

Features

Output Current: Up to 3A
Output Voltage: 0.6V to V_{IN}
Input Voltage: 2.7 to 5.5V

■ Efficiency up to 95%

■ 42µA (Typ) No Load Quiescent Current

Shutdown Current: <1 µA
100% Duty Cycle Operation
1.5MHz Switching Frequency

■ Internal Soft Start

■ No external Compensation Required

■ Current Limit Protection

■ Thermal Shutdown

■ PSOP-8 Package

Applications

■ 5V or 3.3V Point of Load Conversion

■ Telecom/Networking Equipment

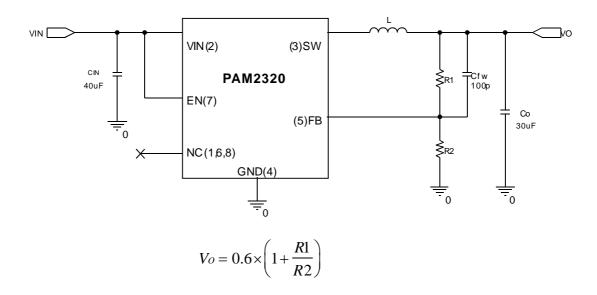
■ Set Top Boxes

■ Storage Equipment

■ Video Cards

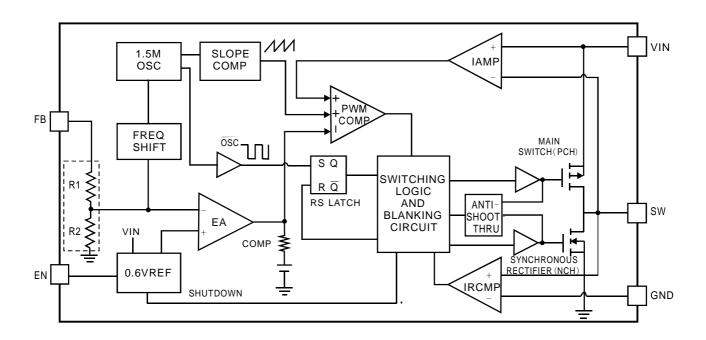
■ DDR Power Supply

Description

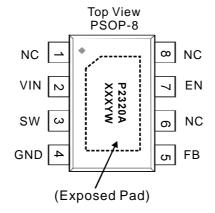

The PAM2320 is a 3A step-down DC-DC converter. At heavy load, the constant-frequency PWM control performs excellent stability and transient response. No external compensation components are required.

The PAM2320 supports a range of input voltages from 2.7V to 5.5V, allowing the use of a single Li+/Li-polymer cell, multiple Alkaline/NiMH cell, and other standard power sources. The output voltage is adjustable from 0.6V to the input voltage. The PAM2320 employs internal power switch and synchronous rectifier to minimize external part count and realize high efficiency. During shutdown, the input is disconnected from the output and the shutdown current is less than 1µA. Other key features include over-temperature and short circuit protection, and under-voltage lockout to prevent deep battery discharge.

The PAM2320 delivers 3A maximum output current while consuming only $42\mu A$ of no-load quiescent current. Ultra-low RDS(ON) integrated MOSFETs and 100% duty cycle operation make the PAM2320 an ideal choice for high output voltage, high current applications which require a low dropout threshold.


The PAM2320 is available in PSOP8 package.

Typical Application



Block Diagram

Pin Configuration & Marking Information

P2320:PAM2320

A: Adjustable OutputX: Internal Code

Y: Year W: Week

Pin Description

Name	Pin Number	Function
NC	1	No Connected
VIN	2	Bias supply. Chip main power supply pin
SW	3	The drains of the internal main and synchronous power MOSFET.
GND	4	GND
FB	5	Feedback voltage to internal error amplifier, the threshold voltage is 0.6V.
NC	6	No Connected
ΓNI	7	Enable control input. Force this pin voltage above 1.5V, enables the chip, and
EN	/	below 0.3V shuts down the device.
NC	8	No Connected

Absolute Maximum Ratings

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

Input Voltage V _{IN}	6V
SW Pin Voltage	0.3V to $(V_{IN}+0.3V)$
FB Pin Voltage	0.3V to $(V_{IN}+0.3V)$
EN Pin Voltage	0.3V to 6V

Maximum Junction Temperatur	e150°C
Storage Temperature Range	65°C to 150°C
Soldering Temperature	300°C, 5sec

Recommended Operating Conditions

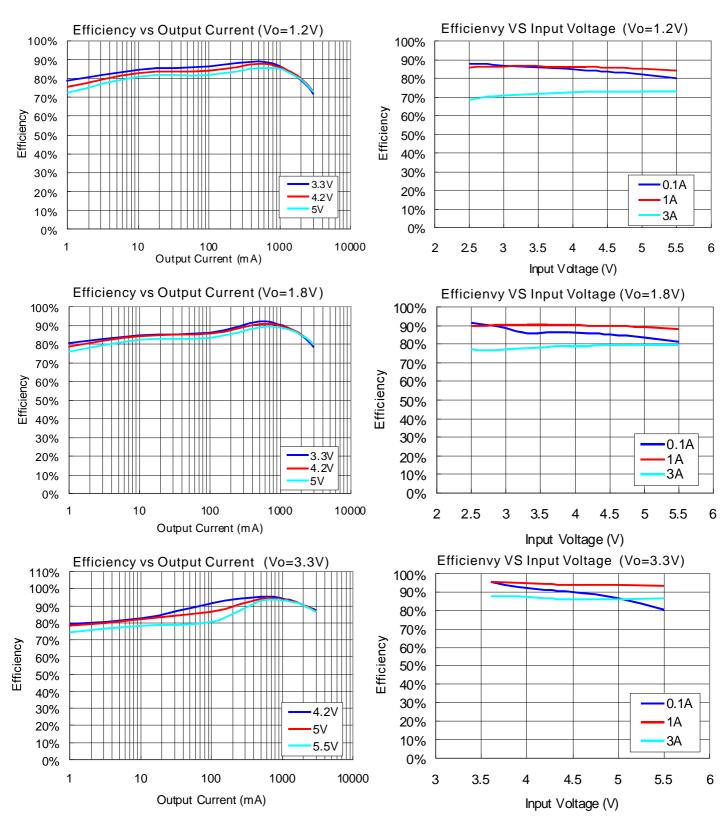
Supply Voltage......2.7V to 5.5V June

Junction Temperature Range.....-40°C to 125°C Ambient Temperature Range....-40°C to 85°C

Thermal Information

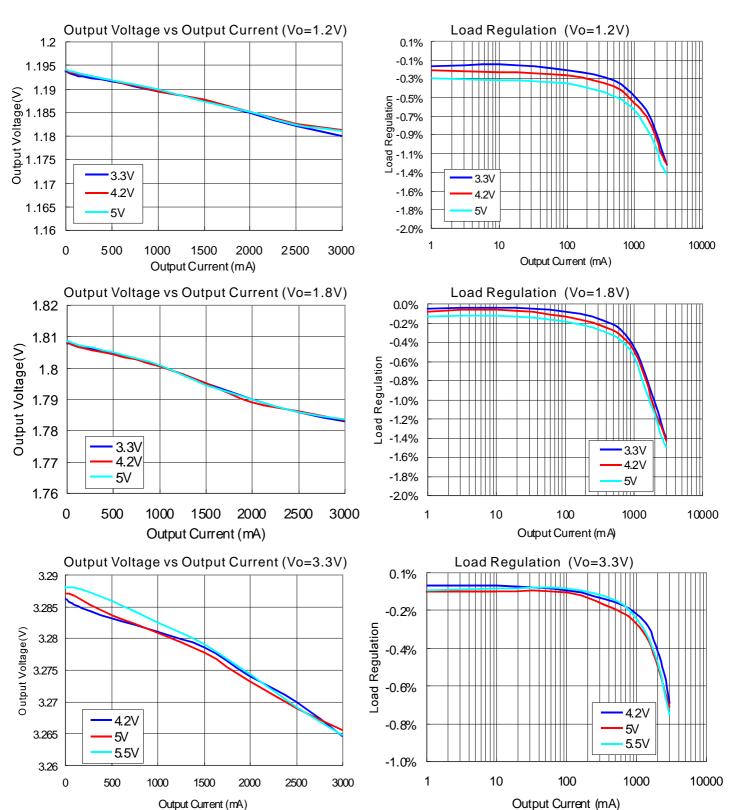
Parameter	Symbol	Package	Maximum	Unit
Thermal Resistance (Junction to Ambient)	θ_{JA}	PSOP-8	90	°C/W
Thermal Resistance (Junction to Case)	θ_{JC}	PSOP-8	11	°C/W
Internal Power Dissipation (@TA=25℃)	P _D	PSOP-8	1100	mW

Electrical Characteristic

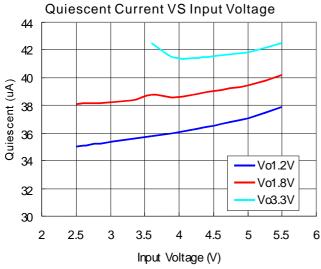

 $T_A=25$ °C, Vin=3.6V, Vo=1.8V, Cin=33uF,Co=22uF, L=2.2uH, unless otherwise noted.

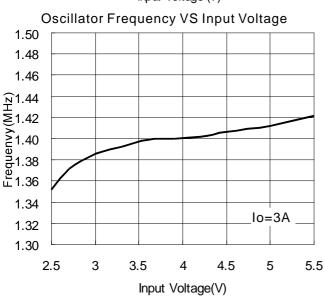
PARAMETER	SYMBOL	Test C	onditions	MIN	TYP	MAX	UNITS
Input Voltage Range	V _{IN}			2.7		5.5	V
Output Voltage Range	Vo			0.6		V_{IN}	V
		V _{IN} Rising			2.4	2.5	V
UVLO Threshold	V_{UVLO}	Hysteresis			240		mV
		V _{IN} Falling		1.8			V
Regulated Output Voltage Accuary	Vo	$I_0 = 0$ to $3A$		-3		+3	%
Regulated Feedback Voltage	V _{FB}			0.591	0.6	0.609	V
FB Leakage Current	I _{FB}	V _O =1V				0.2	μA
Output Voltage Line Regulation	LNR	$V_{IN} = 2.5V \text{ to}$	5V		0.2		%/V
Output Voltage Load Regulation	LDR	I _O =0A to 3A			0.5		%/A
Quiescent Current	lα	No load			42	90	μA
Shutdown Current	I _{SD}	$V_{EN} = 0V$				1	μA
Current Limit	I _{LIM}				4		Α
Oscillator Frequency	f _{OSC}			1.2	1.5	1.8	MHz
Drain-Source On-State Resistance	D		High Side		85		mΩ
Diant-Source Off-State Resistance	R _{DS(ON)}		Low Side		60		mΩ
High Efficiency	η		•		95		%
Analog Soft Start Time	1	From enable to output regulation			0.5		mo
Analog Soft Staft Time	t _s						ms
ENThreshold High	V _{EH}			1.5			V
ENThreshold Low	V _{EL}					0.3	V
EN Leakage Current	I _{EN}	$V_{IN}=V_{EN}=0$	/	-1.0		1.0	μA
Over Temperature Protection	OTP				150		°C
OTP Hysteresis	ОТН				30		°C

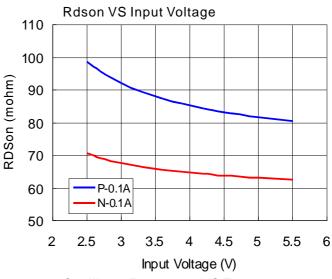
Typical Performance Characteristics

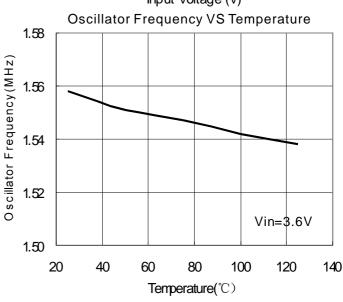

 $T_A = 25$ °C, $C_{IN} = 33$ uF, Co = 22µF unless otherwise noted.

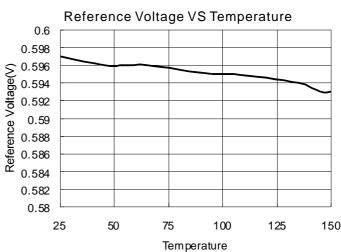
Typical Performance Characteristics


 $T_A = 25$ °C, $C_{IN} = 33$ uF, Co = 22µF unless otherwise noted.




Typical Performance Characteristics


 $T_A = 25$ °C, $C_{IN} = 33$ uF, Co = 22µF unless otherwise noted.



Application Information

The basic PAM2320 application circuit is shown in Page 1. External component selection is determined by the load requirement, selecting L first and then Cin and Cout.

Inductor Selection

For most applications, the value of the inductor will fall in the range of $1\mu H$ to $3.3\mu H$. Its value is chosen based on the desired ripple current and efficiency. Large value inductors lower ripple current and small value inductors result in higher ripple currents. Higher V_{IN} or Vout also increases the ripple current as shown in equation 3A reasonable starting point for setting ripple current is $\triangle I_{L} = 1.2A$ (40% of 3A).

$$\Delta I_{L} = \frac{1}{(f)(L)} V_{OUT} \left(1 - \frac{V_{OUT}}{V_{N}} \right)$$
 (1)

The DC current rating of the inductor should be at least equal to the maximum load current plus half the ripple current to prevent core saturation. Thus, a 4.2A rated inductor should be enough for most applications (3A + 1.2A). For better efficiency, choose a low DC-resistance inductor.

Vo	1.2V	1.5V	1.8V	2.5V	3.3V
L	1µH	1.5µH	2.2µH	2.2µH	3.3µH

C_{IN} and C_{OUT} Selection

In continuous mode, the source current of the top MOSFET is a square wave of duty cycle Vout/Vin. To prevent large voltage transients, a low ESR input capacitor sized for the maximum RMS current must be used. The maximum RMS capacitor current is given by:

Cin required IRMS
$$\cong$$
 IOMAX $\frac{\left[V_{OUT}(V_{IN}-V_{OUT})\right]^{1/2}}{V_{IN}}$

This formula has a maximum at $V_{\text{IN}}=2V$ out, where $I_{\text{RMS}}=I_{\text{OUT}}/2$. This simple worst-case condition is commonly used for design because even significant deviations do not offer much relief. Note that the capacitor manufacturer's ripple current ratings are often based on 2000 hours of life. This makes it advisable to further derate the capacitor, or choose a capacitor rated at a higher temperature than required. Consult the manufacturer if there is any question.

The selection of Cout is driven by the required effective series resistance (ESR).

Typically, once the ESR requirement for Cout has been met, the RMS current rating generally far exceeds the $I_{RIPPLE}(P-P)$ requirement. The output ripple $\triangle Vout$ is determined by:

$$\triangle Vout \approx \triangle IL(ESR+1/8fCout)$$

Where f = operating frequency, C_{out} =output capacitance and ΔI_{L} = ripple current in the inductor. For a fixed output voltage, the output ripple is highest at maximum input voltage since ΔI_{L} increases with input voltage.

Using Ceramic Input and Output Capacitors

Higher values, lower cost ceramic capacitors are now becoming available in smaller case sizes. Their high ripple current, high voltage rating and low ESR make them ideal for switching regulator applications. Using ceramic capacitors can achieve very low output ripple and small circuit size

When choosing the input and output ceramic capacitors, choose the X5R or X7R dielectric formulations. These dielectrics have the best temperature and voltage characteristics of all the ceramics for a given value and size.

Thermal consideration

Thermal protection limits power dissipation in the PAM2320. When the junction temperature exceeds 150°C, the OTP (Over Temperature Protection) starts the thermal shutdown and turns the pass transistor off. The pass transistor resumes operation after the junction temperature drops below 120°C.

For continuous operation, the junction temperature should be maintained below 125°C. The power dissipation is defined as:

$$P_{_{D}} = I_{_{O}}^{2} \frac{V_{_{O}}R_{_{DSONH}} + (V_{_{IN}} - V_{_{O}})R_{_{DSONL}}}{V_{_{IN}}} + (t_{_{SW}}F_{_{S}}I_{_{O}} + I_{_{Q}})V_{_{IN}}$$

 I_{α} is the step-down converter quiescent current. The term tsw is used to estimate the full load step-down converter switching losses.

For the condition where the step-down converter is in dropout at 100% duty cycle, the total device dissipation reduces to:

$$P_D = I_O^2 R_{DSONH} + I_Q V_{IN}$$

Since R_{DS(ON)}, quiescent current, and switching losses all vary with input voltage, the total losses should be investigated over the complete input voltage range. The maximum power dissipation depends on the thermal resistance of IC package, PCB layout, the rate of surrounding airflow and temperature difference between junction and ambient. The maximum power dissipation can be calculated by the following formula:

$$P_{D} = \frac{T_{J(MAX)} - T_{A}}{\theta_{JA}}$$

Where TJ(max) is the maximum allowable junction temperature 125°C. T_A is the ambient temperature and θ_{JA} is the thermal resistance from the junction to the ambient. Based on the standard JEDEC for a two layers thermal test board, the thermal resistance θ_{JA} of SOP-8(EP) 90°C/W respectively. The maximum power dissipation at T_A = 25°C can be calculated by following formula:

$$P_p = (125^{\circ}C - 25^{\circ}C)/90^{\circ}C/W = 1.11W(SOP-8)$$

Setting the Output Voltage

The internal reference is 0.6V (Typical). The output voltage is calculated as below:

The output voltage is given by Table 1.

$$V_0=0.6x(1+\frac{R1}{R2})$$

Table 1: Resistor recommend for output voltage setting

Vo	R1	R2
1.2V	150k	1 <i>5</i> 0k
1.5V	225k	1 <i>5</i> 0k
1.8V	300k	1 <i>5</i> 0k
2.5V	475k	1 <i>5</i> 0k
3.3V	680k	1 <i>5</i> 0k

100% Duty Cycle Operation

As the input voltage approaches the output voltage, the converter turns the P-channel transistor continuously on. In this mode the output voltage is equal to the input voltage minus the voltage drop across the P - channel transistor:

$$V_{OUT} = V_{IN} - I_{LOAD} (R_{dson} + R_{L})$$

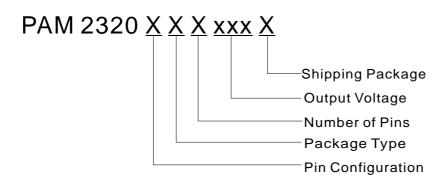
where R_{dson} = P-channel switch ON resistance, I_{LOAD} = Output current, R_{L} = Inductor DC resistance

UVLO and Soft-Start

The reference and the circuit remain reset until the VIN crosses its UVLO threshold.

The PAM2320 has an internal soft-start circuit that limits the in-rush current during start-up. This prevents possible voltage drops of the input voltage and eliminates the output voltage overshoot. The soft-start make the output voltage rise up smoothly.

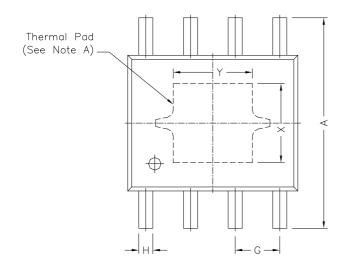
Short Circuit Protection

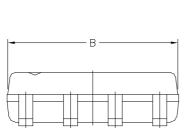

The switch peak current is limited cycle-by-cycle to a typical value of 4A. In the event of an output voltage short circuit, the device operates with a frequency of 500kHz and minimum duty cycle, therefore the average input current is more smaller than current limit.

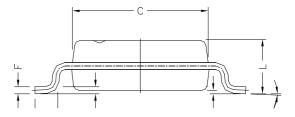
Thermal Shutdown

When the die temperature exceeds 150°C, a reset occurs and the reset remains until the temperature decrease to 120°C, at which time the circuit can be restarted.

Ordering Information


Pin Configuration	Package Type	Number of Pins	Output Voltage
В Туре	E: PSOP-8	C: 8	ADJ: Adj
8 pins			


Part Number	Output Voltage	Package Type	Shipping Package
PAM2320BECADJR	ADJ	PS OP-8	2,500 Units/Tape & Reel


Outline Dimensions

PSOP-8

REF.		DIMENSIONS		
		Millimeters		
		Min.	Max.	
А		5.80	6.20	
В		4.80	5.00	
С		3.80	4.00	
D		0.	8°	
Е		0.40	0.90	
F		0.19	0.25	
М		0	0.15	
Н		0.35	0.49	
L		1.35	1.75	
G		1.27 TYP.		
Option1	Χ	2.28		
	Υ	2.28		
Option2	Χ	2.41		
	Υ	3.30		

