
September 2013 Doc ID 023294 Rev 2 1/32

AN4124
Application note

Using SPC56EL60x fault collection and control unit (FCCU)

Introduction
This application note describes in detail how to use the main features of the SPC56EL60x
fault collection and control unit module (FCCU).

The fault collection and control unit offers a redundant hardware channel to collect errors
and, as soon as a failure is detected, to lead the device to a safety state in a controlled way.
No CPU intervention is required for collection and control operation.

The FCCU circuitry is checked at start-up (after boot) by the self-checking procedure. The
FCCU is operative with a default configuration (without CPU intervention) immediately after
the completion of the self-checking procedure.

Two classes of faults are identified based on the criticity and the related reactions.

Internal (that is, short or long functional reset, interrupt request) and external (EOUT
signaling) reactions are statically defined or programmable based on the fault criticity.

The default configuration can be modified only in a specific FCCU state for
application/test/debugging purposes.

www.st.com

http://www.st.com

Contents AN4124

2/32 Doc ID 023294 Rev 1

Contents

1 FCCU main features . 6

2 HW/SW recoverability fault . 7

3 Fault dual path: FCCU and RGM . 8

3.1 RGM module . 8

4 Fault: CF and NCF . 9

4.1 Critical fault (CF) . 9

4.2 Non-critical fault (NCF) .11

5 FCCU settings . 13

5.1 Example 1: FCCU critical fault injection (no NMI assertion) 13

5.1.1 FCCU init . 14

5.2 Example 2: FCCU critical fault injection (NMI assertion) 15

5.2.1 FCCU init . 16

5.3 Example 3: FCCU - Non-critical fault injection . 16

5.4 LOCK FCCU configuration . 18

5.5 Hardware: XPC56XL minimodule . 18

Appendix A Redundancy and functions. 19

A.1 Path redundancy on critical error reaction. 19

A.2 General purpose function . 21

A.2.1 Config state. 21

A.2.2 Normal state . 21

A.2.3 Lock FCCU . 21

A.2.4 Read status register . 21

A.2.5 Clear fault . 22

A.2.6 Clear all critical faults . 23

A.2.7 Clear all Non-critical faults . 23

A.2.8 Read FCCU - state machine. 24

A.2.9 Non-critical fault - enable . 24

A.2.10 NCF - normal to alarm - read state . 25

A.2.11 NCF - normal to alarm - clear state . 25

AN4124 Contents

Doc ID 023294 Rev 1 3/32

A.2.12 IRQ status. 25

A.3 General purpose functions . 26

A.3.1 Example N1: fake NCF by external IRQ . 26

A.3.2 Example N2: fake CF by external IRQ . 28

Appendix B Further information . 30

B.1 Acronyms . 30

Revision history . 31

List of tables AN4124

4/32 Doc ID 023294 Rev 1

List of tables

Table 1. RGM_FES register . 8
Table 2. Critical fault . 9
Table 3. Non-critical fault . 11
Table 4. Acronyms . 30
Table 5. Document revision history . 31

AN4124 List of figures

Doc ID 023294 Rev 1 5/32

List of figures

Figure 1. FCCU state machine . 6
Figure 2. XPC56EL minimodule. 18
Figure 3. Dual path faults. 19
Figure 4. RGM/FCCU – no dual path faults . 19
Figure 5. RGM/FCCU – dual path faults (critical faults) . 20
Figure 6. RGM/FCCU – dual path faults (Non-critical Faults) . 20
Figure 7. XPC56xxMB mother board . 26
Figure 8. NCF injection flow. 27
Figure 9. CF injection flow . 29

FCCU main features AN4124

6/32 Doc ID 023294 Rev 2

1 FCCU main features

The FCCU features are:

● The fault control and collection unit (FCCU) is a hardware IP providing a central
capability to control and collect faults reported by individual modules of the SoC.

● Faults are reported to the outside world via output pin(s), if no recovery is provided by
SoC. No internal actions (such as IRQ, Reset) can be taken.

● The operation of the fault collection unit is independent of the CPU, so the FCCU
provides a fault reporting mechanism even if the CPU is malfunctioning.

● The fault control and collection unit is developed specifically to increase the level of the
safety of the system and ECU.

● The FCCU allows a redundant path to the RGM to enter failsafe mode in case of error.

Below Figure 1 FCCU-SM (state machine):

Figure 1. FCCU state machine

AN4124 HW/SW recoverability fault

Doc ID 023294 Rev 2 7/32

2 HW/SW recoverability fault

In general, the following definitions are applicable to fault management:

● HW recoverable fault: the fault indication is a level sensitive signal that is asserted until
the cause of the fault is removed. Typically the fault signal is latched in an external
module to the FCCU. The FCCU state transitions are consequently executed on the
state changes of the input fault signal (fccu_cf[] or fccu_ncf[]). No SW intervention in
the FCCU is required to recover the fault condition.

● SW recoverable fault: the fault indication is a signal asserted without a defined time
duration. The fault signal is resynchronized and latched in the FCCU. The fault
recovery is executed following a SW recovery procedure (status/flag register clearing).

The following types of reset are applicable:

● Destructive reset: any type of reset related to a power failure condition that implies a
complete system reinitialization

● Long functional reset: implies FLASH and digital circuitry (with some exceptions,
including FCCU, STCU) initialization

● Short functional reset: implies digital circuitry (with some exceptions, including FCCU,
STCU) initialization

Fault dual path: FCCU and RGM AN4124

8/32 Doc ID 023294 Rev 2

3 Fault dual path: FCCU and RGM

Due to the dual path, many faults (critical and not) reach the RGM and FCCU.

NMI can be mapped in RAM. For this reason the NMI is cleared after RESET condition.

In general, when a fault occurs, if it is mapped on RGM and FCCU, the RGM generates a
RESET, independently of FCCU settings. After RESET (generated by fault) the system is in
SAFE state. Looking in the FCCU CFSx status register (by procedure), it may recognize the
fault, and react to it. After fault recovery the system transition can be: SAFE => RUN.

If the fault is mapped only on FCCU (as CF[20]), when it occurs the system resets or
generates an NMI assertion, depending on FCCU settings. In RESET case, the FCCU
generates a RESET by RGM.

Since the system stays in SAFE state, it does nothing. After the system transitions from
SAFE to RUN (and fault is set), the system unmasks the NMI. By NMI ISR it is possible to
clear the fault state registers.

3.1 RGM module
The reset generation module (MC_RGM) centralizes the different reset sources and
manages the reset sequence of the device.

Table 1 shows the RGM_FES (Functional Event Status) register bitmap.

Table 1. RGM_FES register

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R

F
_E

X
R

F
_F

C
C

U
_H

A
R

D

F
_F

C
C

U
_S

O
F

T

F
_S

T
_D

O
N

E

F
_C

M
U

12
_F

H
L

F
L_

E
C

C
_R

C
C

F
_P

LL
1

F
_S

W
T

F
_F

C
C

U
_S

A
F

E

F
_C

M
U

0_
F

H
L

F
_C

M
U

0_
C

LR

F
_P

LL
0

F
_C

W
D

F
_S

O
F

T

F
_C

O
R

E

F
_J

TA
G

W w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c w1c

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

AN4124 Fault: CF and NCF

Doc ID 023294 Rev 2 9/32

4 Fault: CF and NCF

The FAULT state has a higher priority than the ALARM state, in the case of concurrent fault
events (critical and non-critical) that occur in the NORMAL state. In case of concurrent
critical faults, the fault reaction corresponds to the worst case (for example, a long functional
reset is asserted if it has been programmed).

The ALARM to FAULT state transition occurs if a fault (unmasked and with time-out
disabled) is asserted in the ALARM state.

Any critical fault (programmed to react with a hard or soft reaction) that occurs when the
FCCU is already in the FAULT state causes an immediate hard or soft reaction (long or short
functional reset).

The ALARM to NORMAL state transition occurs only if all the non-critical faults (including
the faults that have been collected after entry to ALARM state) have been cleared (SW or
HW recovery). Otherwise the FCCU will remain in the ALARM state.

The FAULT to NORMAL state transition occurs only if all the critical and non-critical faults
(including the faults that have been collected after entry to FAULT/ALARM state) have been
cleared (SW or HW recovery). Otherwise the FCCU remains in the FAULT state (if any
critical fault is still pending) or returns to the ALARM state (if any non-critical fault is still
pending and the time-out has not elapsed).

4.1 Critical fault (CF)
Below is the CF table:

Table 2. Critical fault

Critical fault Source Signal
Short/long/non
e default func.

reset

Set/clear
injection

CF[0] RCCUO[0] rcc_out Long X

CF[1] RCCU1[0] rcc_out Long X

CF[2] RCCUO[1] rcc_out Long X

CF[3] RCCU1[1] rcc_out Long X

CF[4] RCCUO[2] rcc_out Long X

CF[5] RCCU1[2] rcc_out Long X

CF[6] RCCUO[3] rcc_out Long X

CF[7] RCCU1[3] rcc_out Long X

CF[8] RCCUO[4] rcc_out Long X

CF[9] RCCU1[4] rcc_out Long X

CF[10] RCCUO[5] rcc_out Long X

CF[11] RCCU1[5] rcc_out Long X

CF[12] RCCUO[6] rcc_out Long X

Fault: CF and NCF AN4124

10/32 Doc ID 023294 Rev 2

CF[13] RCCU1[6] rcc_out Long X

CF[14] SWT_0 Software watchdog timer Long —

CF[15] SWT_1 Software watchdog timer Long —

CF[16] MCM_NCE_0 ECC not correctable error Long —

CF[17] MCM_NCE_1 ECC not correctable error Long —

CF[18] ADC_CF_0 Internal self test (critical fault) —
X (by ADC
itself)

CF[19] ADC_CF_1 Internal self test (critical fault) —
X (by ADC
itself)

CF[20] STCU_CF Bist results (critical faults) — X

CF[21] LVD_HVD_ 1.2V
LVD/HVD BIST failure result in test
mode

— X

CF[22] SSCM_XFER_ERR
SSCM transfer error (during the
STCU config loading)

— —

CF[23] LSM_DPM_ERR0 LSM <-> DPM runtime switch Long X

CF[24] LSM_DPM_ERR1 LSM <-> DPM runtime switch Long X

CF[25] — — — —

CF[26] — — — —

CF[27] STCU
STCU fault condition (run in
application mode)

Long —

CF[28] DFT0
Combination of safety critical signals
from Test Control Unit (TCU)

Long —

CF[29] DFT1
Combination of safety critical signals
from Test Control Unit (TCU)

Long —

CF[30] DFT2
Combination of safety critical signals
from Test Control Unit (TCU)

Long —

CF[31] DFT3
Combination of safety critical signals
from Test Control Unit (TCU)

Long —

Table 2. Critical fault (continued)

Critical fault Source Signal
Short/long/non
e default func.

reset

Set/clear
injection

AN4124 Fault: CF and NCF

Doc ID 023294 Rev 2 11/32

4.2 Non-critical fault (NCF)
Table 3 is about the NCF table:

Table 3. Non-critical fault

Non-
critical
fault

Source Signal
Short/long/

none default
func reset

Fault
management

Polarity
Set/clear
injection

NCF[0]
Core_0
watchdog

p_wrs[0] Long latched High —

NCF[1]
Core_0
watchdog

p_wrs[1] Long latched High —

NCF[2] FM_PLL_0 Loss of lock Long latched High —

NCF[3] FM_PLL_1 Loss of lock Long latched High —

NCF[4] CMU_0 Loss of XOSC clock Long latched High —

NCF[5] CMU_0 Sysclk frequency out of range Long latched High —

NCF[6] CMU_1
MOTC_CLK frequency out of
range

Long latched High —

NCF[7] CMU_2
FRPE_CLK frequency out of
range

Long latched High —

NCF[8] MCM_ECN_0
ECC 1-bit error correction
notification

— latched High —

NCF[9] MCM_ECN_1
ECC 1-bit error correction
notification

— latched High —

NCF[10] ADC_NCF_0
Internal self test (Non-critical
fault)

— latched High
X (by ADC

itself)

NCF[11] ADC_NCF_1
Internal self test (Non-critical
fault)

— latched High
X (by ADC

itself)

NCF[12] STCU_NCF
Bist results (Non-critical
faults)

— latched High X

NCF[13] LVD_ 1.2V
LVD BIST OK in test mode/
LVD NOK in user mode

— latched High X

NCF[14] HVD_ 1.2V
HVD BIST OK in test mode/
HVD NOK in user mode

— latched High X

NCF[15] LVD VREG
LVD VREG fault detected by
self-checking

— latched High X

NCF[16] LVD FLASH
LVD FLASH fault detected by
self-checking

— latched High X

NCF[17] LVD IO
LVD IO fault detected by self-
checking

— latched High X

NCF[18] PMU
Comparator fault detected by
self-checking

— latched High —

NCF[19] FLEXR_ECN
ECC 1-bit error correction
notification

— latched High —

Fault: CF and NCF AN4124

12/32 Doc ID 023294 Rev 2

NCF[20] FLEXR_NCE ECC not correctable error — latched High —

NCF[21] MC_ME Software device reset — latched High —

NCF[22] BP_BALLAST0 Bypass Ballast0 — latched High —

NCF[23] BP_BALLAST1 Bypass Ballast1 — latched High —

NCF[24] BP_BALLAST2 Bypass Ballast2 — latched High —

NCF[25] — — — — — —

NCF[26] — — — — — —

NCF[27] — — — — — —

NCF[28] — — — — — —

NCF[29] — — — — — —

NCF[30] — — — — — —

NCF[31] — — — — — —

Table 3. Non-critical fault (continued)

Non-
critical
fault

Source Signal
Short/long/

none default
func reset

Fault
management

Polarity
Set/clear
injection

AN4124 FCCU settings

Doc ID 023294 Rev 2 13/32

5 FCCU settings

Normally the FCCU is configured at start up. In any case, it is possible to manage some
registers only in CONFIG state (according to IP Specification Block guide).

5.1 Example 1: FCCU critical fault injection (no NMI assertion)
We show the FCCU functionality by means of an example which uses fault injection (with
fake funtionality), in order to show the FCCU reaction. The example is without NMI
assertion. The fault is checked and cleared by looking in the CFSx registers.

Example description

● Put FCCU in CONFIG state: set registers

● Return to NORMAL state by means of a procedure or by allowing timer out to elapse

● Inject (fake) faults

● After RESET (by RGM), verify, in SAFE state (without NMI), which fault was detected
(FCCU_CFS0 register)

● Clear the FCCU_CFS0 register (by suitable procedure)

Example procedure

● After reset the FCCU automatically enters NORMAL state.

● Configure FCCU in CONFIG with Dual-rail Encoding Protocol.

– Write the key to the FCCU_CTRLK register [OP1].

– Write the FCCU_CTRL register (operation OP1).

● Emulate all (fake) SW/HW faults.

– FCCU_CFG: (Configuration Register)

– SM = 1 (EOUT protocol (dual-rail, time-switching) fast switching mode)

– PS = 1 (fcc_eout[1] active low, fcc_eout[0] active low)

– FOM = 000 (Fault Output Mode selection = Dual-Rail (default state)
[fccu_eout[1:0] = outputs])

– FOP=0 (Fault Output Prescaler = Input clock frequency (ipg_clk_safe clock) is
divided by 2048)

● Enter NORMAL state.

– Write the key into the FCCU_CTRLK register [OP2].

– Write the FCCU_CTRL register (operation OP2).

● Set fault by FCCU_CFF registers (RESET assertion by RGM).

● Read and verify FCCU_CFS0..3 by means of procedure (NMI was masked).

● Clear HW/SW faults from FCCU_CFS0..3 by means of procedure.

FCCU settings AN4124

14/32 Doc ID 023294 Rev 2

Code

After the core initialization in main function the code is (NMI masked):

if (ME.GS.B.S_CURRENT_MODE == 2){ /* SAFE MODE */
if((FCCU_Clear_CRITICAL_Fault()) == PASS){
 /* Test PASS */
}else{

while(1); /* Test FAIL */
}

}else{ /* DRUN MODE */
/* ----------------- Test INIT --------------------- */
if((tc0_INIT()) == PASS){

/* ----------------- Fake Fault --------------------- */
FCCU.CFF.R = 0; /* First Fault injection */

}else{
 while(1); /* Test FAIL */
}
/* -----------------END Test INIT --------------------- */

}

Description

At the beginning the microcontroller is in DRUN mode, the “else” condition is asserted, by
tc0_INIT procedure. In the tc0_INIT, the FCCU will be configured. When the injection fault is
asserted (FCCU.CFF.R = 0), the system will reset. After the start up, in main function the
system is in SAFE mode (the NMI is masked). Then the “if” condition is asserted, and all
faults are cleared.

5.1.1 FCCU init

uint16_t tc0_INIT(void){
/* ----------------- CONFIG State --------------------- */
FCCU_CONFIG_STATE();/* CONFIG state */
FCCU.CFG.B.SM = 1; /* EOUT protocol (dual-rail, time-switching)

fast switching mode*/
FCCU.CFG.B.PS = 1; /* fcc_eout[1] active low, fcc_eout[0] active low */
FCCU_CFG_FOM_Config(CFG_FOM0); /* CFG_FOM0 = Dual-Rail (default state)

[fccu_eout[1:0]= outputs] */
FCCU_CFG_FOP_Config(0); * Fault Output Prescaler= Input clock frequency

(ipg_clk_safe clock) is divided by 2 x 1024 */

/* ----------------- NORMAL State --------------------- */
 FCCU_NORMAL_STATE(); /* NORMAL state */

return(PASS);
}

AN4124 FCCU settings

Doc ID 023294 Rev 2 15/32

5.2 Example 2: FCCU critical fault injection (NMI assertion)
In this example we show the fault injection (with fake funtionality), in order to show an FCCU
reaction. The example is with NMI assertion. The fault is checked and cleared inside the
NMI subroutine by looking in the CFSx registers.

Example description

● Put FCCU in CONFIG state: set registers.

● Return to NORMAL state: by means of procedure or by allowing timer out to elapse.

● Inject (fake) faults.

● Verify that in SAFE state (NMI management), and that fault is detected (FCCU_CFS0
register).

● Clear the FCCU_CFS0 register (by suitable procedure).

Example procedure

● After the reset the FCCU automatically enters NORMAL state.

● Configure FCCU in CONFIG with Dual-rail Encoding Protocol.

– Write the key to the FCCU_CTRLK register [OP1].

– Write the FCCU_CTRL register (operation OP1).

● Emulate all (fake) SW/HW faults.

– FCCU_CFG_TO = 0x7 (Set Timer Out)

– FCCU_CFG: (Configuration Register)

– SM = 1 (EOUT protocol (dual-rail, time-switching) fast switching mode)

– PS = 1 (fcc_eout[1] active low, fcc_eout[0] active low)

– FOM = 000 (Fault Output Mode selection = Dual-Rail (default state)
[fccu_eout[1:0] = outputs])

– FOP = 0 (Fault Output Prescaler= Input clock frequency (ipg_clk_safe clock) is
divided by 2048)

– FCCU_CFS_CFG0 = 0 (No reset reaction)

● Enter NORMAL state.

– Write the key to the FCCU_CTRLK register [OP2].

– Write the FCCU_CTRL register (operation OP2).

● Set fault by FCCU_CFF registers (no RESET assertion).

● NMI assertion: NMI_ISR managing

● Read and verify FCCU_CFS0..3 by means of procedure.

● Clear HW/SW faults from FCCU_CFS0..3 by means of procedure.

Code

After the core initialization in main function the code is:

if((tc0_INIT()) == PASS){
/* ----------------- Fake Fault --------------------- */
FCCU.CFF.R = 20; /* N. 20 Fault injection */
Delay(10000); /* Dealay */

}else{
/* tc0_INIT - FAILURE */

}

FCCU settings AN4124

16/32 Doc ID 023294 Rev 2

Description

First the microcontroller is in DRUN mode, the “if” condition is asserted, by the tc0_INIT
procedure. The FCCU is configured in the tc0_INIT. Next the CF 20 is injected (in order to
generate an NMI, without RESET). When the injection fault is asserted (FCCU.CFF.R = 20),
the system asserts NMI. In NMI ISR the fault is cleared and the system enters RUN mode.

5.2.1 FCCU init

uint16_t tc0_INIT(void){
/* ----------------- CONFIG State --------------------- */

FCCU.CFG_TO.R = 0x7;/* Set Timer Out CCONFIG STATE to 8.192 ms */
FCCU_CONFIG_STATE();/* CONFIG state */
FCCU.CFG.B.SM = 1; /* EOUT protocol (dual-rail, time-switching) fast switching

mode*/
FCCU.CFG.B.PS = 1; /* fcc_eout[1] active low, fcc_eout[0] active low */
FCCU_CFG_FOM_Config(CFG_FOM0); /* CFG_FOM0 = Dual-Rail (default state)

[fccu_eout[1:0]= outputs] */
FCCU_CFG_FOP_Config(0); /* Fault Output Prescaler= Input clock frequency

(ipg_clk_safe clock) is divided by 2 x 1024 */

/* Set the Critical Fault reaction */
FCCU.CFS_CFG0.R = 0; /* No reset reaction */

/* ----------------- NORMAL State --------------------- */
FCCU_NORMAL_STATE();/* NORMAL state */
return(PASS);

}

5.3 Example 3: FCCU - Non-critical fault injection
In this example we show fault injection (with fake funtionality), in order to show an FCCU
reaction. The example is with FAULT_ISR assertion. The fault is checked and cleared in
FAULT_ISR subroutine by looking in the CFSx registers.

Example description

● Put FCCU in CONFIG state: set registers.

● Return to NORMAL state: by means of procedure or by allowing timer out to elapse.

● Inject (fake) faults (NCF N. 12).

● Verify that in RUN state (FAULT_ISR management), and that fault is detected
(FCCU_NCFS0 register).

● Clear the FCCU_NCFS0 register (by suitable procedure).

AN4124 FCCU settings

Doc ID 023294 Rev 2 17/32

Example procedure

● After the reset the FCCU automatically enters NORMAL state.

● Configure FCCU in CONFIG with Dual-rail Encoding Protocol.

– Write the key to the FCCU_CTRLK register [OP1].

– Write the FCCU_CTRL register (operation OP1).

● Emulate all (fake) SW/HW faults.

– FCCU_CFG_TO=0x7 (Set Timer Out)

– FCCU_CFG: (Configuration Register)

– SM=1 (EOUT protocol (dual-rail, time-switching) fast switching mode)

– PS=1 (fcc_eout[1] active low, fcc_eout[0] active low)

– FOM=000 (Fault Output Mode selection= Dual-Rail (default state) [fccu_eout[1:0]=
outputs])

– FOP=0 (Fault Output Prescaler= Input clock frequency (ipg_clk_safe clock) is
divided by 2 x 1024)

– FCCU_NCFS_CFG0 = 0 (No reset reaction)

– FCCU_NCFE0 = 0xFFFFFFFF; (Enable FCCU to move to ALARM or FAULT
State)

– FCCU_NCF_TOE0 = 0xFFFFFFFF; (FCCU moves into the ALARM state if the
respective fault is enabled (NCFEx is set))

– FCCU_NCF_TO = 0xFFFFFFFF; (Non-critical fault time-out)

● Enter NORMAL state.

– Write the key to the FCCU_CTRLK register [OP2].

– Write the FCCU_CTRL register (operation OP2).

● Set fault by FCCU_NCFF registers (NCF N. 12).

● ISR assertion: FAULT_ISR managing (ISR N. 250)

● Read and verify FCCU_NCFS0..3 by means of procedure.

● Clear HW/SW faults from FCCU_NCFS0..3 by means of procedure.

Code

After the core initialization in main function the code is:

if((tc1_INIT()) == PASS){
/* ----------------- Fake NCF Fault --------------------- */
FCCU.NCFF.R = 12; /* N. 12 NCF Fault injection */
Delay(10000); /* Delay */

}else{
/* tc1_INIT - FAILURE */

}

Description

At the beginning the micro is in DRUN mode. The FCCU is configured in the tc1_INIT. Next
the NCF 12 is set. When the injection fault is asserted (FCCU.NCFF.R = 12), the system
asserts FAULT ISR. In FAULT ISR the fault is cleared and the system enters RUN mode.

FCCU settings AN4124

18/32 Doc ID 023294 Rev 2

5.4 LOCK FCCU configuration
The configuration state is used to modify the default configuration of the FCCU only. A sub-
set of the FCCU registers, dedicated to defining the FCCU configuration (global
configuration, reactions to fault, time-out, non-critical fault masking), can be accessed in
write mode, in the CONFIG state only.

The CONFIG state is accessible in NORMAL state only and only if the configuration is not
locked. The configuration lock can be disabled only by a global reset of the FCCU. To lock
the FCCU see Section A.2.3 0 function.

5.5 Hardware: XPC56XL minimodule
The examples are executed by XPC56EL minimodule, using the motherboard. The
motherboard provides common functionality used in most applications, such as serial
communication interface, CAN transceivers, SPI bus, I/O pins, power supply, buttons and
LEDs. The minimodule provides a minimum setup for the microprocessor, for example,
socket for the processor, crystal oscillator and debug interface. Figure 2 displays the
XPC56XL minimodule layout.

Figure 2. XPC56EL minimodule

GAPGCFT00698

AN4124 Redundancy and functions

Doc ID 023294 Rev 2 19/32

Appendix A Redundancy and functions

A.1 Path redundancy on critical error reaction
All faults detected are reported to the central Fault Collection and Control Unit (FCCU) and
RGM. Depending on the particular fault, the FCCU puts the device into the appropriate
configured Fail-Safe state. This prevents propagation of faults to system level.

Critical errors detected normally are forwarded independently by each channel to RGM and
FCCU. The state of the RGM is forwarded to the FCCU. The FCCU forwards an additional
reset request to the RGM. This strategy is used as it drastically decreases the common
mode failure on the Reset path.

Figure 3. Dual path faults

For some faults:

● The fault is triggered to the FCCU.

● FCCU reacts independently of the RGM.

● Fault reaction depends on the FCCU settings.

Figure 4. RGM/FCCU – no dual path faults

Redundancy and functions AN4124

20/32 Doc ID 023294 Rev 2

For some faults (Critical Faults):

● RGM and FCCU react to the fault independently.

● RGM resets the device (LR).

– FCCU is not reset by RGM reset.

● FCCU takes some action depending on the configuration.

– FCCU signals the fault externally.

– after the reset the device enters SAFE mode.

– NMI

Figure 5. RGM/FCCU – dual path faults (critical faults)

For some faults (Non-critical Faults):

● RGM and FCCU react to the fault independently/

● RGM reaction is configurable.

– IRQ

● FCCU takes some action depending on the configuration.

– FCCU waits for the NCF timeout.

– FCCU signals the fault externally.

– device enters SAFE mode

– NMI

Figure 6. RGM/FCCU – dual path faults (Non-critical Faults)

AN4124 Redundancy and functions

Doc ID 023294 Rev 2 21/32

A.2 General purpose function
Below are some general purpose functions, settinf and clearing registers.

A.2.1 Config state

uint32_t FCCU_CONFIG_STATE(void){

 /* ----------------- CONFIG State --------------------- */
 FCCU.CTRLK.R = CTRLK_OP1; /* Key for the operation OP1 */
 FCCU.CTRL.R = CTRL_OPR1; /* Set the FCCU into the CONFIG state [OP1] */
 while(FCCU.CTRL.B.OPS != CTRL_OPS3); /* wait for the completion of the

operation */

 return 1;
}

A.2.2 Normal state

uint32_t FCCU_NORMAL_STATE(void){

 /* ----------------- NORMAL State --------------------- */
 FCCU.CTRLK.R = CTRLK_OP2; /* Key for the operation OP2 */
 FCCU.CTRL.R = CTRL_OPR2; /* Set the FCCU into the NORMAL state [OP2] */
 while(FCCU.CTRL.B.OPS != CTRL_OPS3); /* wait for the completion of the

operation */
 return 1;
}

A.2.3 Lock FCCU

uint32_t FCCU_LOCK(void){

 /* ----------------- NORMAL State --------------------- */
 FCCU.CTRLK.R = CTRLK_OP16; /* Key for the operation OP16 */
 FCCU.CTRL.R = CTRL_OPR2; /* Lock the FCCU configuration [OP16] */
 while(FCCU.CTRL.B.OPS != CTRL_OPS3); /* wait for the completion of the

operation */
 return 1;
}

A.2.4 Read status register

uint32_t FCCU_CFS_Read(uint32_t CFS_number, uint32_t* CFS_Value){
 uint32_t exit_value= 0;/* Returned value = ERROR */
 uint32_t Reg_Selection = 0;/* Register Selection [0..3] */

 if (CFS_number <= 127){

FCCU.CTRL.B.OPR = CTRL_OPR9; /* Set the OP9 */
while(FCCU.CTRL.B.OPS != CTRL_OPS3); /* wait for the completion of the

operation */
Reg_Selection = (CFS_number/32); /* INT(CFS_number/32)*/
switch (Reg_Selection){

 case 0 : *CFS_Value = (FCCU.CFS0.R >> (CFS_number%32)) & 1;
/* Read the critical fault latched state */

 break;
 case 1 : *CFS_Value = (FCCU.CFS1.R >> (CFS_number%32)) & 1;

/* Read the critical fault latched state */
 break;

 case 2 : *CFS_Value = (FCCU.CFS2.R >> (CFS_number%32)) & 1;

Redundancy and functions AN4124

22/32 Doc ID 023294 Rev 2

/* Read the critical fault latched state */
 break;

 case 3 : *CFS_Value = (FCCU.CFS3.R >> (CFS_number%32)) & 1;
/* Read the critical fault latched state */

 break;
 default: *CFS_Value = (FCCU.CFS3.R >> (CFS_number%32)) & 1;

/* Read the critical fault latched state */
 break;
}
exit_value = 1; /* Returned value = SUCCESS */

 }
 else {

 /* ERROR*/
 };
 return(exit_value);
}

A.2.5 Clear fault

uit32_t FCCU_CFS_Clear(uint32_t CFS_number){
uint32_t exit_value= 0; /* Returned value = ERROR */
uint32_t Reg_Selection = 0; /* Register Selection [0..3] */
uint32_t Support = 0; /* Support variable */
uint32_t CFS_Value;

if (CFS_number <= 127){
Reg_Selection = (CFS_number/32); /* INT(CFS_number/32)*/
switch (Reg_Selection){
 case 0 : Support = FCCU.CF_CFG0.R;

 break;
 case 1 : Support = FCCU.CF_CFG1.R;

 break;
 case 2 : Support = FCCU.CF_CFG2.R;

 break;
 case 3 : Support = FCCU.CF_CFG3.R;

 break;
 default: Support = FCCU.CF_CFG3.R;

 break;
}
Support = (Support >> (CFS_number%32)) & 0x1;
if (Support == CFG_SW){ /* SW recoverable fault*/
 do{

switch (Reg_Selection){
 case 0 : FCCU.CFK.R = CFK_Key; /* set the Critical fault key */

 FCCU.CFS0.R = (uint32_t) (1 << (CFS_number%32));
/* reset the critical fault state */

 break;
 case 1 : FCCU.CFK.R = CFK_Key; /* set the Critical fault key */

 FCCU.CFS1.R = (uint32_t) (1 << (CFS_number%32));
/* reset the critical fault state */

 break;
 case 2 : FCCU.CFK.R = CFK_Key; /* set the Critical fault key */

 FCCU.CFS2.R = (uint32_t) (1 << (CFS_number%32));
/* reset the critical fault state */

 break;
 case 3 : FCCU.CFK.R = CFK_Key; /* set the Critical fault key */

 FCCU.CFS3.R = (uint32_t) (1 << (CFS_number%32));
/* reset the critical fault state */

 break;
 default: FCCU.CFK.R = CFK_Key; /* set the Critical fault key */

 FCCU.CFS3.R = (uint32_t) (1 << (CFS_number%32));
/* reset the critical fault state */

AN4124 Redundancy and functions

Doc ID 023294 Rev 2 23/32

 break;
}
while(FCCU.CTRL.B.OPS != CTRL_OPS3); /* wait for the completion of

the operation */
if (FCCU_CFS_Read(CFS_number, &CFS_Value)){
 if (CFS_Value == 0){

exit_value = 1; /* Returned value = SUCCESS */
 }
}

 }while(CFS_Value==1);
}
else {
 /* HW recoverable fault*/
}

 };
 return(exit_value);
}

A.2.6 Clear all critical faults

uint16_t FCCU_Clear_CRITICAL_Fault(void){
 tU32 CFS_Value;
 uint8_t tc0_error = 0;/* Error counter */

for(Num_Fault = 0;Num_Fault <= 24; Num_Fault++){ /* Num_Fault <= 24 */
/* ----------------- Read State --------------------- */
if(FCCU_CFS_Read(Num_Fault, &CFS_Value)){
 if (CFS_Value == 1){/* The fault was latched correctly */

if((RGM.FES.R & 0x0080) == 0x0080){
/* Retun from FCCU SAFE mode reset */
FCCU_CFS_Clear(Num_Fault); /* Clear the fault by procedure */
RGM.FES.R = 0xFFFF; /* Clear FER register */
ME.MCTL.R = (DRUN_MODE << 28 | 0x00005AF0); /* Mode & Key */
ME.MCTL.R = (DRUN_MODE << 28 | 0x0000A50F); /* Mode & Key *
/* Wait for mode entry to complete */
while(ME.GS.B.S_MTRANS==1);
/* Check DRUN mode has been entered */
while(ME.GS.B.S_CURRENT_MODE!=DRUN_MODE);
tc0_error = 0; /* Error counter */

}
}else{

/* No fault was latched */
}

}else{
 /* Read State ERROR */
}
}
if(tc0_error == 0)

return(PASS);
return(FAIL);

}

A.2.7 Clear all Non-critical faults

uint16_t FCCU_Clear_NON_CRITICAL_Fault(void){
 tU32 NCFS_Value;
 uint8_t tc1_error = 0;/* Error counter */

for(Num_Fault = 0; Num_Fault <= 24; Num_Fault++){
 /* ----------------- Read State --------------------- */

if(FCCU_NCFS_Read(Num_Fault, &NCFS_Value)){
if (NCFS_Value == 1){/* The fault was latched correctly */

Redundancy and functions AN4124

24/32 Doc ID 023294 Rev 2

 /* Retun from FCCU SAFE mode reset */
 FCCU_NCFS_Clear(Num_Fault); /* Clear the fault */
 RGM.FES.R = 0xFFFF; /* Clear FER register */
 ME.MCTL.R = (DRUN_MODE << 28 | 0x00005AF0);/* Mode & Key */
 ME.MCTL.R = (DRUN_MODE << 28 | 0x0000A50F);/* Mode & Key */
 /* Wait for mode entry to complete */
 while(ME.GS.B.S_MTRANS==1);
 /* Check DRUN mode has been entered */
 while(ME.GS.B.S_CURRENT_MODE!=DRUN_MODE);
 tc1_error = 0; /* Error counter */
 }else{

/* Not NON-Critical fault was latched */
 }

}else{
/* Read State ERROR */

}
}
if(tc1_error == 0)
return(PASS);
return(FAIL);

}

A.2.8 Read FCCU - state machine

uint32_t FCCU_STATUS_Read(uint32_t* STATUS_Value){
uint32_t exit_value= 0; /* Returned value = ERROR */

FCCU.CTRL.B.OPR = CTRL_OPR3; /* Set the OP3 */
while(FCCU.CTRL.B.OPS != CTRL_OPS3); /* wait for the completion of

the operation */
STATUS_Value = FCCU.STAT.R; / Read the STATUS Register */
exit_value = 1; /* Returned value = SUCCESS */
return(exit_value);

}

A.2.9 Non-critical fault - enable

uint32_t FCCU_NCF_Enable(uint32_t NCFE_number, uint32_t NCFE_Value){
uint32_t exit_value= 0; /* Returned value = ERROR */
uint32_t Reg_Selection = 0;/* Register Selection [0..3] */

if (NCFE_number <= 127){
Reg_Selection = (NCFE_number/32); /* INT(NCFE_number/32)*/
if (NCFE_Value == NCFE_En){
 switch (Reg_Selection){

case 0 : FCCU.NCFE0.R |= (uint32_t) (NCFE_En << (NCFE_number%32));
/* Enable the non-critical fault */

 break;
case 1 : FCCU.NCFE1.R |= (uint32_t) (NCFE_En << (NCFE_number%32));

/* Enable the non-critical fault */
 break;

case 2 : FCCU.NCFE2.R |= (uint32_t) (NCFE_En << (NCFE_number%32));
/* Enable the non-critical fault */

 break;
case 3 : FCCU.NCFE3.R |= (uint32_t) (NCFE_En << (NCFE_number%32));

/* Enable the non-critical fault */
 break;

default: FCCU.NCFE3.R |= (uint32_t) (NCFE_En << (NCFE_number%32));
/* Enable the non-critical fault */

 break;
 }
}else{

AN4124 Redundancy and functions

Doc ID 023294 Rev 2 25/32

 switch (Reg_Selection){
case 0 : FCCU.NCFE0.R &= (uint32_t) ~(NCFE_En << (NCFE_number%32));

/* Disable the non-critical fault */
 break;

case 1 : FCCU.NCFE1.R &= (uint32_t) ~(NCFE_En << (NCFE_number%32));
/* Disable the non-critical fault */

 break;
case 2 : FCCU.NCFE2.R &= (uint32_t) ~(NCFE_En << (NCFE_number%32));

/* Disable the non-critical fault */
 break;
case 3 : FCCU.NCFE3.R &= (uint32_t) ~(NCFE_En << (NCFE_number%32));

/* Disable the non-critical fault */
 break;
default: FCCU.NCFE3.R &= (uint32_t) ~(NCFE_En << (NCFE_number%32));

/* Disable the non-critical fault */
 break;

 }
}
};
return(exit_value);

}

A.2.10 NCF - normal to alarm - read state

uint32_t FCCU_NAFS_Read(uint32_t* NAFS_Value){
uint32_t exit_value= 0; /* Returned value = ERROR */

FCCU.CTRL.B.OPR = CTRL_OPR4; /* Set the OP4 */
while(FCCU.CTRL.B.OPS != CTRL_OPS3); /* wait for the completion of the

operation */
NAFS_Value = FCCU.NAFS.R; / Read the NAFS latched state */
exit_value = 1; /* Returned value = SUCCESS */
return(exit_value);

}

A.2.11 NCF - normal to alarm - clear state

uint32_t FCCU_NAFS_Clear(void){
uint32_t exit_value= 0; /* Returned value = ERROR */

FCCU.CTRL.B.OPR = CTRL_OPR13; /* Set the OP13 */
while(FCCU.CTRL.B.OPS != CTRL_OPS3); /* wait for the completion of the

operation */
exit_value = 1; /* Returned value = SUCCESS */
return(exit_value);

}

A.2.12 IRQ status

uint32_t FCCU_IRQ_Status(uint32_t CFG_TO_STAT, uint32_t* ALRM_STAT,
uint32_t* NMI_STAT){

uint32_t exit_value= 0; /* Returned value = ERROR */

if (CFG_TO_STAT == 1){
FCCU.IRQ_STAT.B.CFG_TO_STAT |= 1;/* Clear the Configuration

Time Out Error */
}else{

FCCU.IRQ_STAT.B.CFG_TO_STAT &= ~(1);/* No effect on bit */
}
ALRM_STAT = FCCU.IRQ_STAT.B.ALRM_STAT;/ Read Alarm Interrupt Status */
NMI_STAT = FCCU.IRQ_STAT.B.NMI_STAT;/ Read NMI Interrupt Status */

Redundancy and functions AN4124

26/32 Doc ID 023294 Rev 2

exit_value= 1;
return(exit_value);

}

A.3 General purpose functions
Two examples have been developed to show the features of FCCU. The examples have
been implemented on the XPC56xxMB. The XPC56xxMB was plugged to XPC56EL mini-
module with SPC56ELX 144 pins.

Figure 7. XPC56xxMB mother board

A.3.1 Example N1: fake NCF by external IRQ

In this example we show the NCF fault injection (by external IRQ funtionality), in order to
show an FCCU reaction. The example includes ALARM and NMI ISR assertion. The fault is
checked and cleared with a subroutine by looking in the NCFSx registers.

Two external buttons have been used to inject and clear the NCF (KEY 1 and KEY 2) and
LED1 on the motherboard has been used to view the fault status. To connect the two
buttons to input pins (interrupt), we need to connect J8 pin 1B to JP9 pin 1, and J8 pin 2B to
JP9 pin 2.

GAPGCFT00699

AN4124 Redundancy and functions

Doc ID 023294 Rev 2 27/32

The flow is:

● Press key1: to inject asynchronous external IRQ (ISR)

● External IRQ (ISR)

– Blinking LED1

– Fake NCF

– FCCU STATE = ALARM -> ALARM IRQ (ISR)

● Alarm IRQ (ISR)

– Wait for ALARM-time-out (5 s) or check External push button (KEY2)

● If alarm-timeout

– FCCU STATE = FAULT -> NMI IRQ (without RESET):
– DEVICE STATE = SAFE
– LED1 off
– Clear FCCU FAULT and return to main

● If KEY 2 pressed

– LED1 off

– Clear FCCU FAULT and return to main

Figure 8. NCF injection flow

Redundancy and functions AN4124

28/32 Doc ID 023294 Rev 2

A.3.2 Example N2: fake CF by external IRQ

In this example we show the CF fault injection (by external IRQ funtionality), in order to
show an FCCU reaction. The example includes NMI ISR assertion. The fault is checked and
cleared with subroutine by looking in the CFSx registers.

This example employs the CF external button (KEY 1) to inject and clear, and the LED1 on
the motherboard to view the fault. To connect the button to input pins (interrupt), we need to
connect J8 pin 1B to JP9 pin 1.

The flow is:

● Blink LED1

● Press KEY1: to inject asynchronous external IRQ (ISR)

● External IRQ (ISR)

– Fake CF

– LED1 off

– FCCU STATE = FAULT

– DEVICE STATE = SAFE

– RESET

– NMI IRQ (ISR)

● After RESET: unmask NMI

● NMI IRQ (ISR)

– Clear FCCU FAULT and return to main

AN4124 Redundancy and functions

Doc ID 023294 Rev 2 29/32

Figure 9. CF injection flow

Further information AN4124

30/32 Doc ID 023294 Rev 2

Appendix B Further information

B.1 Acronyms

Table 4. Acronyms

Acronym Name

CRC Cyclic redundancy check

DMA Direct memory access

FCCU Fault control and collection unit

INTC Interrupt controller

MCU Microcontroller unit

PIT Periodic interrupt timer

TCD Transfer control descriptor

AN4124 Revision history

Doc ID 023294 Rev 2 31/32

Revision history

Table 5. Document revision history

Date Revision Changes

02-Aug-2012 1 Initial release.

17-Sep-2013 2 Updated disclaimer.

AN4124

32/32 Doc ID 023294 Rev 2

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

