

REJ03F0165-0200 Rev.2.00 Jun 14, 2006

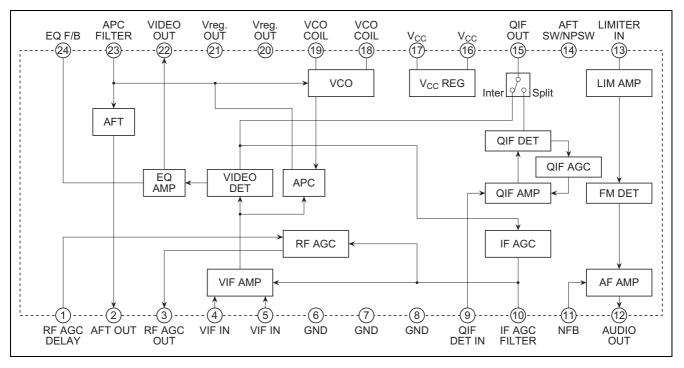
## Description

The M52342FP is IF signal-processing IC for VCRs and TVs. It enables the PLL detection system despite size as small as that of conventional quasi-synchronous VIF/SIF detector, IF/RF AGC, SIF limiter, FM detector, QIF AGC and EQ AMP.

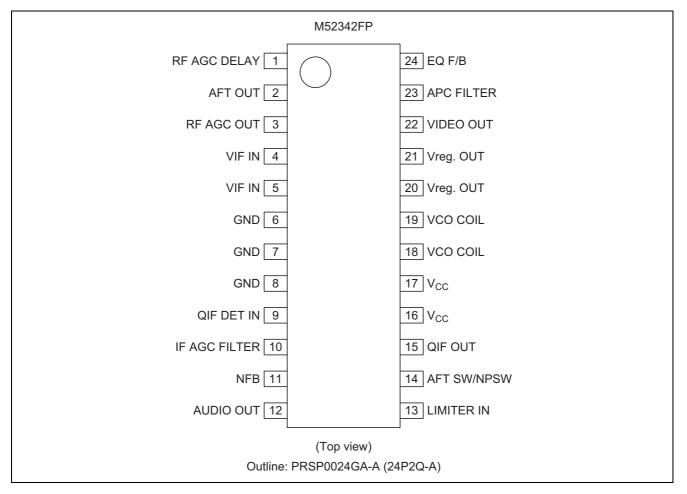
# Features

- Video detection output is  $2 V_{P-P}$ . It has built-in EQ AMP.
- The package is a 24-pin flat package, suitable for space saving.
- The video detector uses PLL for full synchronous detection circuit. It produces excellent characteristics of DG, DP, 920 kHz beat, and cross color.
- Dynamic AGC realizes high-speed response with only single filter.
- Video IF and sound IF signal processing are separated from each other. VCO output is used to obtain intercarrier. This PLL-SPLIT method and built-in QIF AGC provide good sound sensitivity and reduces buzz.
- As AFT output voltage uses the APC output voltage, VCO coil is not used.
- Audio FM demodulation uses PLL system, so it has wide frequency range with no external parts and no adjustment.

# Application


TV sets, VCR tuners

# **Recommended Operating Condition**


- In case of  $V_{CC}$  and Vreg. OUT short
  - Supply voltage range: 4.75 to 5.25 V
  - Recommended supply voltage: 5.0 V
- Incase of Vreg. OUT open
  - Supply voltage range: 8.5 to 12.5 V



# **Block Diagram**



# **Pin Arrangement**





# **Absolute Maximum Ratings**

(Ta = 25°C, surge protection capacitance 200 pF resistance 0, unless otherwise noted)

| Item                     | Symbol          | Ratings     | Unit | Condition                                              |
|--------------------------|-----------------|-------------|------|--------------------------------------------------------|
| Supply voltage1          | V <sub>CC</sub> | 13.2        | V    | $V_{CC}$ and Vreg. OUT is not connected to each other. |
| Supply voltage Vreg. OUT | Vreg. OUT       | 6.0         | V    | $V_{CC}$ and Vreg. OUT is not connected to each other. |
| Power dissipation        | Pd              | 1524        | mW   |                                                        |
| Operating temperature    | Topr            | -20 to +75  | °C   |                                                        |
| Storage temperature      | Tstg            | -40 to +150 | °C   |                                                        |
| Surge voltage resistance | Surge           | 200         | V    |                                                        |

# **Ambient Operating Condition**

 $(Ta = 25^{\circ}C, unless otherwise noted)$ 

| Supply Voltage                          | Supply Voltage Range | Recommended Supply Voltage |
|-----------------------------------------|----------------------|----------------------------|
| In case of $V_{CC}$ and Vreg. OUT short | 4.75 to 5.25 V       | 5.0 V                      |
| In case of Vreg. OUT open               | 8.5 to 12.5 V        |                            |

# **Electrical Characteristics**

|                |                  | -   |       |        |       | -    |        | $(v_{\rm CC} =$ | 5 V, Ia   | = 25 | - <b>C</b> , un | ness of | herwise noted)  |
|----------------|------------------|-----|-------|--------|-------|------|--------|-----------------|-----------|------|-----------------|---------|-----------------|
|                |                  |     |       |        |       |      |        |                 |           |      | Т               | est Co  | onditions       |
|                |                  | Те  |       |        |       |      |        |                 |           | E    | Extern          | nal     | Switches set to |
|                |                  | st  |       |        |       |      | Limits |                 |           | Pov  | ver Su          | upply   | position 1      |
|                |                  | Ci  |       |        |       |      |        |                 |           |      |                 |         | unless          |
| _              | Sym              | rc  | Test  | Input  | Input |      |        |                 |           |      |                 |         | otherwise       |
| ltem           | bol              | uit | Point | Point  | SG    | Min. | Тур.   | Max.            | Unit      | V7   | V8              | V12     | indicated       |
| VIF section    |                  |     |       |        |       |      |        |                 |           |      | -               | -       |                 |
| Circuit        | I <sub>CC1</sub> | 1   | А     | VIF IN | SG1   | 33   | 46     | 59              | mA        |      |                 | 5       | $V_{CC} = 5V$   |
| current1       |                  |     |       |        |       |      |        |                 |           |      |                 |         | SW17 = 1,       |
| $V_{CC} = 5V$  |                  |     |       |        |       |      |        |                 |           |      |                 |         | SW14 = 2        |
| Circuit        | I <sub>CC2</sub> | 1   | A     | VIF IN | SG1   | 33   | 46     | 59              | mA        |      |                 | 5       | $V_{CC} = 12V$  |
| current2       |                  |     |       |        |       |      |        |                 |           |      |                 |         | SW14 = SW17 =   |
| $V_{CC} = 12V$ |                  |     |       |        |       |      |        |                 |           |      |                 |         | 2               |
| Vreg           | V <sub>CC2</sub> | 1   | TP17  |        |       | 4.60 | 4.95   | 5.30            | V         |      |                 | 5       | $V_{CC} = 12V$  |
| voltage        |                  |     |       |        |       |      |        |                 |           |      |                 |         | SW7 = 2         |
| Video          | V18              | 1   | TP18A |        |       | 3.2  | 3.5    | 3.8             | V         |      | 0               |         | SW8 = 2         |
| output DC      |                  |     |       |        |       |      |        |                 |           |      |                 |         |                 |
| voltage        |                  |     |       |        |       |      |        |                 |           |      |                 |         |                 |
| Video          | Vo               | 1   | TP18A | VIF IN | SG1   | 1.8  | 2.1    | 2.4             | $V_{P-P}$ |      |                 |         |                 |
| output         | det              |     |       |        |       |      |        |                 |           |      |                 |         |                 |
| voltage        |                  |     |       |        |       |      |        |                 |           |      |                 |         |                 |
| Video S/N      | Video            | 1   | TP18B | VIF IN | SG2   | 51   | 56     | —               | dB        |      |                 |         | SW18 = 2        |
|                | S/N              |     |       |        |       |      |        |                 |           |      |                 |         |                 |
| Video          | BW               | 1   | TP18A | VIF IN | SG3   | 7.0  | 9.0    | —               | MHz       |      | Va              |         | SW8 = 2         |
| band width     |                  |     |       |        |       |      |        |                 |           |      | ria             |         |                 |
|                |                  |     |       |        |       |      |        |                 |           |      | bl              |         |                 |
|                |                  |     |       |        |       |      |        |                 |           |      | е               |         |                 |
| Input          | VIN              | 1   | TP18A | VIF IN | SG4   | —    | 48     | 52              | dBμ       |      |                 |         |                 |
| sensitivity    | MIN              |     |       |        |       |      |        |                 |           |      |                 |         |                 |

## $(V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ unless otherwise noted})$



|                    |          | 1        | 1     |        | 1     | 1    |        | $(V_{CC} =$ | 5 V, 1a | 1 = 25 |        |       | herwise noted)       |
|--------------------|----------|----------|-------|--------|-------|------|--------|-------------|---------|--------|--------|-------|----------------------|
|                    |          |          |       |        |       |      |        |             |         |        |        |       | onditions            |
|                    |          | Те       |       |        |       |      |        |             |         |        | Extern |       | Switches set to      |
|                    |          | st<br>Ci |       |        |       |      | Limits | 1           | -       | Pov    | ver Su | upply | position 1<br>unless |
|                    | Sym      | rc       | Test  | Input  | Input |      |        |             |         |        |        |       | otherwise            |
| ltem               | bol      | uit      | Point | Point  | SG    | Min. | Тур.   | Max.        | Unit    | V7     | V8     | V12   | indicated            |
| Maximum            | VIN      | 1        | TP18A | VIF IN | SG5   | 101  | 105    | _           | dBμ     |        |        |       |                      |
| allowable          | MAX      |          |       |        |       |      |        |             |         |        |        |       |                      |
| input              |          |          |       |        |       |      |        |             |         |        |        |       |                      |
| AGC                | GR       |          |       |        |       | 50   | 57     |             | dB      |        |        |       |                      |
| control            |          |          |       |        |       |      |        |             |         |        |        |       |                      |
| range              |          |          |       |        |       |      |        |             |         |        |        |       |                      |
| input              | 1/0      | 1        | TP8   | VIF IN | 806   | 2.0  | 2.2    | 25          | V       |        |        |       |                      |
| IF AGC<br>voltage  | V8       | 1        | 198   | VIFIN  | SG6   | 2.9  | 3.2    | 3.5         | V       |        |        |       |                      |
| Maximum            | V8H      | 1        | TP8   |        |       | 4.0  | 4.4    |             | V       |        |        |       |                      |
| IF AGC             | VOL      | I        | 110   |        |       | 4.0  | 4.4    |             | v       |        |        |       |                      |
| voltage            |          |          |       |        |       |      |        |             |         |        |        |       |                      |
| Minimum            | V8L      | 1        | TP8   | VIF IN | SG7   | 2.2  | 2.4    | 2.6         | V       |        |        |       |                      |
| IF AGC             |          |          |       |        |       |      |        |             |         |        |        |       |                      |
| voltage            |          |          |       |        |       |      |        |             |         |        |        |       |                      |
| Maximum            | V3H      | 1        | TP3   | VIF IN | SG6   | 4.2  | 4.7    | _           | V       |        |        |       |                      |
| RF AGC             |          |          |       |        |       | 8.0  | 8.9    | _           |         |        |        |       | $(V_{CC} = 9V)$      |
| voltage            |          |          |       |        |       | 11.0 | 11.9   |             |         |        |        |       | $(V_{CC} = 12V)$     |
| Minimum            | V3L      | 1        | TP3   | VIF IN | SG7   |      | 0.1    | 0.5         | V       |        |        |       |                      |
| RF AGC             |          |          |       |        |       |      | 0.2    | 0.7         |         |        |        |       | $(V_{CC} = 9V)$      |
| voltage            |          |          |       |        |       |      | 0.2    | 0.7         |         |        |        |       | $(V_{CC} = 12V)$     |
| RF AGC             | V3       | 1        | TP3   | VIF IN | SG8   | 89   | 92     | 95          | dBμ     |        |        |       |                      |
| operation          |          |          |       |        |       |      |        |             |         |        |        |       |                      |
| voltage            |          |          | 75464 |        |       |      |        |             |         |        |        |       |                      |
| Capture<br>range U | CL-U     | 1        | TP18A | VIF IN | SG9   | 1.0  | 1.7    | _           | MHz     |        |        |       |                      |
| Capture            | CL-L     | 1        | TP18A | VIF IN | SG9   | 1.8  | 2.4    |             | MHz     |        |        |       |                      |
| range L            | OL-L     | 1        | IFIOA |        | 369   | 1.0  | 2.4    |             |         |        |        |       |                      |
| Capture            | CL-T     | 1        |       |        |       | 3.1  | 4.1    |             | MHz     |        |        |       |                      |
| range T            | 02 1     |          |       |        |       | 0.1  |        |             | 101112  |        |        |       |                      |
| AFT                |          | 1        | TP2   | VIF IN | SG10  | 20   | 30     | 60          | mV/     |        |        | 3.3   |                      |
| sensitivity        |          |          |       |        |       |      |        |             | kHz     |        |        |       |                      |
| AFT                | V2H      | 1        | TP2   | VIF IN | SG10  | 3.85 | 4.15   | _           | V       |        |        | 3.3   |                      |
| maximum            |          |          |       |        |       | 7.7  | 8.1    |             |         |        |        |       | $(V_{CC} = 9V)$      |
| voltage            |          |          |       |        |       | 10.7 | 11.1   | —           |         |        |        |       | $(V_{CC} = 12V)$     |
| AFT                | V2L      | 1        | TP2   | VIF IN | SG10  |      | 0.7    | 1.2         | V       |        |        | 3.3   |                      |
| minimum            |          |          |       |        |       |      | 0.7    | 1.2         |         |        |        |       | $(V_{CC} = 9V)$      |
| voltage            |          |          |       |        |       |      | 0.7    | 1.2         |         |        |        |       | $(V_{CC} = 12V)$     |
| AFT                | AFT      | 1        | TP2   | VIF IN | SG10  | 2.2  | 2.5    | 2.8         | V       |        |        | 1.6   |                      |
| defeat1            | def1     |          |       |        |       | 4.1  | 4.5    | 4.9         |         |        |        | 5     | $(V_{CC} = 9V)$      |
|                    |          |          |       |        |       | 5.5  | 6.0    | 6.5         |         |        |        |       | $(V_{CC} = 12V)$     |
| AFT                | AFT      | 1        | TP2   | VIF IN | SG10  | 2.2  | 2.5    | 2.8         | V       |        |        | 4.6   |                      |
| defeat2            | def2     |          |       |        |       | 4.1  | 4.5    | 4.9         |         |        |        |       | $(V_{CC} = 9V)$      |
|                    | <u> </u> |          |       |        |       | 5.5  | 6.0    | 6.5         |         |        |        |       | $(V_{CC} = 12V)$     |
| Inter              | IM       | 1        | TP18A | VIF IN | SG11  | 35   | 40     | _           | dB      |        | Va     |       | SW8 = 2              |
| modulation         |          |          |       |        |       |      |        |             |         |        | ria    |       |                      |
|                    |          |          |       |        |       |      |        |             |         |        | bl     |       |                      |
|                    |          | I        |       |        |       |      |        |             |         |        | е      |       |                      |

# $(V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ unless otherwise noted})$



|                         |            |           |               |                |              |      |        | $(V_{CC} =$ | 5 V, Ta | u = 25 |          |         | herwise noted)         |
|-------------------------|------------|-----------|---------------|----------------|--------------|------|--------|-------------|---------|--------|----------|---------|------------------------|
|                         |            |           |               |                |              |      |        |             |         |        | ٦        | Test Co | onditions              |
|                         |            | Те        |               |                |              |      |        |             |         |        | Exterr   |         | Switches set to        |
|                         |            | st        |               |                |              |      | Limits | 1           |         | Pov    | ver Sı   | upply   | position 1             |
|                         | Cu m       | Ci        | Teet          | Innut          | Innut        |      |        |             |         |        |          |         | unless                 |
| Item                    | Sym<br>bol | rc<br>uit | Test<br>Point | Input<br>Point | Input<br>SG  | Min. | Тур.   | Max.        | Unit    | V7     | V8       | V12     | otherwise<br>indicated |
| Differential            | DG         | 1         | TP18A         | VIF IN         | SG12         | _    | 2      | 5           | %       | •••    |          |         | maloutou               |
| gain                    | 20         |           | 11 10/1       |                | 0012         |      | -      | Ũ           | 70      |        |          |         |                        |
| Differential            | DP         | 1         | TP18A         | VIF IN         | SG12         | _    | 2      | 5           | deg     |        |          |         |                        |
| phase                   |            |           |               |                |              |      |        |             |         |        |          |         |                        |
| Sync. tip               | V18        | 1         | TP18A         | VIF IN         | SG2          | 0.85 | 1.15   | 1.45        | V       |        |          |         |                        |
| level                   | SYNC       |           |               |                |              |      |        |             |         |        |          |         |                        |
| VIF input               | RINV       | 2         | TP4           |                |              | _    | 1.2    |             | kΩ      |        |          |         |                        |
| resister                | CINV       | 2         | TP4           |                |              |      | 5      |             | ~F      |        |          |         |                        |
| VIF input<br>capacitanc | CINV       | 2         | 164           |                |              | _    | 5      |             | pF      |        |          |         |                        |
| e                       |            |           |               |                |              |      |        |             |         |        |          |         |                        |
| SIF section             |            | 1         |               |                | I            |      |        | I           |         |        |          |         | I                      |
| QIF                     | QIF1       | 1         | TP13          | VIF IN         | SG2          | 94   | 100    | 106         | dBμ     |        |          |         |                        |
| output1                 |            |           |               | QIF IN         | SG13         |      |        |             | -       |        |          |         |                        |
| QIF                     | QIF2       | 1         | TP13          | VIF IN         | SG2          | 94   | 100    | 106         | dBμ     |        |          |         |                        |
| output2                 |            |           |               | QIF IN         | SG14         |      |        |             |         |        |          |         |                        |
| SIF                     | Vos        | 1         | TP13          | VIF IN         | SG15         | 94   | 100    | 106         | dBμ     | 0      |          | 5       | SW7 = 2                |
| detection               |            |           |               |                |              |      |        |             |         |        |          |         |                        |
| output<br>AF output     | V1         | 1         | TP10          | SIF IN         | SG20         | 1.6  | 2.2    | 2.8         | V       |        |          | 5       |                        |
| DC                      | VI         |           | 11 10         |                | 0020         | 1.0  | 2.2    | 2.0         | v       |        |          | 5       |                        |
| voltage                 |            |           |               |                |              |      |        |             |         |        |          |         |                        |
| AF output               | VOAF       | 1         | TP10          | SIF IN         | SG16         | 400  | 560    | 800         | mVr     |        |          | 5       |                        |
| (4.5MHz)                | 1          |           |               |                |              |      |        |             | ms      |        |          |         |                        |
| AF output               | VOAF       | 1         | TP10          | SIF IN         | SG21         | 320  | 450    | 630         | mVr     |        |          | 0       |                        |
| (5.5MHz)                | 2          |           | 7540          |                | 0010         |      |        |             | ms      |        |          | _       |                        |
| AF output<br>distortion | THD<br>AF1 | 1         | TP10          | SIF IN         | SG16         | —    | 0.2    | 0.9         | %       |        |          | 5       |                        |
| (4.5MHz)                |            |           |               |                |              |      |        |             |         |        |          |         |                        |
| AF output               | THD        | 1         | TP10          | SIF IN         | SG21         | _    | 0.2    | 0.9         | %       |        |          | 0       |                        |
| distortion              | AF2        |           | _             | _              |              |      | -      |             |         |        |          | _       |                        |
| (5.5MHz)                |            |           |               |                |              |      |        |             |         |        |          |         |                        |
| Limiting                | LIM1       | 1         | TP10          | SIF IN         | SG17         | —    | 42     | 55          | dBμ     |        |          | 5       |                        |
| sensitivity             |            |           |               |                | SG19         |      |        |             |         |        |          |         |                        |
| (4.5MHz)<br>Limiting    | LIM2       | 1         | TP10          | SIF IN         | SG22         |      | 42     | 55          | dBμ     |        |          | 0       |                        |
| sensitivity             |            | 1         | IPIO          | SIF IN         | SG22<br>SG24 | —    | 42     | 55          | αьμ     |        |          | 0       |                        |
| (5.5MHz)                |            |           |               |                | 0021         |      |        |             |         |        |          |         |                        |
| AM                      | AMR1       | 1         | TP10          | SIF IN         | SG18         | 55   | 62     | _           | dB      |        |          | 5       |                        |
| rejection               |            |           |               |                |              |      |        |             |         |        |          |         |                        |
| (4.5MHz)                |            |           |               |                |              |      |        |             |         |        | ļ        |         |                        |
| AM                      | AMR2       | 1         | TP10          | SIF IN         | SG23         | 55   | 64     | —           | dB      |        |          | 0       |                        |
| rejection               |            |           |               |                |              |      |        |             |         |        |          |         |                        |
| (5.5MHz)<br>AF S/N      | AF         | 1         | TP10          | SIF IN         | SG20         | 55   | 62     |             | dB      |        | <u> </u> | 5       |                        |
| (4.5MHz)                | S/N1       | '         |               |                | 3620         | 55   | 02     |             | ub      |        |          | 5       |                        |
| AF S/N                  | AF         | 1         | TP10          | SIF IN         | SG25         | 55   | 64     | _           | dB      |        |          | 0       |                        |
| (5.5MHz)                | S/N2       |           | -             |                | _            |      |        |             |         |        |          |         |                        |
| •                       |            |           | •             | •              |              |      |        |             |         |        |          |         | •                      |

 $(V_{CC} = 5 \text{ V}, \text{ Ta} = 25^{\circ}\text{C}, \text{ unless otherwise noted})$ 

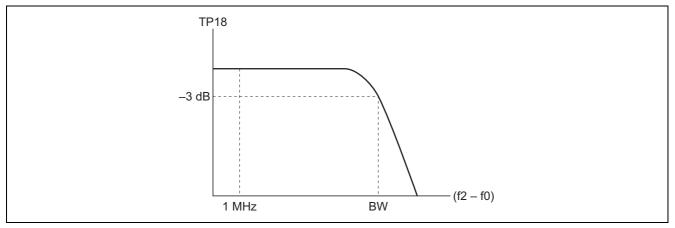


|                              |            |                 |               |                |             |      |        |      |      |                      | Т                | est Co | onditions                        |
|------------------------------|------------|-----------------|---------------|----------------|-------------|------|--------|------|------|----------------------|------------------|--------|----------------------------------|
|                              |            | Te<br>st        |               |                |             |      | Limits |      |      |                      | Extern<br>ver Su |        | Switches set to<br>position 1    |
| ltem                         | Sym<br>bol | Ci<br>rc<br>uit | Test<br>Point | Input<br>Point | Input<br>SG | Min. | Тур.   | Max. | Unit | V7                   | V8               | V12    | unless<br>otherwise<br>indicated |
| SIF input resistance         | RINS       | 2               | TP7           |                |             | —    | 1.5    | —    | kΩ   |                      |                  |        |                                  |
| SIF input<br>capacitanc<br>e | CINS       | 2               | TP7           |                |             | _    | 4      | _    | pF   |                      |                  |        |                                  |
| Control sect                 | ion        |                 |               |                |             |      |        |      |      |                      |                  |        |                                  |
| QIF<br>control               | CQIF       | 1               | TP7           |                |             | _    | 0.7    | 1.0  | V    | Va<br>ria<br>bl<br>e |                  |        | SW7 = 2                          |

# Pin 14 Voltage Control

| Pin 14 Vo  | oltage (V)     | AF   | AFT    |  |  |
|------------|----------------|------|--------|--|--|
| 0 to 2.3   | 0 2.3 0 to 0.6 |      | NORMAL |  |  |
|            | 1.0 to 2.3     |      | DEFEAT |  |  |
| 2.7 to 5.0 | 2.7 to 4.0     | NTSC | NORMAL |  |  |
|            | 4.4 to 5.0     |      | DEFEAT |  |  |

# **Electrical Characteristics Test Method**


### Video S/N

Input SG2 into VIF IN and measure the video out (Pin 22) noise in r.m.s at TP22B through a 5 MHz (-3 dB) L.P.F.

$$S/N = 20 \log \left(\frac{0.7 \bullet Vo det}{NOISE}\right) (dB)$$

#### **BW Video Band Width**

- 1. Measure the 1MHz component level of EQ output TP22A with a spectrum analyzer when SG3 (f2 = 57.75 MHz) is input into VIF IN. At that time, measure the voltage at TP10 with SW10, set to position 2, and then fix V10 at that voltage.
- 2. Reduce f2 and measure the value of (f2 f0) when the (f2 f0) component level reaches -3 dB from the 1 MHz component level as shown below.





#### **VIN MIN Input sensitivity**

Input SG4 (Vi = 90 dB $\mu$ ) into VIF IN, and then gradually reduce Vi and measure the input level when the 20 kHz component of EQ output TP22A reaches –3 dB from V<sub>0</sub> det level.

#### **VIN MAX Maximum Allowable Input**

- 1. Input SG5 (Vi = 90 dB $\mu$ ) into VIF IN, and measure the level of the 20 kHz component of EQ output.
- 2. Gradually increase the Vi of SG and measure the input level when the output reaches -3 dB.

#### **GR AGC Control Range**

GR = VIN MAX - VIN MIN (dB)

#### V3 RF AGC Operating Voltage

Input SG8 into VIF IN, and gradually reduce Vi and then measure the input level when RF AGC output TP3 reaches  $1/2 V_{CC}$ , as shown below.

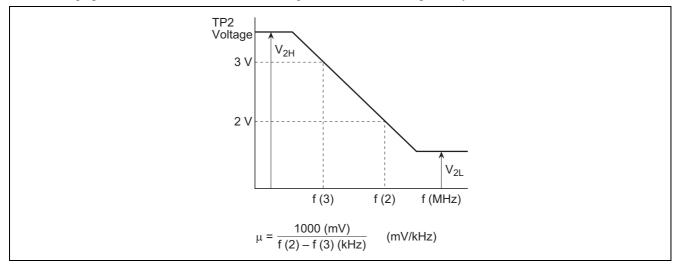


#### **CL-U Capture Range**

- 1. Increase the frequency of SG9 until the VCO is out of locked-oscillation.
- 2. Decrease the frequency of SG9 and measure the frequency fU when the VCO locks. CL-U = fU - 58.75 (MHz)

#### **CL-L Capture Range**

- 1. Decrease the frequency of SG9 until the VCO is out of locked-oscillation.
- 2. Increase the frequency of SG9 and measure the frequency fL when the VCO locks. CL-L = 58.75 - fL (MHz)

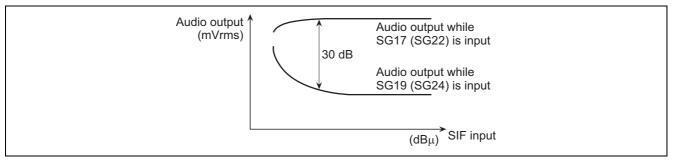

### **CL-T Capture Range**

CL-T = CL-U + CL-L (MHz)



#### µAFT Sensitivity, V2H Maximum AFT Voltage, V2L Minimum AFT Voltage

- 1. Input SG10 into VIF IN, and set the frequency of SG10 so that the voltage of AFT output TP2 is 3 V. This frequency is named f (3).
- 2. Set the frequency of SG10 so that the AFT output voltage is 2 V. This frequency is named f (2).
- 3. IN the graph, maximum and minimum DC voltage are  $V_{2H}$  and  $V_{2L}$ , respectively.




#### **IM** Intermodulation

- 1. Input SG11 into VIF IN, and measure EQ output TP22A with an oscilloscope.
- 2. Adjust AGC filter voltage V10 so that the minimum DC level of the output waveform is 1.0 V.
- At this time, measure, TP22A with a spectrum analyzer. The intermodulation is defined as a difference between 920 kHz and 3.58 MHz frequency components.

### LIM Limiting Sensitivity

- 1. Input SG17 (SG22) into SIF input, and measure the 400 Hz component level of AF output TP12.
- 2. Input SG19 (SG24) into SIF input, and measure the 400 Hz component level of AF output TP12.
- 3. The input limiting sensitivity is defined as the input level when a difference between each 400 Hz components of audio output (TP12) is 30 dB, as shown below.



#### AMR AM Rejection

- 1. Input SG18 (SG23) into SIF input, and measure the output level of AF output TP12. This level is named VAM.
- 2. AMR is;

$$AMR = 20 \log \left( \frac{VoAF (mVrms)}{VAM (mVrms)} \right) \quad (dB)$$



## AF S/N

- 1. Input SG19 (SG24) into SIF input, and measure the output noise level of AF output TP1. This level is named VN.
- 2. S/N is;

 $S/N = 20 \log \left( \frac{VoAF (mVrms)}{VN (mVrms)} \right) (dB)$ 

### C<sub>QIF</sub> QIF Control

Lower the voltage of V9, and measure the voltage of V9 when DC voltage of TP15 begins to change.

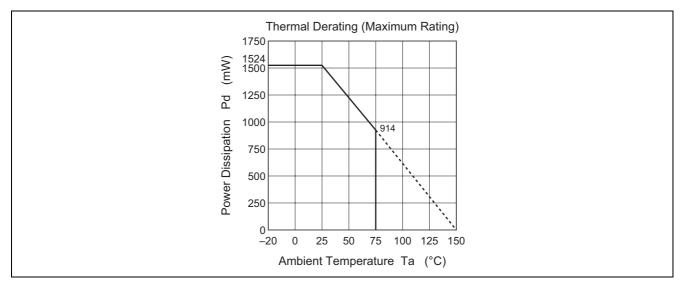
# The Note in The System Setup

M52342FP has 2 power supply pins of  $V_{CC}$  (pin 16, 17) and Vreg. OUT (pin 20, 21) .  $V_{CC}$  is for AFT output, RF AGC output circuits and 5 V regulated power circuit and Vreg. OUT is for the other circuit blocks.

In case M52342FP is used together with other ICs like VIF operating at more than 5 V, the same supply voltage as that of connected ICs is applied to  $V_{CC}$  and Vreg. OUT is opened. The other circuit blocks, connected to Vreg. OUT are powered by internal 5 V regulated power supply.

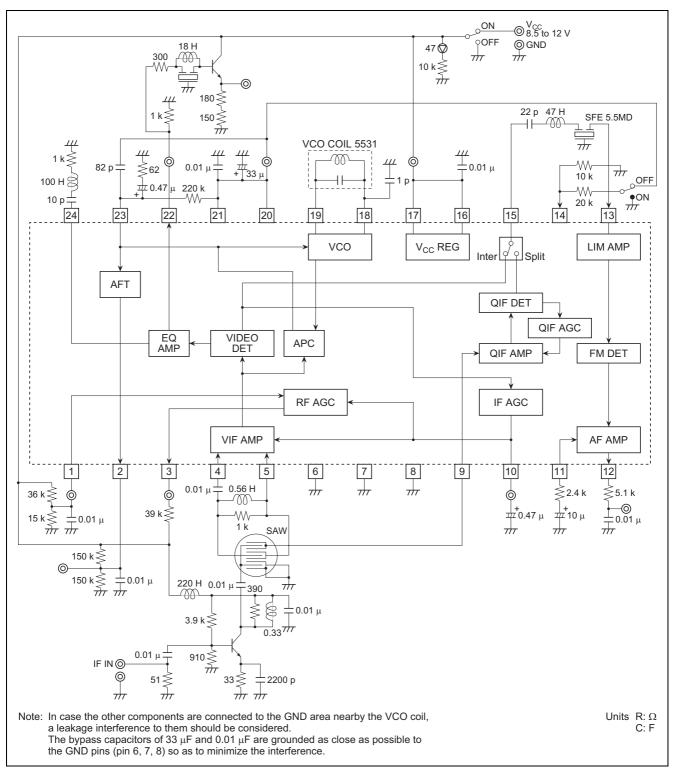
In case the connecting ICs are operated at 5 V, 5 V is supplied to both  $V_{CC}$  and Vreg. OUT.

# Logic Table


|          |          | AF   | AFT    |
|----------|----------|------|--------|
| 10 k "H" | 20 k "H" | NTSC | DEFEAT |
|          | 20 k "L" |      | NORMAL |
| 10 k "L" | 20 k "H" | PAL  | DEFEAT |
|          | 20 k "L" |      | NORMAL |



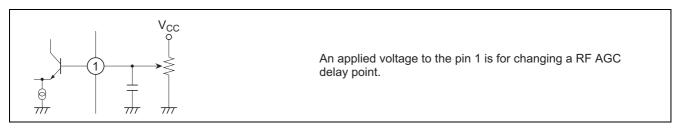
# Input Signal


| SG No. | Signals (50 $\Omega$ Termination)                                                            |
|--------|----------------------------------------------------------------------------------------------|
| 1      | $f_0 = 58.75 \text{ MHz}$ AM 20 kHz 77.8% 90 dB $\mu$                                        |
| 2      | $f_0 = 58.75 \text{ MHz} 90 \text{ dB}\mu \text{ CW}$                                        |
| 3      | f <sub>1</sub> = 58.75 MHz 90 dBµ CW (Mixed signal)                                          |
|        | $f_2 =$ Frequency variable 70 dB $\mu$ CW (Mixed signal)                                     |
| 4      | f <sub>0</sub> = 58.75 MHz AM 20 kHz 77.8% level variable                                    |
| 5      | f <sub>0</sub> = 58.75 MHz AM 20 kHz 14.0% level variable                                    |
| 6      | $f_0 = 58.75 \text{ MHz} 80 \text{ dB}\mu \text{ CW}$                                        |
| 7      | $f_0 = 58.75 \text{ MHz} 110 \text{ dB}\mu \text{ CW}$                                       |
| 8      | f <sub>0</sub> = 58.75 MHz CW level variable                                                 |
| 9      | $f_0 = variable AM 20 \text{ kHz} 77.8\% 90 dB \mu$                                          |
| 10     | $f_0 = variable 90dB\mu CW$                                                                  |
| 11     | $f_1 = 58.75 \text{ MHz} 90 \text{ dB}\mu \text{ CW}$ (Mixed signal)                         |
|        | $f_2 = 55.17 \text{ MHz} 80 \text{ dB}\mu \text{ CW}$ (Mixed signal)                         |
|        | $f_3 = 54.25 \text{ MHz } 80 \text{ dB}\mu \text{ CW}$ (Mixed signal)                        |
| 12     | $f_0 = 58.75 \text{ MHz} 87.5\%$                                                             |
|        | TV modulation ten-step waveform                                                              |
|        | Sync tip level 90 dBµ                                                                        |
| 13     | $f_1 = 54.25 \text{ MHz} 95 \text{ dB}\mu \text{ CW}$                                        |
| 14     | $f_1 = 54.25 \text{ MHz} 75 \text{ dB}\mu \text{ CW}$                                        |
| 15     | f <sub>1</sub> = 58.75 MHz 90 dBµ CW (Mixed signal)                                          |
|        | $f_2 = 54.25$ MHz 70 dB $\mu$ CW (Mixed signal)                                              |
| 16     | $f_0=4.5~\text{MHz}~90~\text{dB}\mu~\text{FM}~400~\text{Hz}\pm25~\text{kHz}~\text{dev}$      |
| 17     | $f_0 = 4.5 \text{ MHz} \text{ FM } 400 \text{ Hz} \pm 25 \text{ kHz}$ dev level variable     |
| 18     | $f_0 = 4.5 \text{ MHz} 90 \text{ dB}\mu \text{ AM} 400 \text{ Hz} 30\%$                      |
| 19     | $f_0 = 4.5 \text{ MHz} 90 \text{dB}\mu \text{ CW}$                                           |
| 20     | f <sub>0</sub> = 4.5 MHz CW level variable                                                   |
| 21     | $f_0=5.5~\text{MHz}~90\text{dB}\mu~\text{FM}~400~\text{Hz}\pm50~\text{kHz}~\text{dev}$       |
| 22     | $f_0 = 5.5 \text{ MHz} \ \text{FM} \ 400 \ \text{Hz} \pm 50 \ \text{kHz}$ dev level variable |
| 23     | $f_0 = 5.5 \text{ MHz} 90 \text{ dB}\mu \text{ AM } 400 \text{ Hz} 30\%$                     |
| 24     | $f_0 = 5.5 \text{ MHz} 90 \text{dB}\mu \text{ CW}$                                           |
| 25     | f <sub>0</sub> = 5.5 MHz CW level variable                                                   |

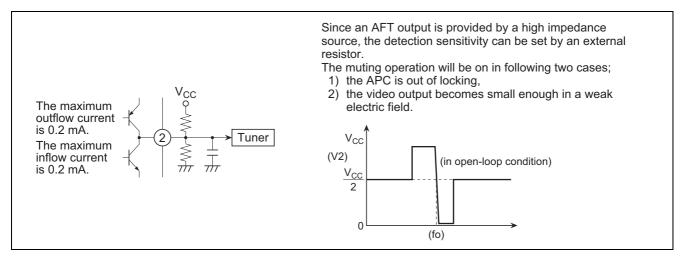
# **Typical Characteristics**



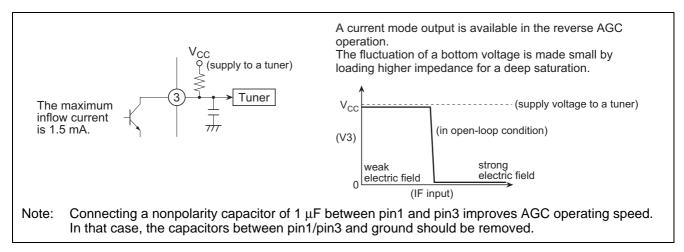




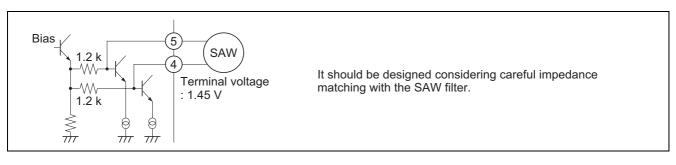



# **Pin Description**


### Pin 1 (RF AGC DELAY)

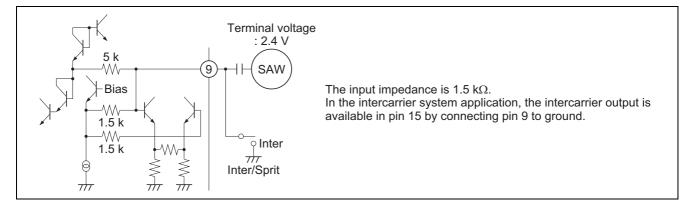



### Pin 2 (AFT OUT)

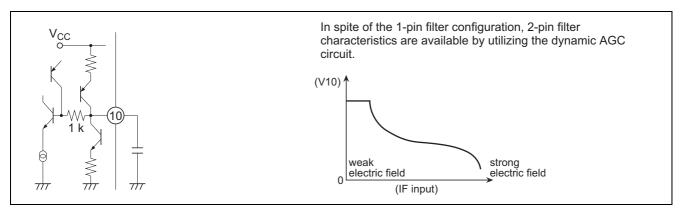


#### Pin 3 (RF AGC OUT)

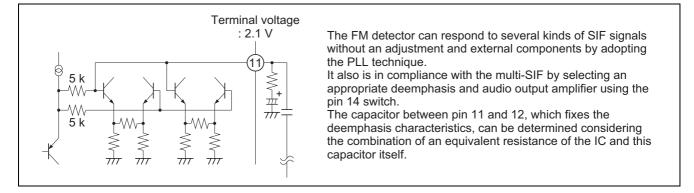



#### Pin 4, Pin 5 (VIF IN)



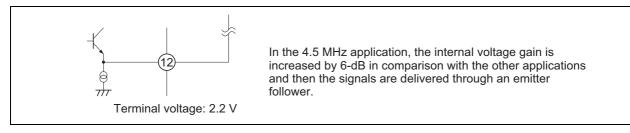



## Pin 6, Pin 7, Pin 8 (GND)

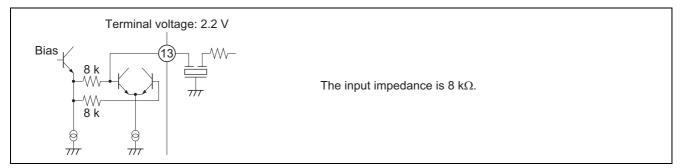

## Pin 9 (QIF DET IN)



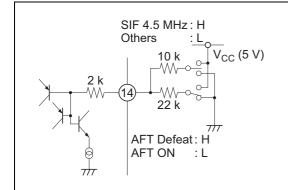
### Pin 10 (IF AGC FILTER)




#### Pin 11 (NFB)





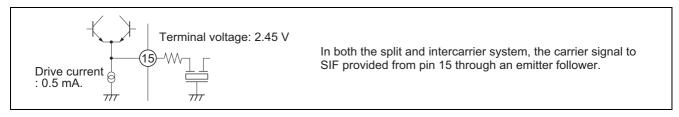


# Pin 12 (AUDIO OUT)



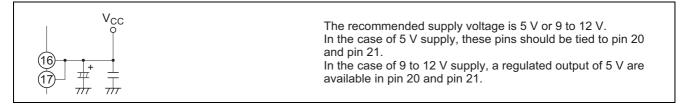
#### Pin 13 (LIMITER IN)



#### Pin 14 (AFT SW/NPSW)

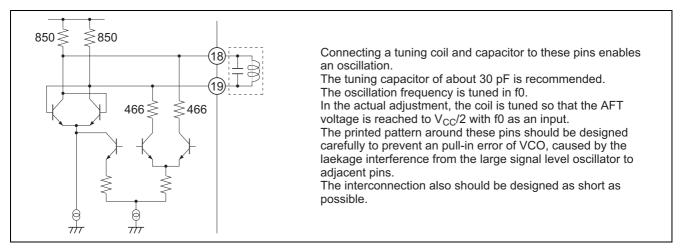



It works as a switch by connecting the resistor to 5 V (High) or GND (Low), alternately.


|     |     |         |        | Pin 14          |
|-----|-----|---------|--------|-----------------|
| 10k | 20k | AF AMP  | AFT    | Applied Voltage |
| Н   | Н   | 4.5 MHz | Defeat | 4.4 to 5.0 V    |
| Н   | L   | 4.5 MHz | Normal | 2.7 to 4.0 V    |
| L   | Н   | Other   | Defeat | 1.0 to 2.3 V    |
| L   | L   | Other   | Normal | 0 to 0.6 V      |

The terminal voltage is set by the external resistors because of an open base input.

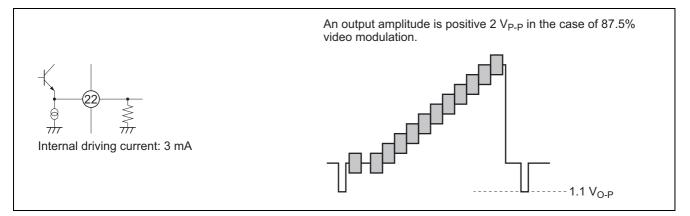
#### Pin 15 (QIF OUT)




### Pin 16, Pin 17 (V<sub>cc</sub>)

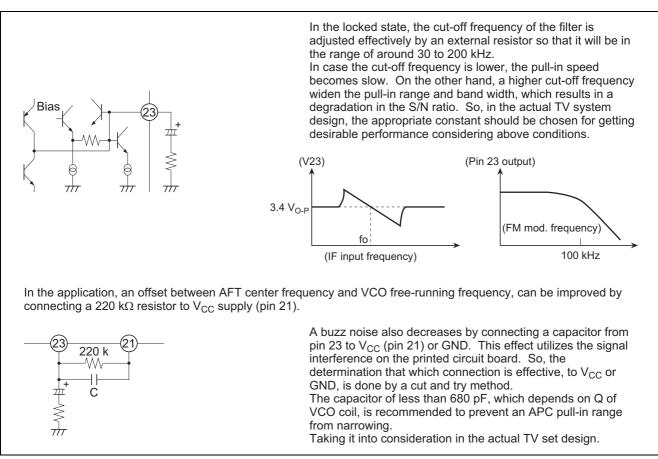





# Pin 18, Pin 19 (VCO COIL)

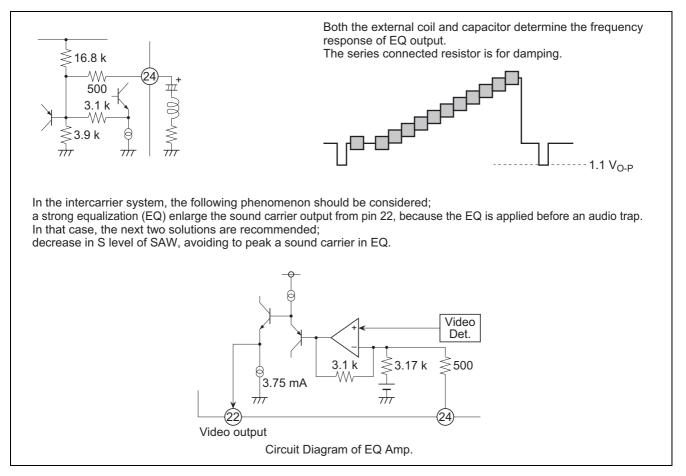


#### Pin 20, Pin 21 (Vreg. OUT)



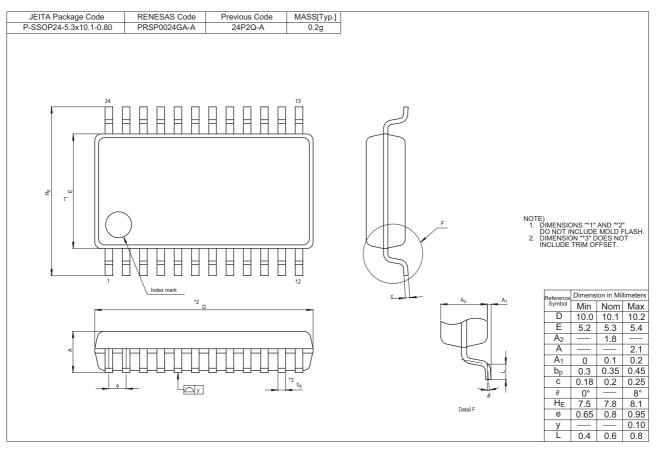

### Pin 22 (VIDEO OUT)






### Pin 23 (APC FILTER)






### Pin 24 (EQ F/B)





# **Package Dimensions**





# Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials
  1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
  2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
  3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
  The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. asyumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
  4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Nonne page (http://www.renessas.com).
  4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or ther loss resulting from the information contained herein.
  5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.



#### **RENESAS SALES OFFICES**

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

#### http://www.renesas.com