

19-Output Differential Zbuffer for PCle Gen2/3 and QPI

9ZX21901B

Description

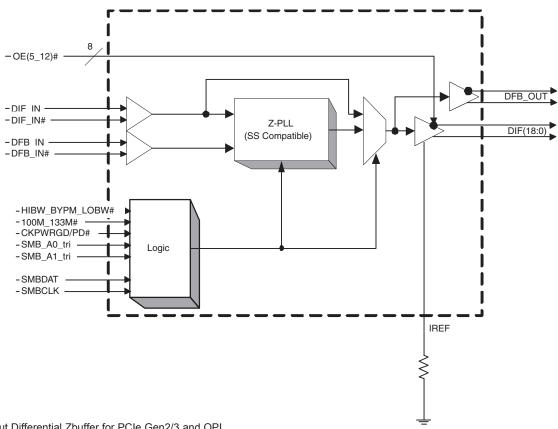
The 9ZX21901 is Intel DB1900Z Differential Buffer suitable for PCI-Express Gen3 or QPI applications. The part is backwards compatible to PCIe Gen1 and Gen2. A fixed external feedback maintains low drift for critical QPI applications. In bypass mode, the 9ZX21901 can provide outputs up to 400MHz

Recommended Application

19 output PCIe Gen3/QPI buffer with fixed feedback for Romley platforms

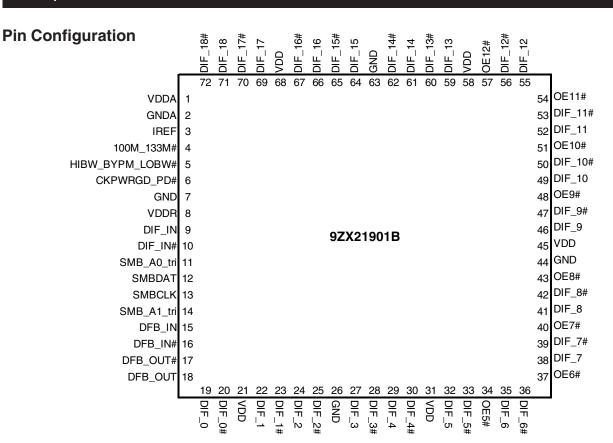
Output Features

19 - 0.7V current mode differential HCSL output pairs


Features/Benefits

- Fixed feedback path/ 0ps input-to-output delay
- 9 Selectable SMBus addresses/ Multiple devices can share same SMBus segment
- 8 dedicated OE# pins/ hardware control of outputs
- PLL or bypass mode/ PLL can dejitter incoming clock
- Selectable PLL BW/ minimizes jitter peaking in downstream PLL's
- Spread spectrum compatible/tracks spreading input clock for EMI reduction
- SMBus Interface/ unused outputs can be disabled
- 100MHz & 133.33MHz PLL mode/ Legacy QPI support
- Undriven differential outputs in Power Down mode for maximum power savings

Key Specifications


- Cycle-to-cycle jitter: < 50ps
- Output-to-output skew: <65ps
- Input-to-output delay: Fixed at 0 ps
- Input-to-output delay variation: <50ps
- Phase jitter: PCle Gen3 < 1ps rms
- Phase jitter: QPI 9.6GB/s < 0.2ps rms

Functional Block Diagram

IDT® 19-Output Differential Zbuffer for PCle Gen2/3 and QPI

1586J - 12/08/11

72-pin MLF

PLL Operating Mode Readback Table

HiBW_BypM_LoBW#	Byte0, bit 7	Byte 0, bit 6
Low (Low BW)	0	0
Mid (Bypass)	0	1
High (High BW)	1	1

Functionality at Power Up (PLL Mode)

100M_133M#	DIF_IN (MHz)	DIF (MHz)
1	100.00	DIF_IN
0	133.33	DIF_IN

PLL Operating Mode

HiBW_BypM_LoBW#	MODE
Low	PLL Lo BW
Mid	Bypass
High	PLL Hi BW

NOTE: PLL is OFF in Bypass Mode

Tri-level Input Thresholds

Level	Voltage					
Low	<0.8V					
Mid	1.2 <vin<1.8v< td=""></vin<1.8v<>					
High	Vin > 2.2V					

Power Connections

Pin Nu		
VDD GND		Description
1	2	Analog PLL
8	7	Analog Input
21, 31, 45, 58, 68	26, 44, 63	DIF clocks

9ZX21901 SMBus Addressing

Pi	n	SMBus Address
SMB_A1_tri	SMB_A0_tri	(Rd/Wrt bit = 0)
0	0	D8
0	М	DA
0	1	DE
М	0	C2
M	М	C4
М	1	C6
1	0	CA
1	M	CC
1	1	CE

IDT® 19-Output Differential Zbuffer for PCIe Gen2/3 and QPI

Pin Description

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
1	VDDA	PWR	3.3V power for the PLL core.
2	GNDA	PWR	Ground pin for the PLL core.
			This pin establishes the reference for the differential current-mode output pairs.
	IDEE		It requires a fixed precision resistor to ground. 475ohm is the standard value
3	IREF	OUT	for 100ohm differential impedance. Other impedances require different values.
			See data sheet.
4	10014 10014	INI	Input to select operating frequency
4	100M_133M#	IN	1 = 100MHz, 0 = 133.33MHz
-	LUDW DVDM LODW#	INI	Trilevel input to select High BW, Bypass or Low BW mode.
5	HIBW_BYPM_LOBW#	IN	See PLL Operating Mode Table for Details.
			Notifies device to sample latched inputs and start up on first high assertion, or
6	CKPWRGD_PD#	IN	exit Power Down Mode on subsequent assertions. Low enters Power Down
			Mode.
7	GND	PWR	Ground pin.
8	VDDR	PWR	3.3V power for differential input clock (receiver). This VDD should be treated
0	VDDA	FWN	as an analog power rail and filtered appropriately.
9	DIF_IN	IN	0.7 V Differential TRUE input
10	DIF_IN#	IN	0.7 V Differential Complementary Input
11	SMB_A0_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the
11	SIVIB_AU_til	IIN	SMB_A1 to decode 1 of 9 SMBus Addresses.
12	SMBDAT	I/O	Data pin of SMBUS circuitry, 5V tolerant
13	SMBCLK	IN	Clock pin of SMBUS circuitry, 5V tolerant
14	SMB_A1_tri	IN	SMBus address bit. This is a tri-level input that works in conjunction with the
17	OWD_AT_UT	111	SMB_A0 to decode 1 of 9 SMBus Addresses.
15	DFB_IN	IN	True half of differential feedback input, provides feedback signal to the PLL for
	<u> </u>	- "\	synchronization with the input clock to elimate phase error.
16	DFB_IN#	IN	Complementary half of differential feedback input, provides feedback signal to
. •			the PLL for synchronization with input clock to elimate phase error.
	DED OUT		Complementary half of differential feedback output, provides feedback signal
17	DFB_OUT#	OUT	to the PLL for synchronization with input clock to eliminate phase error.
18	DFB_OUT	OUT	True half of differential feedback output, provides feedback signal to the PLL
19	DIF_0	OUT	for synchronization with the input clock to eliminate phase error. 0.7V differential true clock output
20	DIF_0#	OUT	0.7V differential true clock output 0.7V differential Complementary clock output
21	VDD	PWR	Power supply, nominal 3.3V
22	DIF 1	OUT	0.7V differential true clock output
23	DIF_1#	OUT	0.7V differential Complementary clock output
24	DIF_2	OUT	0.7V differential true clock output
25	DIF_2#	OUT	0.7V differential Complementary clock output
26	GND	PWR	Ground pin.
27	DIF_3	OUT	0.7V differential true clock output
28	DIF_3#	OUT	0.7V differential Complementary clock output
29	 DIF_4	OUT	0.7V differential true clock output
30	 DIF_4#	OUT	0.7V differential Complementary clock output
31	VDD	PWR	Power supply, nominal 3.3V
32	DIF_5	OUT	0.7V differential true clock output
33	DIF_5#	OUT	0.7V differential Complementary clock output
24		INI	Active low input for enabling DIF pair 5.
34	OE5#	IN	1 =disable outputs, 0 = enable outputs
35	DIF_6	OUT	0.7V differential true clock output
36	DIF_6#	OUT	0.7V differential Complementary clock output
DT® 40	Output Differential Thuffer for F	201- 02/2 -	nd ODI 4596 L 4

IDT® 19-Output Differential Zbuffer for PCIe Gen2/3 and QPI

Pin Description (continued)

PIN#	PIN NAME	PIN TYPE	DESCRIPTION
37	OE6#	IN	Active low input for enabling DIF pair 6.
37	OL0#	IIN	1 =disable outputs, 0 = enable outputs
38	DIF_7	OUT	0.7V differential true clock output
39	DIF_7#	OUT	0.7V differential Complementary clock output
40	OE7#	IN	Active low input for enabling DIF pair 7.
40	OL7#	111	1 =disable outputs, 0 = enable outputs
41	DIF_8	OUT	0.7V differential true clock output
42	DIF_8#	OUT	0.7V differential Complementary clock output
43	OE8#	IN	Active low input for enabling DIF pair 8.
			1 =disable outputs, 0 = enable outputs
44	GND	PWR	Ground pin.
45	VDD	PWR	Power supply, nominal 3.3V
46	DIF_9	OUT	0.7V differential true clock output
47	DIF_9#	OUT	0.7V differential Complementary clock output
48	OE9#	IN	Active low input for enabling DIF pair 9.
			1 =disable outputs, 0 = enable outputs
49	DIF_10	OUT	0.7V differential true clock output
50	DIF_10#	OUT	0.7V differential Complementary clock output
51	OE10#	IN	Active low input for enabling DIF pair 10.
			1 =disable outputs, 0 = enable outputs
52	DIF_11	OUT	0.7V differential true clock output
53	DIF_11#	OUT	0.7V differential Complementary clock output
54	OE11#	IN	Active low input for enabling DIF pair 11.
			1 =disable outputs, 0 = enable outputs
55	DIF_12	OUT	0.7V differential true clock output
56	DIF_12#	OUT	0.7V differential Complementary clock output
57	OE12#	IN	Active low input for enabling DIF pair 12.
			1 =disable outputs, 0 = enable outputs
58	VDD	PWR	Power supply, nominal 3.3V
59	DIF_13	OUT	0.7V differential true clock output
60	DIF_13#	OUT	0.7V differential Complementary clock output
61	DIF_14	OUT	0.7V differential true clock output
62	DIF_14#	OUT	0.7V differential Complementary clock output
63	GND	PWR	Ground pin.
64	DIF_15	OUT	0.7V differential true clock output
65	DIF_15#	OUT	0.7V differential Complementary clock output
66	DIF_16	OUT	0.7V differential true clock output
67	DIF_16#	OUT	0.7V differential Complementary clock output
68	VDD	PWR	Power supply, nominal 3.3V
69	DIF_17	OUT	0.7V differential true clock output
70	DIF_17#	OUT	0.7V differential Complementary clock output
71	DIF_18	OUT	0.7V differential true clock output
72	DIF_18#	OUT	0.7V differential Complementary clock output

Electrical Characteristics - Absolute Maximum Ratings

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
3.3V Core Supply Voltage	VDDA				4.6	V	1,2
3.3V Logic Supply Voltage	VDD				4.6	V	1,2
Input Low Voltage	V_{IL}		GND-0.5			V	1
Input High Voltage	V_{IH}	Except for SMBus interface			$V_{DD}+0.5V$	V	1
Input High Voltage	V_{IHSMB}	SMBus clock and data pins			5.5V	V	1
Storage Temperature	Ts		-65		150	°C	1
Junction Temperature	Tj				125	°C	1
Input ESD protection	ESD prot	Human Body Model	2000			٧	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Input/Supply/Common Parameters

TA = T_{COM;} Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Ambient Operating	т	Commmercial range	0		70	°C	1
Temperature	T _{COM}	Comminercial range	U		70	C	'
Input High Voltage	V_{IH}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	2		V _{DD} + 0.3	٧	1
Input Low Voltage	V_{IL}	Single-ended inputs, except SMBus, low threshold and tri-level inputs	GND - 0.3		0.8	٧	1
	I _{IN}	Single-ended inputs, $V_{IN} = GND$, $V_{IN} = VDD$	-5		5	uA	1
Input Current	I _{INP}	$\label{eq:single-ended} Single-ended inputs \\ V_{IN} = 0 \text{ V}; \text{ Inputs with internal pull-up resistors} \\ V_{IN} = \text{VDD}; \text{ Inputs with internal pull-down resistors}$	-200		200	uA	1
	F_{ibyp}	V _{DD} = 3.3 V, Bypass mode	33		400	MHz	2
Input Frequency	F_{ipll}	$V_{DD} = 3.3 \text{ V}, 100\text{MHz PLL mode}$	90	100.00	105	MHz	2
	F_{ipll}	$V_{DD} = 3.3 \text{ V}, 133.33 \text{MHz PLL mode}$	120	133.33	140	MHz	2
Pin Inductance	L_{pin}				7	nΗ	1
	C_{IN}	Logic Inputs, except DIF_IN	1.5		5	pF	1
Capacitance	C _{INDIF_IN}	DIF_IN differential clock inputs	1.5		2.7	pF	1,4
	C _{OUT}	Output pin capacitance			6	pF	1
Clk Stabilization	T _{STAB}	From V _{DD} Power-Up and after input clock stabilization or de-assertion of PD# to 1st clock			1.8	ms	1,2
Input SS Modulation Frequency	f _{MODIN}	Allowable Frequency (Triangular Modulation)	30		33	kHz	1
OE# Latency	t _{LATOE} #	DIF start after OE# assertion DIF stop after OE# deassertion	1		3	cycles	1,3
Tdrive_PD#	t _{DRVPD}	DIF output enable after PD# de-assertion			300	us	1,3
Tfall	t _F	Fall time of control inputs			5	ns	1,2
Trise	t _R	Rise time of control inputs			5	ns	1,2
SMBus Input Low Voltage	V_{ILSMB}				0.8	V	1
SMBus Input High Voltage	V_{IHSMB}		2.1		V_{DDSMB}	V	1
SMBus Output Low Voltage	V_{OLSMB}	@ I _{PULLUP}			0.4	V	1
SMBus Sink Current	I _{PULLUP}	@ V _{OL}	4			mA	1
Nominal Bus Voltage	V_{DDSMB}	3V to 5V +/- 10%	2.7		5.5	V	1
SCLK/SDATA Rise Time	t _{RSMB}	(Max VIL - 0.15) to (Min VIH + 0.15)			1000	ns	1
SCLK/SDATA Fall Time	t _{FSMB}	(Min VIH + 0.15) to (Max VIL - 0.15)			300	ns	1
SMBus Operating Frequency	f _{MAXSMB}	Maximum SMBus operating frequency			100	kHz	1,5

¹Guaranteed by design and characterization, not 100% tested in production.

1586J - 12/08/11

² Operation under these conditions is neither implied nor guaranteed.

 $^{^2\}mbox{Control}$ input must be monotonic from 20% to 80% of input swing.

³Time from deassertion until outputs are >200 mV

⁴ DIF_IN input

 $^{^5} The$ differential input clock must be running for the SMBus to be active ${\bf IDT}^{\rm o}$ 19-Output Differential Zbuffer for PCIe Gen2/3 and QPI

Electrical Characteristics - Clock Input Parameters

TA = T_{COM}: Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Input High Voltage - DIF_IN	V _{IHDIF}	Differential inputs (single-ended measurement)	600	750	1150	mV	1
Input Low Voltage - DIF_IN	V _{ILDIF}	Differential inputs (single-ended measurement)	V _{SS} - 300	0	300	mV	1
Input Common Mode Voltage - DIF_IN	V_{COM}	Common Mode Input Voltage	300		1000	mV	1
Input Amplitude - DIF_IN	V_{SWING}	Peak to Peak value	300		1450	mV	1
Input Slew Rate - DIF_IN	dv/dt	Measured differentially	0.4		8	V/ns	1,2
Input Leakage Current	I _{IN}	$V_{IN} = V_{DD}$, $V_{IN} = GND$	-5		5	uA	1
Input Duty Cycle	d_{tin}	Measurement from differential wavefrom	45		55	%	1
Input Jitter - Cycle to Cycle	J_{DIFIn}	Differential Measurement	0		125	ps	1

¹ Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - DIF 0.7V Current Mode Differential Outputs

TA = T_{COM}: Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

TOOM, Capping Tallage							
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Slew rate	dV/dt	Scope averaging on	1	2.5	4	V/ns	1, 2, 3
Slew rate matching	∆dV/dt	Slew rate matching, Scope averaging on			20	%	1, 2, 4
Rise/Fall Time Matching	Trf	Rise/fall matching, Scope averaging off			125	ps	1, 7, 8
Voltage High	VHigh	Statistical measurement on single-ended signal using oscilloscope math function. (Scope	660	750	850	mV	1
Voltage Low	VLow	averaging on)	-150		150	IIIV	1
Max Voltage	Vmax	Measurement on single ended signal using			1150	mV	1
Min Voltage	Vmin	absolute value. (Scope averaging off)	-300			IIIV	1
Vswing	Vswing	Scope averaging off	300			mV	1, 2
Crossing Voltage (abs)	Vcross_abs	Scope averaging off	250	·	550	mV	1, 5
Crossing Voltage (var)	Δ-Vcross	Scope averaging off		·	140	mV	1, 6

¹Guaranteed by design and characterization, not 100% tested in production. IREF = VDD/(3xR_R). For R_R = 475 Ω (1%), I_{REF} = 2.32mA. I_{OH} = 6 x I_{REF} and V_{OH} = 0.7V @ Z_O=50 Ω (100 Ω differential impedance).

²Slew rate measured through +/-75mV window centered around differential zero

² Measured from differential waveform

³ Slew rate is measured through the Vswing voltage range centered around differential 0V. This results in a +/-150mV window around differential 0V.

⁴ Matching applies to rising edge rate for Clock and falling edge rate for Clock#. It is measured using a +/-75mV window centered on the average cross point where Clock rising meets Clock# falling. The median cross point is used to calculate the voltage thresholds the oscilloscope is to use for the edge rate calculations.

⁵ Vcross is defined as voltage where Clock = Clock# measured on a component test board and only applies to the differential rising edge (i.e. Clock rising and Clock# falling).

⁶ The total variation of all Vcross measurements in any particular system. Note that this is a subset of V_cross_min/max (V_cross absolute) allowed. The intent is to limit Vcross induced modulation by setting V_cross_delta to be smaller than V_cross absolute.

⁷ Measured from single-ended waveform

⁸ Measured with scope averaging off, using statistics function. Variation is difference between min and max.

Electrical Characteristics - Current Consumption

TA = T_{COM}; Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
Operating Supply Current	I _{DD3.3OP}	All outputs active @100MHz, C _L = Full load;		407	500	mA	1
Powerdown Current	I _{DD3.3PDZ}	All differential pairs tri-stated		12	36	mA	1

¹Guaranteed by design and characterization, not 100% tested in production.

Electrical Characteristics - Skew and Differential Jitter Parameters

TA = T_{COM}: Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	NOTES
CLK_IN, DIF[x:0]	t _{SPO_PLL}	Input-to-Output Skew in PLL mode nominal value @ 25°C, 3.3V	-300	-200	-100	ps	1,2,4,5,8
CLK_IN, DIF[x:0]	t _{PD_BYP}	Input-to-Output Skew in Bypass mode nominal value @ 25°C, 3.3V	2.5	3.5	4.5	ns	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSPO_PLL}	Input-to-Output Skew Varation in PLL mode across voltage and temperature	-50	0	50	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSPO_BYP}	Input-to-Output Skew Varation in Bypass mode across voltage and temperature	-250		250	ps	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DTE}	Random Differential Tracking error beween two 9ZX devices in Hi BW Mode		3	5	ps (rms)	1,2,3,5,8
CLK_IN, DIF[x:0]	t _{DSSTE}	Random Differential Spread Spectrum Tracking error beween two 9ZX devices in Hi BW Mode		15	75	ps	1,2,3,5,8
DIF{x:0]	t _{SKEW_ALL}	Output-to-Output Skew across all outputs (Common to Bypass and PLL mode)		45	65	ps	1,2,3,8
PLL Jitter Peaking	j _{peak-hibw}	LOBW#_BYPASS_HIBW = 1	0	1	2.5	dB	7,8
PLL Jitter Peaking	j _{peak-lobw}	LOBW#_BYPASS_HIBW = 0	0	1	2	dB	7,8
PLL Bandwidth	pll _{HIBW}	LOBW#_BYPASS_HIBW = 1	2	3	4	MHz	8,9
PLL Bandwidth	pll _{LOBW}	LOBW#_BYPASS_HIBW = 0	0.7	1	1.4	MHz	8,9
Duty Cycle	t _{DC}	Measured differentially, PLL Mode	45	50	55	%	1
Duty Cycle Distortion	t _{DCD}	Measured differentially, Bypass Mode @100MHz	-2	0	2	%	1,10
Jitter, Cycle to cycle	t _{icyc-cyc}	PLL mode		24	50	ps	1,11
		Additive Jitter in Bypass Mode		20	50	ps	1,11

Notes for preceding table:

¹ Measured into fixed 2 pF load cap. Input to output skew is measured at the first output edge following the corresponding input. Feedback path is 695 mils long.

² Measured from differential cross-point to differential cross-point. This parameter can be tuned with external feedback path, if present.

³ All Bypass Mode Input-to-Output specs refer to the timing between an input edge and the specific output edge created by it.

⁴ This parameter is deterministic for a given device

⁵ Measured with scope averaging on to find mean value. DIF_IN slew rate must be matched to DIF output slew rate.

⁶t is the period of the input clock

⁷ Measured as maximum pass band gain. At frequencies within the loop BW, highest point of magnification is called PLL jitter peaking.

^{8.} Guaranteed by design and characterization, not 100% tested in production.

⁹ Measured at 3 db down or half power point.

¹⁰ Duty cycle distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode.

¹¹ Measured from differential waveform

Electrical Characteristics - Phase Jitter Parameters

 $TA = T_{COM}$; Supply Voltage VDD/VDDA = 3.3 V +/-5%, See Test Loads for Loading Conditions

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	Notes
	t _{jphPCleG1}	PCIe Gen 1		36	86	ps (p-p)	1,2,3
	t	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		1.2	3	ps (rms)	1,2
	t _{jphPCle} G2	PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		1.9	3.1	ps (rms)	1,2
Jitter, Phase	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.5	1	ps (rms)	1,2,4
		QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.31	0.5	ps (rms)	1,5
	t _{jphQPI_} SMI	QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.21	0.3	ps (rms)	1,5
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.17	0.2	ps (rms)	1,5
	t _{jphPCleG1}	PCIe Gen 1		4	10	ps (p-p)	1,2,3
	t _{jphPCleG2}	PCIe Gen 2 Lo Band 10kHz < f < 1.5MHz		0.25	0.3	ps (rms)	1,2,6
		PCIe Gen 2 High Band 1.5MHz < f < Nyquist (50MHz)		0.57	0.7	ps (rms)	1,2,6
Additive Phase Jitter, Bypass mode	t _{jphPCleG3}	PCIe Gen 3 (PLL BW of 2-4MHz, CDR = 10MHz)		0.20	0.3	ps (rms)	1,2,4,6
Bypace meas	t _{jphQPI_} SMI	QPI & SMI (100MHz or 133MHz, 4.8Gb/s, 6.4Gb/s 12UI)		0.22	0.3	ps (rms)	1,5,6
		QPI & SMI (100MHz, 8.0Gb/s, 12UI)		0.08	0.1	ps (rms)	1,5,6
		QPI & SMI (100MHz, 9.6Gb/s, 12UI)		0.08	0.1	ps (rms)	1,5,6

¹ Applies to all outputs.

² See http://www.pcisig.com for complete specs

³ Sample size of at least 100K cycles. This figures extrapolates to 108ps pk-pk @ 1M cycles for a BER of 1-12.

⁴ Subject to final radification by PCI SIG.

 $^{^{\}rm 5}$ Calculated from Intel-supplied Clock Jitter Tool v 1.6.3

⁶ For RMS figures, additive jitter is calculated by solving the following equation: (Additive jitter)^2 = (total jitter)^2 - (input jitter)^2

Clock Periods - Differential Outputs with Spread Spectrum Disabled

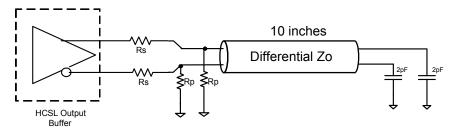
				N	/leasurement	Window					
	Center	1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock			
SSC OFF	Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes	
DIF	100.00	9.94900		9.99900	10.00000	10.00100		10.05100	ns	1,2,3	
DIF	133.33	7.44925		7.49925	7.50000	7.50075		7.55075	ns	1,2,4	

Clock Periods - Differential Outputs with Spread Spectrum Enabled

		Measurement Window								
		1 Clock	1us	0.1s	0.1s	0.1s	1us	1 Clock		
SSC ON	Center Freq. MHz	-c2c jitter AbsPer Min	-SSC Short-Term Average Min	- ppm Long-Term Average Min	0 ppm Period Nominal	+ ppm Long-Term Average Max	+SSC Short-Term Average Max	+c2c jitter AbsPer Max	Units	Notes
DIF	99.75	9.94906	9.99906	10.02406	10.02506	10.02607	10.05107	10.10107	ns	1,2,3
DIF	133.00	7.44930	7.49930	7.51805	7.51880	7.51955	7.53830	7.58830	ns	1,2,4

Notes:

Power Management Table


Inputs			Contro	l Bits/Pins		Outputs	PLL
CKPWRGD_PD#	DIF_IN/ DIF_IN#			DFB_OUT/ DFB_OUT#	State		
0	Х	Х	Х	Hi-Z ¹	Hi-Z ¹	Hi-Z ¹	OFF
		0	Х	Hi-Z ¹	Hi-Z ¹	Running	ON
1	Running	1	0	Running	Running	Running	ON
		1	1	Hi-Z ¹	Running	Running	ON

NOTE:

Differential Output Termination Table

Dinorona o	atput it	<i>n</i> minia	OII I GDIO
DIF Zo (Ω)	Iref (Ω)	Rs (Ω)	Rp (Ω)
100	475	33	50
85	412	27	43.2

9ZX21901 Differential Test Loads

¹Guaranteed by design and characterization, not 100% tested in production.

² All Long Term Accuracy specifications are guaranteed with the assumption that the input clock complies with CK420BQ/CK410B+ accuracy requirements (+/-100ppm). The 9ZX21901 itself does not contribute to ppm error.

³ Driven by SRC output of main clock, 100 MHz PLL Mode or Bypass mode

⁴ Driven by CPU output of main clock, 133 MHz PLL Mode or Bypass mode

^{1.} Due to external pull down resistors, HI-Z results in Low/Low on the True/Complement outputs

General SMBus serial interface information for the 9ZX21901B (See also 9ZX21901 SMBus Addressing on page 2)

How to Write:

- · Controller (host) sends a start bit.
- Controller (host) sends the write address XX (H)
- IDT clock will acknowledge
- Controller (host) sends the beginning byte location = N
- IDT clock will acknowledge
- Controller (host) sends the data byte count = X
- IDT clock will acknowledge
- Controller (host) starts sending Byte N through Byte N + X -1
- IDT clock will acknowledge each byte one at a time
- · Controller (host) sends a Stop bit

How to Read:

- · Controller (host) will send start bit.
- Controller (host) sends the write address XX (H)
- IDT clock will acknowledge
- Controller (host) sends the begining byte location = N
- IDT clock will acknowledge
- Controller (host) will send a separate start bit.
- \bullet Controller (host) sends the read addressYY $_{\mbox{\tiny (H)}}$
- IDT clock will acknowledge
- vclock will send the data byte count = X
- IDT clock sends Byte N + X -1
- IDT clock sends Byte 0 through byte X (if X_(H) was written to byte 8).
- Controller (host) will need to acknowledge each byte
- · Controllor (host) will send a not acknowledge bit
- Controller (host) will send a stop bit

Ind	ex Block W	/rit	e Operation
Cor	ntroller (Host)		IDT (Slave/Receiver)
Т	starT bit		
Slav	e Address XX _(H)		
WR	WRite		
			ACK
Begi	nning Byte = N		
			ACK
Data	Byte Count = X		
			ACK
Begir	ning Byte N		
			ACK
	\Q	'te	
	♦	Byte	♦
	\Q	×	\Diamond
			♦
Byte	e N + X - 1		
			ACK
Р	stoP bit		

Note: XX_(H) is defined by SMBus address select pins

Ind	ex Block Rea	ad	Operation		
Con	troller (Host)	ID	T (Slave/Receiver)		
Т	starT bit				
Slave	e Address XX _(H)				
WR	WRite				
			ACK		
Begii	nning Byte = N				
			ACK		
RT	Repeat starT				
Slave	e Address YY _(H)				
RD	ReaD				
			ACK		
		Data Byte Count = X			
	ACK				
			Beginning Byte N		
	ACK				
		Byte	\Q		
	\Q	B	\Q		
	\rightarrow	×	\Diamond		
♦					
			Byte N + X - 1		
N	Not acknowledge				
Р	stoP bit				

SMBusTable: PLL Mode, and Frequency Select Register

Byte	0 Pin#	Name	Control Function	Type	0	1	Default
Bit 7	5	PLL Mode 1	PLL Operating Mode Rd back 1	R	See PLL Operating Mode		Latch
Bit 6	5	5 PLL Mode 0 PLL Operating Mode Rd back 0 R Readback Table		ck Table	Latch		
Bit 5	72/71	DIF_18_En	Output Control overrides OE# pin	RW	Hi-Z	Enable	1
Bit 4	4 70/69 DIF_17_En		Output Control overrides OE# pin	RW	Hi-Z	Enable	1
Bit 3	67/66	DIF_16_En	Output Control overrides OE# pin	RW	Hi-Z	Enable	1
Bit 2			Reserved	•			0
Bit 1		Reserved					0
Bit 0	4	100M_133M#	Frequency Select Readback	R	133MHz	100MHz	Latch

SMBusTable: Output Control Register

Byte	1 Pin#	Name	Control Function	Type	0	1	Default
Bit 7	39/38	DIF_7_En	Output Control overrides OE# pin	RW			1
Bit 6	35/36	DIF_6_En	Output Control overrides OE# pin	RW			1
Bit 5	32/33	DIF_5_En	Output Control overrides OE# pin	RW			1
Bit 4	29/30	DIF_4_En	Output Control overrides OE# pin	RW	Hi-Z	Enable	1
Bit 3	27/28	DIF_3_En	Output Control overrides OE# pin	RW	⊓I-Z		1
Bit 2	24/25	DIF_2_En	Output Control overrides OE# pin	RW			1
Bit 1	22/23	DIF_1_En	Output Control overrides OE# pin	RW			1
Bit 0	19/20	DIF_0_En	Output Control overrides OE# pin	RW			1

SMBusTable: Output Control Register

		oonaron nogratar					
Byte	2 Pin #	Name	Control Function	Type	0	1	Default
Bit 7	65/64	DIF_15_En	Output Control overrides OE# pin	RW			1
Bit 6	62/61	DIF_14_En	Output Control overrides OE# pin	RW		Enable	1
Bit 5	60/59	DIF_13_En	Output Control overrides OE# pin	RW			1
Bit 4	56/55	DIF_12_En	Output Control overrides OE# pin	RW	Hi-Z		1
Bit 3	53/52	DIF_11_En	Output Control overrides OE# pin	RW	∏I-Z		1
Bit 2	50/49	DIF_10_En	Output Control overrides OE# pin	RW			1
Bit 1	47/46 DIF_9_En	Output Control overrides OE# pin	RW			1	
Bit 0	42/41	DIF 8 En	Output Control overrides OE# pin	RW			1

SMBusTable: Output Enable Pin Status Readback Register

Byte	3 Pin#	Name	Control Function	Type	0	1	Default
Bit 7	57	OE_RB12	Real Time readback of OE#12	R			Real time
Bit 6	54	OE_RB11	Real Time readback of OE#11	R			Real time
Bit 5	51	OE_RB10	Real Time readback of OE#10	R			Real time
Bit 4	48	OE_RB9	Real Time readback of OE#9	R	OE# pin Low	OE# Pin High	Real time
Bit 3	43	OE_RB8	Real Time readback of OE#8	R		OL# FIIITIIGII	Real time
Bit 2	40	OE_RB7	Real Time readback of OE#7	R			Real time
Bit 1	37	OE_RB6	Real Time readback of OE#6	R			Real time
Bit 0	34	OE_RB5	Real Time readback of OE#5	R			Real time

9ZX21901B 19-Output Differential Zbuffer for PCle Gen2/3 and QPI

SMBusTable: Reserved Register

Byte	4	Pin #	Name	Control Function	Type	0	1	Default		
Bit 7				Reserved				0		
Bit 6				Reserved						
Bit 5			Reserved					0		
Bit 4			Reserved					0		
Bit 3			Reserved					0		
Bit 2			Reserved					0		
Bit 1			Reserved					0		
Bit 0			Reserved					0		

SMBusTable: Vendor & Revision ID Register

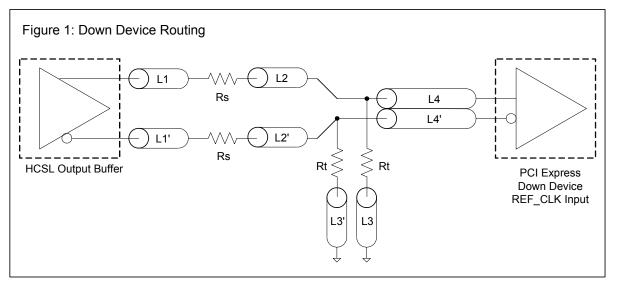
Cilibratics Volidor & Nevicion 15 Register							
Byte	Byte 5 Pin # Name		Control Function	Type	0	1	Default
Bit 7	-	RID3		R			Х
Bit 6	-	RID2	REVISION ID	R	B rev	= 0001	Х
Bit 5	-	RID1	NEVISION ID	R	C Rev	= 0010	Х
Bit 4	-	RID0		R			Х
Bit 3	-	VID3		R	-	-	0
Bit 2	-	VID2	VENDOR ID	R	-	-	0
Bit 1	-	VID1	VENDORID	R	-	-	0
Bit 0	-	VID0		R	-	-	1

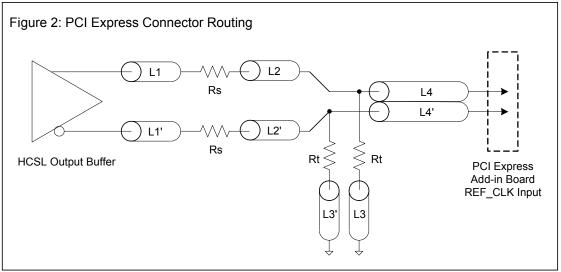
SMBusTable: DEVICE ID

Byte	6 Pin#	Name	Name Control Function		0	1	Default
Bit 7	-	De	Device ID 7 (MSB)				1
Bit 6	-		Device ID 6				1
Bit 5	-		Device ID 5		1		0
Bit 4	-		Device ID 4		Device ID is 219 decimal or		1
Bit 3	-		Device ID 3	R	DB	hex.	1
Bit 2	-		Device ID 2				0
Bit 1	-		Device ID 1				1
Bit 0	-		Device ID 0	R			1

SMBusTable: Byte Count Register

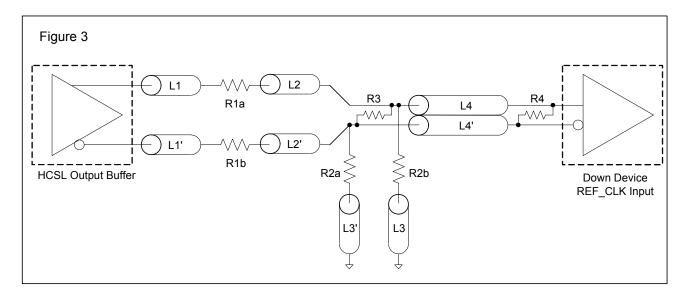
Byte	e 7	Pin #	Name	Control Function	Туре	0	1	Default		
Bit 7				Reserved				0		
Bit 6				Reserved						
Bit 5				Reserved				0		
Bit 4		-	BC4		RW			0		
Bit 3		-	BC3	Writing to this register configures how	RW	Default value	is 8 hex, so 9	1		
Bit 2		-	BC2	many bytes will be read back.	RW	bytes (0 to 8) w	vill be read back	0		
Bit 1		-	BC1	many bytes will be read back.	RW	by de	efault.	0		
Bit 0		-	BC0		RW			0		

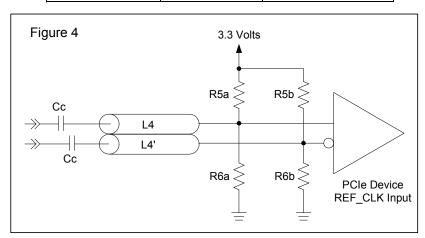

SMBusTable: Reserved Register

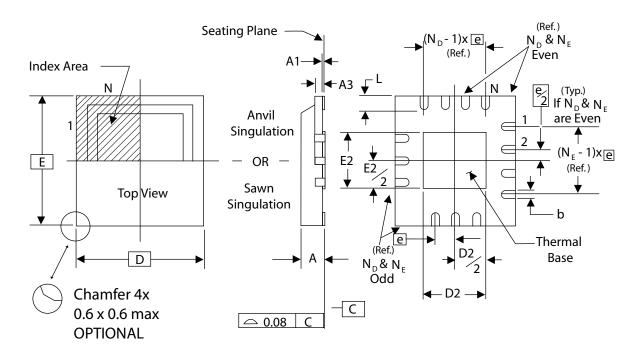

Byte	9 8	Pin #	Name	Control Function	Type	0	1	Default
Bit 7				Reserved				0
Bit 6				Reserved				
Bit 5				Reserved				
Bit 4				Reserved				
Bit 3				Reserved				0
Bit 2				Reserved				
Bit 1			Reserved					0
Bit 0			Reserved					0

DIF Reference Clock							
Common Recommendations for Differential Routing	Dimension or Value	Unit	Figure				
L1 length, route as non-coupled 50ohm trace	0.5 max	inch	1				
L2 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
L3 length, route as non-coupled 50ohm trace	0.2 max	inch	1				
Rs	33	ohm	1				
Rt	49.9	ohm	1				

Down Device Differential Routing			
L4 length, route as coupled microstrip 100ohm differential trace	2 min to 16 max	inch	1
L4 length, route as coupled stripline 100ohm differential trace	1.8 min to 14.4 max	inch	1


Differential Routing to PCI Express Connector			
L4 length, route as coupled microstrip 100ohm differential trace	0.25 to 14 max	inch	2
L4 length, route as coupled stripline 100ohm differential trace	0.225 min to 12.6 max	inch	2




	Alternative Termination for LVDS and other Common Differential Signals (figure 3)							
Vdiff	Vp-p	Vcm	R1	R2	R3	R4	Note	
0.45v	0.22v	1.08	33	150	100	100		
0.58	0.28	0.6	33	78.7	137	100		
0.80	0.40	0.6	33	78.7	none	100	ICS874003i-02 input compatible	
0.60	0.3	1.2	33	174	140	100	Standard LVDS	

R1a = R1b = R1R2a = R2b = R2

Cable Connected AC Coupled Application (figure 4)						
Component Value Note						
R5a, R5b	8.2K 5%					
R6a, R6b	1K 5%					
Cc	0.1 μF					
Vcm	0.350 volts					

THERMALLY ENHANCED, VERY THIN, FINE PITCH QUAD FLAT / NO LEAD PLASTIC PACKAGE

DIMENSIONS

SYMBOL	72L
N	72
N_D	18
N _E	18

DIMENSIONS (mm)

SYMBOL	MIN.	MAX.		
Α	0.8	1.0		
A1	0	0.05		
A3	0.25 Reference			
b	0.18	0.3		
е	0.50 BASIC			
D x E BASIC	10.00 x 10.00			
D2 MIN. / MAX.	5.75	6.15		
E2 MIN. / MAX.	5.75	6.15		
L MIN. / MAX.	0.3	0.5		

Ordering Information

Part / Order Number	Shipping Package	Package	Temperature
9ZX21901BKLF	Trays	72-pin MLF	0 to +70°C
9ZX21901BKLFT	Tape and Reel	72-pin MLF	0 to +70°C

[&]quot;LF" designates PB-free configuration, RoHS compliant.

Revision History

	ion mistory			
Rev.	Issue Date	Who	Description	Page #
А	5/13/2009	RDW	 Slightly modified name of pin 6 and corrected pin description of pin 6, to remove reference to CK505 Added Typical numbers to key parameters in electrical characteristics tables. Move to final. 	Various
В	8/7/2009	RDW	 Updated Pin 8 name to VDDR to indicate that it is the VDD for the input receiver. Change MAX operating current from 600 to 500mA. 	Various
С	8/12/2009	RDW	Updated VDDR pin description to include 3.3V information.	Various
D	8/14/2009	RDW	1. Inserted Pins 19 and 72 into pinout after they were inadvertenly removed.	2
E	10/7/2009	RDW	Corrected units from ns to ps for the tDSPO_PLL and tDSPO_BYP parameters	
F	6/22/2010	RDW	 Updated QPI reference to 9.6GTs, added note about variable feedback path Reformatted electrical tables to fit new standard format Merged Phase Jitter Tables into Single Table. Added output termination/test load drawing and table 	1, 5, 6, 9
G	8/3/2010	RDW	 Updated front page to standard 9ZX format. Clarified that SMBus Address Selection table includes the Read/Write Bit. Minor clarifications to other tables. Added additive phase jitter table for bypass mode. 	1-3, 5-11
Н	3/2/2011	RDW	Added rise/fall varation spec to HCSL_Out table	6
J	12/8/2011	RDW	1. Updated tDSPO_BYP parameter from +/-350 to +/-250ps.	7

Innovate with IDT and accelerate your future networks. Contact:

www.IDT.com

For Sales

800-345-7015 408-284-8200 Fax: 408-284-2775

For Tech Support

408-284-6578 pcclockhelp@idt.com

Corporate Headquarters

Integrated Device Technology, Inc. 6024 Silver Creek Valley Road San Jose, CA 95138 United States 800 345 7015 +408 284 8200 (outside U.S.)

Asia Pacific and Japan

IDT Singapore Pte. Ltd. 1 Kallang Sector #07-01/06 KolamAyer Industrial Park Singapore 349276 Phone: 65-6-744-3356 Fax: 65-6-744-1764

Europe

IDT Europe Limited 321 Kingston Road Leatherhead, Surrey KT22 7TU England Phone: 44-1372-363339 Fax: 44-1372-378851

© 2010 Integrated Device Technology, Inc. All rights reserved. Product specifications subject to change without notice. IDT and the IDT logo are trademarks of Integrated Device Technology, Inc. Accelerated Thinking is a service mark of Integrated Device Technology, Inc. All other brands, product names and marks are or may be trademarks or registered trademarks used to identify products or services of their respective owners. Printed in USA