# **Power MOSFET** 30 V, 67 A, Single N–Channel, μ8FL

## Features

- Low R<sub>DS(on)</sub> to Minimize Conduction Losses
- Low Capacitance to Minimize Driver Losses
- Optimized Gate Charge to Minimize Switching Losses
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

# Applications

- DC-DC Converters
- Power Load Switch
- Notebook Battery Management

## **MAXIMUM RATINGS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise stated)

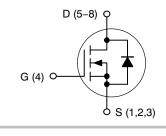
| Paran                                                                                                                                                                                    | Symbol                               | Value                     | Unit             |      |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------|------------------|------|------|
| Drain-to-Source Voltage                                                                                                                                                                  |                                      |                           | V <sub>DSS</sub> | 30   | V    |
| Gate-to-Source Voltage                                                                                                                                                                   |                                      |                           | V <sub>GS</sub>  | ±20  | V    |
| Continuous Drain                                                                                                                                                                         |                                      | T <sub>A</sub> = 25°C     | I <sub>D</sub>   | 18   | А    |
| Current R <sub>0JA</sub> (Note 1)                                                                                                                                                        |                                      | T <sub>A</sub> = 85°C     | 1                | 13   |      |
| Power Dissipation $R_{\theta JA}$ (Note 1)                                                                                                                                               |                                      | T <sub>A</sub> = 25°C     | PD               | 2.16 | w    |
| Continuous Drain                                                                                                                                                                         |                                      | T <sub>A</sub> = 25°C     | I <sub>D</sub>   | 25.6 | А    |
| Current $R_{\theta JA} \le 10 s$ (Note 1)                                                                                                                                                |                                      | T <sub>A</sub> = 85°C     |                  | 18.5 |      |
| Power Dissipation $R_{\theta JA} \leq 10 \text{ s} \text{ (Note 1)}$                                                                                                                     | Steady                               | T <sub>A</sub> = 25°C     | PD               | 4.4  | W    |
| Continuous Drain                                                                                                                                                                         | State                                | T <sub>A</sub> = 25°C     | I <sub>D</sub>   | 11   | А    |
| Current R <sub>0JA</sub> (Note 2)                                                                                                                                                        |                                      | T <sub>A</sub> = 85°C     | 1                | 8    |      |
| Power Dissipation $R_{\theta JA}$ (Note 2)                                                                                                                                               |                                      | T <sub>A</sub> = 25°C     | PD               | 0.81 | W    |
| Continuous Drain                                                                                                                                                                         |                                      | T <sub>C</sub> = 25°C     | I <sub>D</sub>   | 67   | Α    |
| Current R <sub>0JC</sub> (Note 1)                                                                                                                                                        |                                      | T <sub>C</sub> = 85°C     |                  | 49   | 1    |
| Power Dissipation $R_{\theta JC}$ (Note 1)                                                                                                                                               |                                      | T <sub>C</sub> = 25°C     | PD               | 31   | W    |
| Pulsed Drain Current                                                                                                                                                                     | T <sub>A</sub> = 25°                 | C, t <sub>p</sub> = 10 μs | I <sub>DM</sub>  | 166  | A    |
| Operating Junction and S                                                                                                                                                                 | Т <sub>Ј</sub> ,<br>T <sub>stg</sub> | –55 to<br>+150            | °C               |      |      |
| Source Current (Body Diode)                                                                                                                                                              |                                      |                           | ۱ <sub>S</sub>   | 28   | А    |
| Drain to Source dV/dt                                                                                                                                                                    |                                      |                           | dV/dt            | 7    | V/ns |
| Single Pulse Drain-to-Source Avalanche Energy $(T_J = 25^{\circ}C, V_{DD} = 50 \text{ V}, V_{GS} = 10 \text{ V}, I_L = 37 \text{ A}_{pk}, L = 0.1 \text{ mH}, R_G = 25 \Omega)$ (Note 3) |                                      |                           | E <sub>AS</sub>  | 68   | mJ   |
| Lead Temperature for Soldering Purposes (1/8" from case for 10 s)                                                                                                                        |                                      |                           | TL               | 260  | °C   |

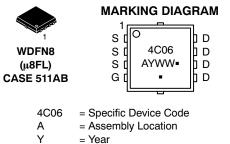
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.

2. Surface-mounted on FR4 board using the minimum recommended pad size. 3. This is the absolute maximum ratings. Parts are 100% tested at  $T_J = 25^{\circ}C$ ,

 $V_{GS} = 10 \text{ V}, \text{ I}_{L} = 20 \text{ A}, \text{ E}_{AS} = 20 \text{ mJ}.$ 





# **ON Semiconductor®**

## http://onsemi.com

| V <sub>(BR)DSS</sub> | R <sub>DS(on)</sub> MAX | I <sub>D</sub> MAX |
|----------------------|-------------------------|--------------------|
| 30 V                 | 4.2 mΩ @ 10 V           | 67 A               |
| 30 V                 | 6.1 mΩ @ 4.5 V          | 07 A               |

**N-Channel MOSFET** 





(Note: Microdot may be in either location)

= Work Week = Pb-Free Package

WW

#### **ORDERING INFORMATION**

| Device        | Package            | Shipping <sup>†</sup> |
|---------------|--------------------|-----------------------|
| NTTFS4C06NTAG | WDFN8<br>(Pb-Free) | 1500 / Tape &<br>Reel |
| NTTFS4C06NTWG | WDFN8<br>(Pb-Free) | 5000 / Tape &<br>Reel |

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specification Brochure, BRD8011/D.

#### THERMAL RESISTANCE MAXIMUM RATINGS

| Parameter                                      | Symbol         | Value | Unit |
|------------------------------------------------|----------------|-------|------|
| Junction-to-Case (Drain)                       | $R_{	hetaJC}$  | 4.1   |      |
| Junction-to-Ambient - Steady State (Note 4)    | $R_{\thetaJA}$ | 58    | °C/W |
| Junction-to-Ambient - Steady State (Note 5)    | $R_{	hetaJA}$  | 154.3 | °C/W |
| Junction-to-Ambient – (t $\leq$ 10 s) (Note 4) | $R_{	hetaJA}$  | 28.3  |      |

Surface-mounted on FR4 board using 1 sq-in pad, 1 oz Cu.
Surface-mounted on FR4 board using the minimum recommended pad size.

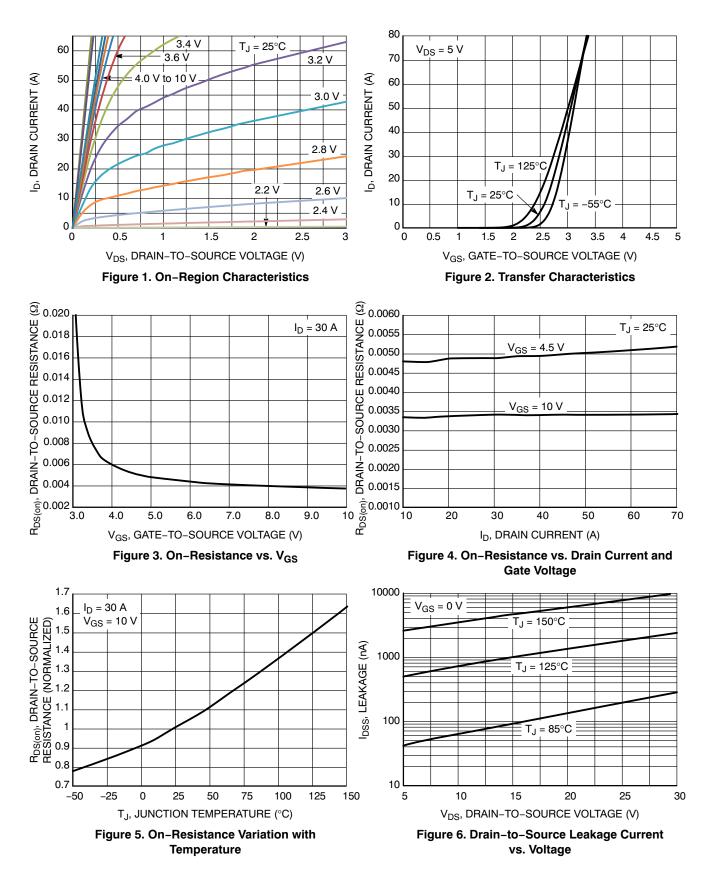
#### **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise specified)

| Parameter                                                    | Symbol                                   | Test Condition                                                                                       |                           | Min | Тур   | Max  | Unit  |
|--------------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------------------|---------------------------|-----|-------|------|-------|
| OFF CHARACTERISTICS                                          |                                          |                                                                                                      |                           |     |       |      |       |
| Drain-to-Source Breakdown Voltage                            | V <sub>(BR)DSS</sub>                     | $V_{GS}$ = 0 V, I <sub>D</sub> = 250 $\mu$ A                                                         |                           | 30  |       |      | V     |
| Drain-to-Source Breakdown Voltage (transient)                | V <sub>(BR)DSSt</sub>                    | $V_{GS}$ = 0 V, $I_{D(aval)}$ = 12.6 A,<br>T <sub>case</sub> = 25°C, t <sub>transient</sub> = 100 ns |                           | 34  |       |      | v     |
| Drain-to-Source Breakdown Voltage<br>Temperature Coefficient | V <sub>(BR)DSS</sub> /<br>T <sub>J</sub> |                                                                                                      |                           |     | 14.4  |      | mV/°C |
| Zero Gate Voltage Drain Current                              | I <sub>DSS</sub>                         | $V_{GS} = 0 V,$                                                                                      | T <sub>J</sub> = 25°C     |     |       | 1.0  |       |
|                                                              |                                          | $V_{\rm DS} = 24$ V                                                                                  | T <sub>J</sub> = 125°C    |     |       | 10   | μΑ    |
| Gate-to-Source Leakage Current                               | I <sub>GSS</sub>                         | V <sub>DS</sub> = 0 V, V <sub>GS</sub>                                                               | = ±20 V                   |     |       | ±100 | nA    |
| ON CHARACTERISTICS (Note 6)                                  |                                          |                                                                                                      |                           |     |       |      |       |
| Gate Threshold Voltage                                       | V <sub>GS(TH)</sub>                      | $V_{GS} = V_{DS}, I_D =$                                                                             | = 250 μA                  | 1.3 |       | 2.2  | V     |
| Negative Threshold Temperature Coefficient                   | V <sub>GS(TH)</sub> /T <sub>J</sub>      |                                                                                                      |                           |     | 3.8   |      | mV/°C |
| Drain-to-Source On Resistance                                |                                          | I <sub>D</sub> = 30 A                                                                                |                           | 3.4 | 4.2   |      |       |
|                                                              |                                          | V <sub>GS</sub> = 4.5 V                                                                              | I <sub>D</sub> = 30 A     |     | 4.9   | 6.1  | mΩ    |
| Forward Transconductance                                     | <b>9</b> FS                              | V <sub>DS</sub> = 1.5 V, I <sub>D</sub> = 15 A                                                       |                           |     | 58    |      | S     |
| Gate Resistance                                              | R <sub>G</sub>                           | T <sub>A</sub> = 25°C                                                                                |                           |     | 1.0   |      | Ω     |
| CHARGES AND CAPACITANCES                                     |                                          |                                                                                                      |                           |     |       |      | -     |
| Input Capacitance                                            | C <sub>ISS</sub>                         |                                                                                                      |                           |     | 1683  |      | pF    |
| Output Capacitance                                           | C <sub>OSS</sub>                         | V <sub>GS</sub> = 0 V, f = 1 MH:                                                                     | z, V <sub>DS</sub> = 15 V |     | 841   |      |       |
| Reverse Transfer Capacitance                                 | C <sub>RSS</sub>                         |                                                                                                      |                           |     | 40    |      | 1     |
| Capacitance Ratio                                            | C <sub>RSS</sub> /C <sub>ISS</sub>       | V <sub>GS</sub> = 0 V, V <sub>DS</sub> = 15                                                          | V, f = 1 MHz              |     | 0.023 |      |       |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                      |                                                                                                      |                           |     | 11.6  |      |       |
| Threshold Gate Charge                                        | Q <sub>G(TH)</sub>                       | V <sub>GS</sub> = 4.5 V, V <sub>DS</sub> = 15 V; I <sub>D</sub> = 30 A                               |                           |     | 2.6   |      | ]     |
| Gate-to-Source Charge                                        | Q <sub>GS</sub>                          |                                                                                                      |                           |     | 4.7   |      | nC    |
| Gate-to-Drain Charge                                         | Q <sub>GD</sub>                          |                                                                                                      |                           |     | 4.0   |      | 1     |
| Gate Plateau Voltage                                         | V <sub>GP</sub>                          |                                                                                                      |                           |     | 3.1   |      | V     |
| Total Gate Charge                                            | Q <sub>G(TOT)</sub>                      | $V_{GS} = 10 \text{ V}, V_{DS} = 15 \text{ V}; I_D = 30 \text{ A}$                                   |                           |     | 26    |      | nC    |

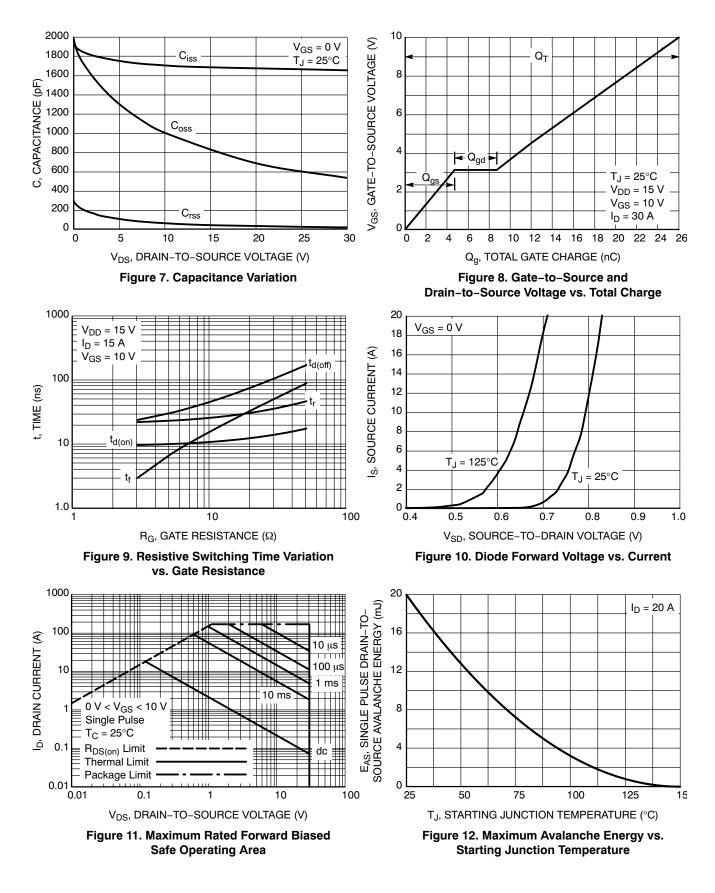
#### Turn-On Delay Time t<sub>d(ON)</sub> 10 **Rise Time** t<sub>r</sub> 32 $\begin{array}{l} \mathsf{V}_{GS} = 4.5 \; \mathsf{V}, \, \mathsf{V}_{DS} = 15 \; \mathsf{V}, \\ \mathsf{I}_{D} = 15 \; \mathsf{A}, \, \mathsf{R}_{G} = 3.0 \; \Omega \end{array}$ Turn-Off Delay Time 18 t<sub>d(OFF)</sub> Fall Time t<sub>f</sub> 5.0

6. Pulse Test: pulse width  $\,\leq\,$  300  $\mu s,\,$  duty cycle  $\,\leq\,$  2%.

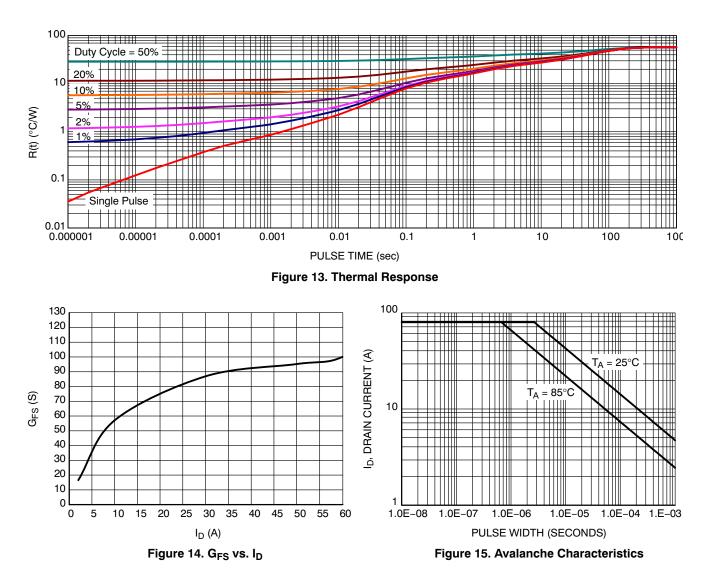
7. Switching characteristics are independent of operating junction temperatures.


ns

# **ELECTRICAL CHARACTERISTICS** (T<sub>J</sub> = $25^{\circ}$ C unless otherwise specified)


| Parameter                    | Symbol              | Test Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |   | Min | Тур  | Max  | Unit |
|------------------------------|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|------|------|------|
| SWITCHING CHARACTERISTICS (N | ote 7)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |      |      |      |
| Turn-On Delay Time           | t <sub>d(ON)</sub>  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   | 8.0 |      | • ns |      |
| Rise Time                    | t <sub>r</sub>      | $V_{GS}$ = 10 V, $V_{DS}$ = 15 V,<br>I <sub>D</sub> = 15 A, R <sub>G</sub> = 3.0 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |     | 28   |      |      |
| Turn-Off Delay Time          | t <sub>d(OFF)</sub> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     | 24   |      |      |
| Fall Time                    | t <sub>f</sub>      | 1 [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |     | 3.0  |      |      |
| DRAIN-SOURCE DIODE CHARACTE  | ERISTICS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     |      |      |      |
| Forward Diode Voltage        | V <sub>SD</sub>     | $V_{GS} = 0 V, \\ I_{S} = 10 A \\ T_{J} = 25^{\circ}C \\ T_{J} = 125^{\circ}C \\ $ |   |     | 0.8  | 1.1  |      |
|                              |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     | 0.63 |      | V    |
| Reverse Recovery Time        | t <sub>RR</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • |     | 34   |      |      |
| Charge Time                  | ta                  | V <sub>GS</sub> = 0 V, dIS/dt = 100 A/µs,<br>I <sub>S</sub> = 30 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |   |     | 17   |      | ns   |
| Discharge Time               | t <sub>b</sub>      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     | 17   |      |      |
| Reverse Recovery Charge      | Q <sub>RR</sub>     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |   |     | 22   |      | nC   |

 $\begin{array}{ll} \mbox{6. Pulse Test: pulse width } \le 300 \ \mu \mbox{s, duty cycle } \le 2 \mbox{\%}. \\ \mbox{7. Switching characteristics are independent of operating junction temperatures.} \end{array}$ 


# **TYPICAL CHARACTERISTICS**

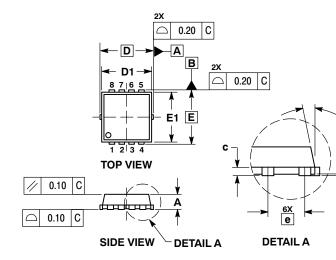


# **TYPICAL CHARACTERISTICS**



# **TYPICAL CHARACTERISTICS**




#### PACKAGE DIMENSIONS

WDFN8 3.3x3.3, 0.65P CASE 511AB ISSUE D

A1

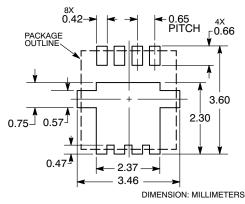
C

SEATING PLANE



8x b В 0.10 С Α  $\oplus$ 0.05 С e/2 4X É2 F3 м ¥ D2 G BOTTOM VIEW

NOTES:


1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

CONTROLLING DIMENSION: MILLIMETERS.
DIMENSION D1 AND E1 DO NOT INCLUDE MOLD FLASH

| PROTRUSIONS | OR GA | TE BU | RRS. |
|-------------|-------|-------|------|
|             |       |       |      |

|     | м    | LLIMETE  | RS   | INCHES |           |       |  |
|-----|------|----------|------|--------|-----------|-------|--|
| DIM | MIN  | NOM      | MAX  | MIN    | NOM       | MAX   |  |
| Α   | 0.70 | 0.75     | 0.80 | 0.028  | 0.030     | 0.031 |  |
| A1  | 0.00 |          | 0.05 | 0.000  |           | 0.002 |  |
| b   | 0.23 | 0.30     | 0.40 | 0.009  | 0.012     | 0.016 |  |
| С   | 0.15 | 0.20     | 0.25 | 0.006  | 0.008     | 0.010 |  |
| D   |      | 3.30 BSC |      | 0      | .130 BSC  | )     |  |
| D1  | 2.95 | 3.05     | 3.15 | 0.116  | 0.120     | 0.124 |  |
| D2  | 1.98 | 2.11     | 2.24 | 0.078  | 0.083     | 0.088 |  |
| Е   |      | 3.30 BSC |      |        | .130 BSC  | ;     |  |
| E1  | 2.95 | 3.05     | 3.15 | 0.116  | 0.120     | 0.124 |  |
| E2  | 1.47 | 1.60     | 1.73 | 0.058  | 0.063     | 0.068 |  |
| E3  | 0.23 | 0.30     | 0.40 | 0.009  | 0.012     | 0.016 |  |
| е   |      | 0.65 BSC |      |        | 0.026 BS0 | 2     |  |
| G   | 0.30 | 0.41     | 0.51 | 0.012  | 0.016     | 0.020 |  |
| к   | 0.65 | 0.80     | 0.95 | 0.026  | 0.032     | 0.037 |  |
| Г   | 0.30 | 0.43     | 0.56 | 0.012  | 0.017     | 0.022 |  |
| L1  | 0.06 | 0.13     | 0.20 | 0.002  | 0.005     | 0.008 |  |
| М   | 1.40 | 1.50     | 1.60 | 0.055  | 0.059     | 0.063 |  |
| θ   | 0 °  |          | 12 ° | 0 °    |           | 12 °  |  |

#### **SOLDERING FOOTPRINT\***



\*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and use registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications on and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distibutors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death may occur. This literature is subject to all applicable copyright taws and is not for resale in any manner.

#### PUBLICATION ORDERING INFORMATION

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050

For additional information, please contact your local Sales Representative