Dual High-Voltage Trench MOS Barrier Schottky Rectifier
 Ultra Low $\mathrm{V}_{\mathrm{F}}=0.50 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~A}$

TO-263AB

VB20100C

ITO-220AB

VF20100C

TO-262AA

VI20100C

PRIMARY CHARACTERISTICS	
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$2 \times 10 \mathrm{~A}$
$\mathrm{~V}_{\mathrm{RRM}}$	100 V
$\mathrm{I}_{\mathrm{FSM}}$	150 A
$\mathrm{~V}_{\mathrm{F}}$ at $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}$	0.58 V
$\mathrm{~T}_{J} \max$.	$150^{\circ} \mathrm{C}$

FEATURES

- Trench MOS Schottky technology
- Low forward voltage drop, low power losses
- High efficiency operation
- Meets MSL level 1, per J-STD-020, LF maximum peak of $245^{\circ} \mathrm{C}$ (for TO-263AB package)
- Solder bath temperature $275{ }^{\circ} \mathrm{C}$ maximum, 10 s , per JESD 22-B106 (for TO-220AB, ITO-220AB and TO-262AA package)
- Compliant to RoHS directive 2002/95/EC and in accordance to WEEE 2002/96/EC

TYPICAL APPLICATIONS

For use in high frequency converters, switching power supplies, freewheeling diodes, OR-ing diode, dc-to-dc converters and reverse battery protection.

MECHANICAL DATA

Case: TO-220AB, ITO-220AB, TO-263AB and TO-262AA
Molding compound meets UL 94 V-0 flammability rating
Base P/N-E3 - RoHS compliant, commercial grade
Terminals: Matte tin plated leads, solderable per J-STD-002 and JESD 22-B102
E3 suffix meets JESD 201 class 1A whisker test
Polarity: As marked
Mounting Torque: 10 in-lbs maximum

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

PARAMETER	SYMBOL	V20100C	VF20100C	VB20100C	VI20100C	UNIT
Maximum repetitive peak reverse voltage	$V_{\text {RRM }}$	100				V
Maximum average forward rectified current (fig. 1) $\begin{aligned} & \text { per device } \\ & \text { per diode }\end{aligned}$	$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	$\begin{aligned} & 20 \\ & 10 \end{aligned}$				A
Peak forward surge current 8.3 ms single half sine-wave superimposed on rated load per diode	$\mathrm{I}_{\text {FSM }}$	150				A
Non-repetitive avalanche energy at $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{L}=60 \mathrm{mH}$ per diode	$\mathrm{E}_{\text {AS }}$	150				mJ
Peak repetitive reverse current at $\mathrm{t}_{\mathrm{p}}=2 \mu \mathrm{~s}, 1 \mathrm{kHz}$, $\mathrm{T}_{\mathrm{J}}=38^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$ per diode	$\mathrm{I}_{\text {RRM }}$	1.0				A
Voltage rate of change (rated V_{R})	$\mathrm{dV} / \mathrm{dt}$	10000				$\mathrm{V} / \mu \mathrm{s}$
Isolation voltage (ITO-220AB only) from terminal to heatsink $t=1 \mathrm{~min}$	V_{AC}	1500				V
Operating junction and storage temperature range	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	-40 to +150				${ }^{\circ} \mathrm{C}$

Vishay General Semiconductor

PARAMETER	TEST CONDITIONS		SYMBOL	TYP.	MAX.	UNIT
Breakdown voltage per diode	$\mathrm{I}_{\mathrm{R}}=10 \mathrm{~mA}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	V_{BR}	105 (minimum)	-	V
Instantaneous forward voltage per diode ${ }^{(1)}$	$\begin{aligned} & I_{F}=5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	V_{F}	$\begin{aligned} & 0.55 \\ & 0.65 \end{aligned}$	0.79	V
	$\begin{aligned} & I_{F}=5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=125^{\circ} \mathrm{C}$		$\begin{aligned} & 0.50 \\ & 0.58 \end{aligned}$	0.68	
Reverse current per diode ${ }^{(2)}$	$\mathrm{V}_{\mathrm{R}}=70 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$	$I_{\text {R }}$	$\begin{aligned} & 17 \\ & 5.3 \end{aligned}$	-	$\mu \mathrm{A}$ mA
	$\mathrm{V}_{\mathrm{R}}=100 \mathrm{~V}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=125^{\circ} \mathrm{C} \end{aligned}$		12	$\begin{gathered} 800 \\ 25 \end{gathered}$	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$

Notes

${ }^{(1)}$ Pulse test: $300 \mu \mathrm{~s}$ pulse width, 1% duty cycle
${ }^{(2)}$ Pulse test: Pulse width $\leq 40 \mathrm{~ms}$

THERMAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)						
PARAMETER	SYMBOL	V20100C	VF20100C	VB20100C	VI20100C	UNIT
Typical thermal resistance per diode	$\mathrm{R}_{\text {өJC }}$	2.8	5.5	2.8	2.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ORDERING INFORMATION (Example)						
PACKAGE	PREFERRED P/N	UNIT WEIGHT (g)	PACKAGE CODE	BASE QUANTITY	DELIVERY MODE	
TO-220AB	V20100C-E3/4W	1.881	4 W	$50 /$ tube	Tube	
ITO-220AB	VF20100C-E3/4W	1.75	4 W	$50 /$ tube	Tube	
TO-263AB	VB20100C-E3/4W	1.39	4 W	$50 /$ tube	Tube	
TO-263AB	VB20100C-E3/8W	1.39	8 W	$800 /$ reel	Tape and reel	
TO-262AA	VI20100C-E3/4W	1.452	4 W	$50 /$ tube	Tube	

RATINGS AND CHARACTERISTICS CURVES

($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Figure 1. Maximum Forward Current Derating Curve

Figure 2. Forward Power Loss Characteristics Per Diode

V20100C, VF20100C, VB20100C \& VI20100C

Figure 3. Typical Instantaneous Forward Characteristics Per Diode

Figure 4. Typical Reverse Characteristics Per Diode

Figure 6. Typical Transient Thermal Impedance Per Diode

Figure 7. Typical Transient Thermal Impedance Per Diode

Figure 5. Typical Junction Capacitance Per Diode

Vishay General Semiconductor

PACKAGE OUTLINE DIMENSIONS in inches (millimeters)

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Vishay:
V20100C-E3/4W VB20100C-E3/4W VB20100C-E3/8W VI20100C-E3/4W VF20100C-E3/4W

