:

[11] 

This is obtained using two capacitors (330µF with ESR=75 mΩ each). The power dissipated inside the ca-
pacitors will results 140mW at the maximum rated output current. [12/13] the voltage ripple should around
240mV.

[12]  ;  

TRANSF.
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The connection of a second L*C filter's cell can be much effective to limit the output voltage ripple, without
exceeding a reasonable high quality capacitor number. 
In our case, a low price inductance (L1=1µH) and a 100µF-180 mΩ ESR, reduces the high frequency volt-
age ripple down to 80mV  (See fig.19)

Figure 19. Output rectification and filtering

Because of the output Current/Voltage ratio, the output rectification stage can represents most of the pow-
er dissipated in this kind of application.
For the present application, the efficiency is significantly improved choosing the center-tapped connection;
this allows to half the power dissipated on the output rectifiers. Using this solution, care will be taken in
winding up the secondary in order to get a good coupling between the two secondary and for a good sym-
metry in the current waveforms.
For our design, chose the STPS40L40CT that is a low drop power schottky diode in TO220AB package
(Vth = 0.28V ; Rd = 0.0105Ohm ; Bv = 40V).
The power dissipated on the rectifier can be estimated using the sinusoidal model:
– @ Io = 4A

The peak current of secondary diode  Idp = 6.3A;  Irms = 4.45A;

[13]  PD = Vth · Io + Rd · Iorms
2 Pd = 1.35W

– The reverse peak-voltage of Diode ≥ Vo · 2 ≥ 36V

Transformer design:
The LCL resonant configuration requires a resonant inductor (Lser.) placed in series to the transformer's
primary and to the resonant capacitor (Cres.). This inductor plays an important role and its value controls
the current peak during the energy-transferred phase (or in extreme heavy load conditions).
Since the primary path will be submitted to high frequency alternate current (with a significant large flux
density swing ∆B), an high quality resonant inductor should be needed in order to limit the coil's power
dissipation.
In much real design, the stray inductance of the transformer can efficiently replace any external resonant
inductor (or minimize its value). 
We adopt this solution that allows saving the part and limits the magnetic power dissipation. 
The leakage inductance (Lstray) parameter is not easy to be design and usually it requires some mechan-
ical tricks for obtaining a significant value. Anyway, as soon as the transformer is defined, the stray induc-
tance value will be constant enough and its spread limited. 
Apart of this, the first step is to choice the size of the magnetic set. 
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Using the "Product Area"  (AP) criterion, we can get a first approximation of the core area product. The
required AP can be found using the equations Ap1 and Ap2 (we use the same formulas as for the standard
half bridge forward converter).
AP (=AW*Ae) is the winding area (AW, associated to the former) time the magnetic cross section (Ae, as-
sociated to the ferrite). 

N.B. For choosing the resonant elements (inductance and capacitor) and its relation with the frequency to
be set, one can have an easy task referring to the convention described in appendix A.
– Start choosing the minimum operative frequency (corresponding to full load) at 65kHz.

[14] Ap1)  # related to core losses limit

Where: Kh = 4 · 10-5; Ke = 4 · 10-10; ƒsw = 65kHz

For the present design, AP1 = 0.38cm4

[15] Ap2)  # related to saturation limit

Where:
K = 0.165 related to the Half Bridge connection; ∆Bmax 0.4T; Pin is the power handled by the transformer.

In the present design, should be AP2 = 0.17cm4 
The needed AP will be the larger of the two resulting values.  
To met the current target specification, we need AP = AP1 = 0.38cm4.
Select the ferrite's set EE30 (E30 · 15 · 7) in high frequency (e.g. B2 or F1) material. 
(Ve = 3.9cm3; Aw = 0.8 cm2; Ae = 0.6cm2)  => AP=Aw · Ae=0.48 cm4.

Transformer's Winding
To define the winding, first it must be fixed the input DC Bus value. 
Since in the discussed design the pre regulator stage (see later in Power Factor section) is requested, let's
start fixing the voltage bus range at 360V to 420V.
The second resonant inductor of the LCL resonant converter can be achieved managing the proper value
of primary inductance of Transformer. 
This second inductance allows to properly operating in light load condition holding in the same time the
higher efficiency for the entire load range.  In our experience, to take advantage by using the primary in-
ductance as second inductor, a good ratio between its value and the stray inductance (Lmag/Lstray) is in
the range of 3.5 to 7.
The relation between the primary and the stray inductances can be adjusted using the slotted bobbin (that
increases the stray inductance) and introducing an air gap in the transformer's ferrite set (that reduces the
magnetizing inductance). 
We choose a two layer slotted former (split the primary and secondary sides). See fig.20.

Figure 20. Transformer
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------------------------------------------- 
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The design of the winding starts calculating the minimum requested primary turns number.
For turns number calculation:

[16] ; NP ≥ 50

Where: Vin(min) = 360V ; ∆B  = 0.230T (*) ; Ae = 0.6cm2

(*) In the case AP is defined by the AP1, ∆B is calculated by the formula [17].

[17]

where: ; Pt = 1.3 · AP10.37

Instead, in the case that AP should by AP2, ∆Bmax  will be fixed by the designer (up to 0.400Tesla).

Choose primary turns number Np = 60
The turn's (n = Np/Ns) ratio will define the secondary winding turns number. 

[18] ; n = 10

Where: duty=0.5; 

Choose n = 12*;  Secondary turns Ns = 5**

* The ratio n can be significantly higher than [18] because the Lmag effect
** The secondary winding is realized with Ns = 5+5 turns because of the center-tapped solution.

In order to limit skin effect (and the inherent power losses), the Litz wire solution has been adopted for the
windings:
– 20 wires 0.1mm each for the primary winding (=> 0.157 mm2 cross section)

– 60 wires 0.1mm each at the secondary winding (=> 0.47mm2 cross section)

As the primary and secondary windings have been defined, we need fix the inductances of the transformer.
The formula [19] allows calculating, with good approximation, the value of the primary inductance in func-
tion of ferrite set and the gap length, the ferrite's set parameters and the primary turns number.

[19]  

Where: µ0 = 4 · π · 10-7 is the absolute permeability. µr is the relative permeability (e.g. 2000)
le is the magnetic path length, (in cm).  Ae is the effective area (in cm2).
l_gap is the gap size (in mm).
The calculated primary inductance will be in mH. In our case the L=0.85mH.
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Concerning the stray inductance, the models used in the standard forward application's transformers are
not precise (mainly because the mechanical position). The approximate value can be foreseen using the
formula: 

[20]   In our case the calculated Lleak is 270µH. 

Where:  lw = 5.6cm; bw = 0.5cm; hw = 1.55cm.
In the real transformer of the present example, the stray inductance (tested at the primary when one of the
secondary sections is shorted) is about 240µH.

As already told, introducing an air gap in the ferrite set can control the ratio between the primary and the
stray inductance. Chose the air gap 0.33mm to get the ratio Lm/Ls=3.5,

Resonant capacitor (Cres).
For the resonant capacitor selection, it must be consider its rated current; in fact the current can be an
important limit, in particular for low capacitor values. In the polypropylene series capacitor it is usually pos-
sible to find the suitable one. On the other side the value of the Cres, for a given resonance's value (see
fig.21), profiles the sloop of the resonant curve (Q factor that is function of ), thus changing
the impedance change versus the frequency variations.
In our design it has been chosen the 22nF/630V PHE- (100°C).

Figure 21. Q factor.

Powermos.
Concerning the Powermos to be used in the half bridge, the required class of blocking voltage  (Bvdss) is
500V. 
Choose STP4NB50 or the equivalent STP4NK50)
The relations and parameters that can be used for calculation:

[21]  

Rin: equivalent input resistance (seen at the primary side). 

[22]
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1.3 lw Np

2⋅ ⋅
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---------------------------------- hw
3

-------- 10
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Where: IQpk: peak of current at the primary side #.

Figure 22. I(Q) + I(Cres) characteristics.

# Because the Lm/Ls ratio, a not negligible portion of current managed in the transformer's primary should
not be transferred to the load. For this reason, using the formulas for calculate the primary side current
(21& 22), the results will be significantly lower than the tested one see fig 22.

Bulk capacitor C-Bulk.
The relations for design:

[23]  

Where ∆Vo is the accepted voltage ripple

[24]  

Where t_Hold is the requested hold-up time and Vo(min) the minimum voltage for correct operating.

The key points for selecting the bulk capacitor are in sequence: the rated voltage, the capacitance related
to the 100Hz ripple and the Holdup time (on request) see also PFC documentation.

Choose C-bulk (6) = 33µF-450V that involve ±9V voltage ripple without fixing any hold-up time.

Control circuits. 
The control of the output voltage and current has been realized with twice loop using the TSM103 (Dual
amplifier and voltage reference). This component, in addition to an Optic Coupler, allows profiling a full
control of the output both of the voltage and the current profile (see fig.23). The control's parameter for the
frequency variation is the current drown from Rfmin (pin4). See also Device Operation page 3.
Since the control of the output could not be longer ensured in case of a heavy load (because of very low
output voltage e.g.< 5V), at the primary side the current is sensed (by the C17, R26, D12+D13) and as the
signal, filtered and feed to the EN2 of the L6598, exceeds the threshold limit the soft start is reactivated.

-1.5
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-1.0

-0.5

0

0.5

1.0
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D03IN1457
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Figure 23. Output V/I Characteristics.

Miscellaneous.
Few critical points to be considered in design and debugging phases are:
– The frequency accuracy; the actual frequency can be affected by external components (e.g. the preci-

sion of Cosc. and its thermal variation). Moreover, when the Cosc is much low, the stray effects must
be considered (the pin and PCBs capacitance). The oscillator accuracy can be affected if the current
drown from the references (Pin2_Rfstar and pin4-Rfmin) exceeds 100µA. 

– The layout of Pcb and coupled noises: a good criterion for checking the noises is to test the signal at
the Cf(pin3) that should be a symmetric triangular waveform in order to ensure the correct drivers duty.
Another point to be tested is the voltage at Out(pin14) that, during the freewheeling, should not be too
much below ground (few volt). 

Power Factor section.
In spite of the PFC stage should not be strictly necessary for the resonant application, in our design it has
been introduced for the following reasons. 
The front-end stage of conventional off-line converters, consists of a full wave rectifier bridge with a ca-
pacitor filter, gets an unregulated DC bus from the AC mains. Therefore the instantaneous line voltage is
below the voltage on the capacitor most of the time, thus the rectifiers conduct only for a small portion of
each line half-cycle. The current drawn from the mains is then a series of narrow pulses whose amplitude
is 5-10 times higher than the resulting DC value.
Lots of drawbacks result from that: much higher peak and RMS current drawn from the line, distortion of
the AC line voltage, over currents in the neutral line of the three-phase systems and, after all, a poor utili-
zation of the power system's energy capability.
This can be measured in terms of either Total Harmonic Distortion (THD), as norms provides for, or Power
Factor (PF), intended as the ratio between the real power (the one transferred to the output) and the ap-
parent power (RMS line voltage times RMS line current) drawn from the mains, which is more immediate.
A traditional input stage with capacitive filter has a low PF (0.5-0.7) and a high THD (> 100%).
The International norms and standard requirements have spurred the design of high power factor. 
For these reasons power factor corrector (PFC) is now diffusing in off-line power management. With a high
power factor switching pre regulator, interposed between the input rectifier bridge and the bulk filter ca-
pacitor, the power factor will be improved (up to 0.99). The current capability is increased; the bulk capac-
itor peak current and the harmonic disturbances are reduced.
Moreover, the PFC with its pre regulated high voltage bus, provides an important advantage, because op-
erating at fixed DC input, it makes much easier the resonant converter to be controlled.
The L6561 is an integrated controller dedicated to PFC stage by using the transition mode technique and
is optimized for low to medium power applications.

18V

V_Out/2

I_Out 3.8A

TWICE
FBACK

RS

VO

V_LOOP

I_LOOP
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The PFC section of the present application has been designed to pre regulate 400V and to deliver 80W. 
The AC mains voltage can range from 85V to 264 V.
For a detailed description of the L6561 operation, refer to AN966.

Evaluation result.
The demo board has been evaluated in two different modes. The first evaluation (see table_01) has been
done for the resonant converter section (not included the PFC pre regulator circuit) at two different output
power levels. 
In practice the resonant converter has been supplied using a 400V DC power supply and it has been eval-
uated its efficiency.

Table 1. 
Input supply Voltage = +400 VDC

The second evaluation (see Table 2) has been done for the entire application circuit, including the PFC.
The load has been changed as in the first evaluation (3.8A and 2A), moreover it have been set four sig-
nificant values of the mains voltage according to the requested wide range.  

Table 2a. 
Output loaded @ 3.8A.

Table 2b. 
Half load (@ 2A).

Pin=72W Vo=17.8V Io=3.8A Po=67.64 n=93.9%

Pin=39W Vo=17.8V Io=2A Po=35.6 n=91.3%

Vin=88Vac Pin=77.5W Vo=17.8V Io=3.8A Po=67.64 n=87.3%

Vin=110Vac Pin=76.35W Vo=17.8V Io=3.8A Po=67.64 n=88.6%

Vin=220Vac Pin=74.7W Vo=17.8V Io=3.8A Po=67.64 n=90.5%

Vin=255 Vac Pin=74.4W Vo=17.8V Io=3.8A Po=67.64 n=91%

Vin=88Vac Pin=41W Vo=17.82V Io=2A Po=35.64 n=86.93%

Vin=110Vac Pin=40.5W Vo=17.82V Io=2A Po=35.64 n=88%

Vin=220Vac Pin=40.3W Vo=17.82V Io=2A Po=35.64 n=88.4%

Vin=255 Vac Pin=40.3W Vo=17.82V Io=2A Po=35.64 n=88.4%
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APPENDIX A. 
A practical way to handle the resonant components is to adopt the normalized voltage and current.
The minimum operative frequency has been set at 65kHz. This frequency can be considered a good com-
promise for holding the transformer's magnetic set low size and to avoid the high frequency problems (e.g.
skin effect, switching losses and so on).

Let us fix the normalized out put voltage M = 0.98  

Assume normalized operating current as J = 0.2 

Where: Ro is characteristic impedance =  

The resonant Zo can be calculated as    Zo = 120
   

– The resonant capacitor will be: 

– The resonant Inductance  

REFERENCES:

[1] A Comparison of Half-Bridge Resonant Converter Topologies.
ROBERT L. STEIGERWALD,
IEEE Transactions on Power Electronics. April 1988.

[2] Small signal ac equivalent circuit modeling of the series resonant converter.
Arthur F. Witulski ; Robert W. Erickson IEEE Power Electronics Specialist Conference 1987

[3] Analysis and Design of LCL-Type Series Resonant Converter.
By Ashoka K.S. Bhat,
IEEE Transactions on Industrial Electronics. February 1994.

[4] Design Optimization for an LCL-Type Series Resonant Converter
M. B. Borage, S.R. Tiwari and S. Kotaiah; Power Supplies Division - Center for Advanced Technology
Indore, India
www.powerpulse.net/powerpulse/archive/aa_030501a1.stm

[5] Application note: AN966; AN1300
STMicroelectronics  

M
Vo n⋅

Vin max( )
2

----------------------

----------------------≅

 
 
 
 
 

J
Io Ro⋅

n
Vin max( )

2
----------------------⋅

------------------------------≅

 
 
 
 
 

Lr
Cr
------

Zo

Vin

2
-------- 
 

2
J M⋅ ⋅

Vo Io⋅
----------------------------------=

Cr
1

Zo ω⋅
---------------         Cr

1

110 2π 65 10
3⋅ ⋅ ⋅

---------------------------------------------- 20nF≅ ≅≅

Lr
Zo

ω
------         Lr 110

2π 65 10
3⋅ ⋅

-------------------------------- 295µH≅ ≅≅



Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners

© 2004 STMicroelectronics - All rights reserved

STMicroelectronics GROUP OF COMPANIES
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - 

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com

24/24

AN1673 APPLICATION NOTE

The present note which is for guidance only, aims at providing customers with information regarding their products in
order for them to save time. As a result, STMicroelectronics shall not be held liable for any direct, indirect or
consequential damages with respect to any claims arising from the content of such a note and/or the use made by
customers of the information contained herein in connection with their products.


