BLC9G27LS-150AV

Power LDMOS transistor

Rev. 1 — 6 November 2014

Product data sheet

1. Product profile

1.1 General description

150 W LDMOS packaged asymmetrical Doherty power transistor for base station applications at frequencies from 2496 MHz to 2690 MHz.

Table 1. Typical performance

Typical RF performance at $T_{\text{case}} = 25 \, ^{\circ}\text{C}$ in the Doherty application demo circuit.

Test signal	f	V _{DS}	P _{L(AV)}	Gp	ηρ	ACPR
	(MHz)	(V)	(W)	(dB)	(%)	(dBc)
IS-95	2500 to 2690	28	28.2	14.8	48	-40 <u>[1]</u>

^[1] Test signal: IS-95 with pilot, paging, sync, 6 traffic channels with Walsh codes 8 - 13; PAR = 9.7 dB at 0.01 % probability.

1.2 Features and benefits

- Excellent ruggedness
- High efficiency
- Low thermal resistance providing excellent thermal stability
- Decoupling leads to enable improved video bandwidth
- Lower output capacitance for improved performance in Doherty applications
- Designed for low memory effects providing excellent pre-distortability
- Internally matched for ease of use
- Integrated ESD protection
- Compliant to Restriction of Hazardous Substances (RoHS) Directive 2002/95/EC

1.3 Applications

RF power amplifier for W-CDMA base stations and multi carrier applications in the 2496 MHz to 2690 MHz frequency range

2. Pinning information

Table 2. Pinning

Pin	Description		Simplified outline	Graphic symbol
1	drain1 (main)		5 4 0 0	4.5
2	drain2 (peak)			1, 5
3	gate1 (main)			3_
4	gate2 (peak)		7	7
5	video decoupling (main)			* F
6	video decoupling (peak)		3 4	2, 6
7	source	[1]		aaa-007731

^[1] Connected to flange.

3. Ordering information

Table 3. Ordering information

Type number	Packag	ackage						
	Name	Description	Version					
BLC9G27LS-150AV	-	air cavity plastic earless flanged package; 6 leads	SOT1275-1					

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	65	V
V_{GS}	gate-source voltage		-5	+13	V
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature	[1]	-	225	°C

^[1] Continuous use at maximum temperature will affect the reliability, for details refer to the on-line MTF calculator.

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions	Тур	Unit
R _{th(j-case)}	thermal resistance from junction to case	$T_{case} = 80 ^{\circ}\text{C}; V_{DS} = 28 \text{V}; \ I_{Dq} = 300 \text{mA}; V_{GS(amp)peak} = 0.7 \text{V}$		
		P _L = 28 W	0.381	K/W
		P _L = 80 W	0.299	K/W

6. Characteristics

Table 6. DC characteristics

 $T_i = 25$ °C unless otherwise specified.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Main dev	rice			1	1	
V _{(BR)DSS}	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 0.6 \text{ mA}$	65	-	-	V
V _{GS(th)}	gate-source threshold voltage	$V_{DS} = 10 \text{ V}; I_D = 60 \text{ mA}$	1.5	2.1	3.1	V
V_{GSq}	gate-source quiescent voltage	$V_{DS} = 28 \text{ V}; I_D = 360 \text{ mA}$	1.7	2.3	3.3	V
I _{DSS}	drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V	-	-	1.4	μΑ
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$	-	12	-	A
I _{GSS}	gate leakage current	$V_{GS} = 11 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	140	nΑ
9 _{fs}	forward transconductance	$V_{DS} = 10 \text{ V}; I_D = 60 \text{ mA}$	-	0.55	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $I_D = 2.1 \text{ A}$	-	174	385	mΩ
Peak dev	rice					
V _{(BR)DSS}	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 0.9 \text{ mA}$	65	-	-	V
V _{GS(th)}	gate-source threshold voltage	$V_{DS} = 10 \text{ V}; I_D = 90 \text{ mA}$	1.5	2.2	3.1	V
V_{GSq}	gate-source quiescent voltage	$V_{DS} = 28 \text{ V}; I_D = 540 \text{ mA}$	1.7	2.4	3.3	V
I _{DSS}	drain leakage current	V _{GS} = 0 V; V _{DS} = 28 V	-	-	1.4	μΑ
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$	-	18	-	A
I _{GSS}	gate leakage current	V _{GS} = 11 V; V _{DS} = 0 V	-	-	140	nA
9 _{fs}	forward transconductance	$V_{DS} = 10 \text{ V}; I_D = 90 \text{ mA}$	-	0.77	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $I_D = 3.15 \text{ A}$	-	145	260	mΩ

Table 7. RF characteristics

Test signal: 1-carrier W-CDMA; PAR = 7.2 dB at 0.01 % probability on the CCDF; 3GPP test model 1; 1 - 64 DPCH; f_1 = 2496 MHz; f_2 = 2690 MHz; RF performance at V_{DS} = 28 V; I_{Dq} = 400 mA (main); $V_{GS(amp)peak}$ = 0.7 V; T_{case} = 25 °C; unless otherwise specified; in an asymmetrical Doherty production test circuit at 2496 MHz to 2690 MHz.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Gp	power gain	P _{L(AV)} = 28 W	13.3	15	-	dB
RLin	input return loss	P _{L(AV)} = 28 W	-	-9	-6	dB
η_{D}	drain efficiency	P _{L(AV)} = 28 W	39	44	-	%
ACPR	adjacent channel power ratio	P _{L(AV)} = 28 W	-	-26	-22	dBc

Table 8. RF characteristics

Test signal: pulsed CW; t_p = 100 μ s; δ = 10 %; f = 2690 MHz; RF performance at V_{DS} = 28 V; I_{Dq} = 300 mA (main); $V_{GS(amp)peak}$ = 0.7 V; T_{case} = 25 °C; unless otherwise specified; in an asymmetrical Doherty production test circuit at 2496 MHz to 2690 MHz.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
P _{L(3dB)}	output power at 3 dB gain compression		116	149	-	W

BLC9G27LS-150AV

7. Test information

7.1 Ruggedness in Doherty operation

The BLC9G27LS-150AV is capable of withstanding a load mismatch corresponding to a VSWR = 10 : 1 through all phases under the following conditions: $V_{DS} = 28 \text{ V}$; $I_{Dq} = 250 \text{ mA (main)}$; $V_{GS(amp)peak} = 0.7 \text{ V}$; $P_L = 90 \text{ W (CW)}$; f = 2500 MHz.

7.2 Impedance information

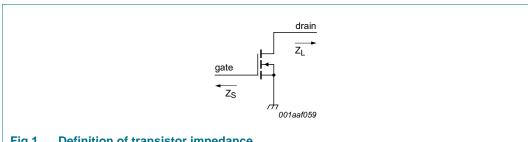
Table 9. Typical impedance of main device

Measured load-pull data of main device; $I_{Dq} = 350 \text{ mA (main)}$; $V_{DS} = 28 \text{ V}$.

f	Z _S [1]	Z _L [1]	P _L [2]	η _D [2]	G _p [2]
(MHz)	(Ω)	(Ω)	(W)	(%)	(dB)
Maximum pov	ver load				
2500	2.8 – j8.4	2.7 – j8.3	92	60.7	14.4
2600	3.2 – j8.4	2.7 – j8.3	89	60.3	15.3
2700	3.7 – j8.8	2.7 – j8.3	90	62.6	16.4
Maximum dra	in efficiency load				
2500	2.8 – j8.4	4.8 – j5.9	64	69.2	16.8
2600	3.2 – j8.4	4.0 – j5.6	61	69.4	17.9
2700	3.7 – j8.8	3.0 – j6.0	61	69.6	19.0

^[1] Z_S and Z_L defined in Figure 1.

Table 10. Typical impedance of peak device


Measured load-pull data of peak device; $I_{Dq} = 550 \text{ mA}$ (peak); $V_{DS} = 28 \text{ V}$.

f	Z _S [1]	Z _L [1]	P _L [2]	η _D [2]	G _p [2]
(MHz)	(Ω)	(Ω)	(W)	(%)	(dB)
Maximum pov	ver load				
2500	2.5 – j8.9	4.7 – j7.4	123	62.8	15.1
2600	3.2 – j9.4	4.0 – j7.6	126	62.6	15.4
2700	3.8 – j10.6	4.8 – j8.2	120	60.6	16.0
Maximum dra	in efficiency load				
2500	2.5 – j8.9	3.2 – j4.3	85	70.1	16.6
2600	3.2 – j9.4	3.1 – j4.9	84	70.2	18.0
2700	3.8 – j10.6	3.5 – j5.8	92	68.4	18.6

^[1] Z_S and Z_L defined in Figure 1.

^[2] at 3 dB gain compression.

^[2] at 3 dB gain compression.

Definition of transistor impedance

7.3 Recommended impedances for Doherty design

Table 11. Typical impedance of main device at 1:1 load Measured load-pull data of main device; $I_{Dq} = 350$ mA (main); $V_{DS} = 28$ V.

f	Z _S [1]	Z _L [1]	P _L [2]	η _D [3]	G _p [3]
(MHz)	(Ω)	(Ω)	(dBm)	(%)	(dB)
2500	2.8 – j8.4	3.8 – j6.9	49.0	44.4	19.0
2600	3.2 – j8.4	3.8 – j6.9	48.8	46.3	20.2
2700	3.7 – j8.8	3.2 – j7.1	48.8	46.5	21.1

- [1] Z_S and Z_L defined in Figure 1.
- [2] at 3 dB gain compression.
- [3] at $P_{L(AV)} = 44.5 \text{ dBm}$.

Table 12. Typical impedance of main device at 1: 2.5 load

Measured load-pull data of main device; $I_{Dq} = 350$ mA (main); $V_{DS} = 28$ V.

f	Z _S [1]	Z _L [1]	P _L [3]	η _D [3]	G _p [3]
(MHz)	(Ω)	(Ω)	(dBm)	(%)	(dB)
2500	2.8 – j8.4	3.6 – j3.4	44.5	52.9	20.1
2600	3.2 – j8.4	3.6 – j3.4	44.5	53.2	21.4
2700	3.7 – j8.8	3.3 – j3.7	44.5	54.1	22.2

- [1] Z_S and Z_L defined in Figure 1.
- [2] at 3 dB gain compression.
- [3] at $P_{L(AV)} = 44.5 \text{ dBm}$.

7.4 VBW in Doherty operation

The BLC9G27LS-150AV shows 100 MHz (typical) video bandwidth in Doherty demo board in 2600 MHz at V_{DS} = 28 V; I_{Dq} = 250 mA and $V_{GS(amp)peak}$ = 0.7 V.

7.5 Test circuit

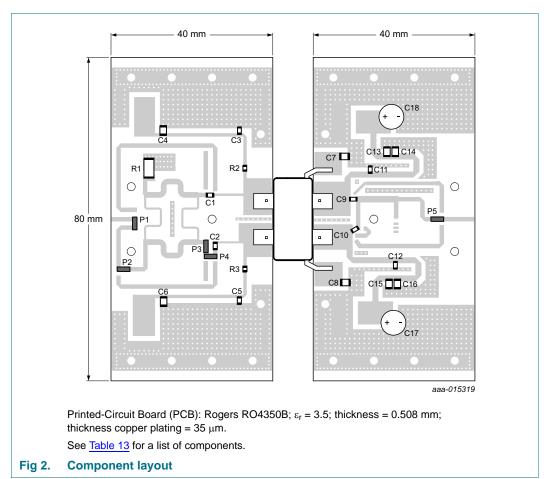
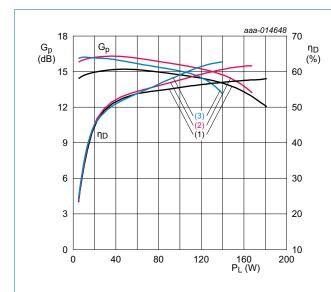


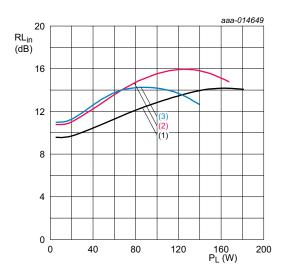
Table 13. List of components


See Figure 2 for component layout.

Component	Description	Value	Remarks
C1, C2, C3, C5, C11, C12	multilayer ceramic chip capacitor	12 pF	ATC 600F
C4, C6, C7, C8, C13, C14, C15, C16	multilayer ceramic chip capacitor	10 μF	Murata, SMD 1206
C9	multilayer ceramic chip capacitor	3.0 pF	ATC 600F
C10	multilayer ceramic chip capacitor	18 pF	ATC 600F
C17, C18	electrolytic capacitor	2200 μF, 63 V	BCcomponents
P1, P2, P3, P4, P5	copper foil strip	-	needed for tuning
R1	resistor	50 Ω	SMD 2512
R2, R3	resistor	5.1 Ω	SMD 0805

7.6 Graphical data

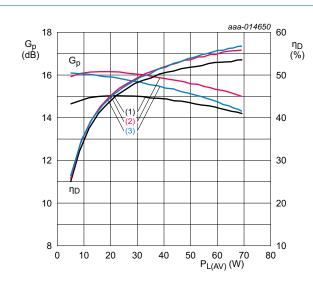
All data are measured on a demo application circuit.


7.6.1 Pulsed CW

$$\begin{split} &V_{DS}=28~V;~I_{Dq}=250~mA~(main~device);\\ &V_{GS(amp)peak}=0.7~V;~t_p=100~\mu s;~\delta=10~\%. \end{split}$$

- (1) f = 2496 MHz
- (2) f = 2600 MHz
- (3) f = 2690 MHz

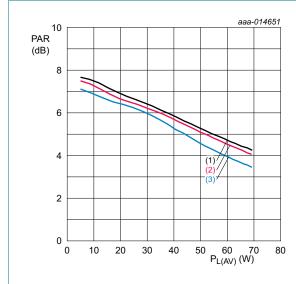
Fig 3. Power gain and drain efficiency as function of output power; typical values



 V_{DS} = 28 V; I_{Dq} = 250 mA (main device); $V_{GS(amp)peak}$ = 0.7 V; t_p = 100 $\mu s;$ δ = 10 %.

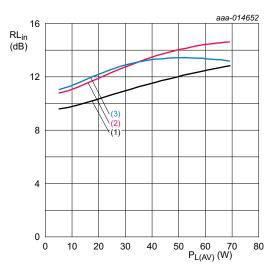
- (1) f = 2496 MHz
- (2) f = 2600 MHz
- (3) f = 2690 MHz

Fig 4. Input return loss as a function of output power; typical values


7.6.2 1-Carrier W-CDMA

 V_{DS} = 28 V; I_{Dq} = 250 mA (main device); $V_{GS(amp)peak}$ = 0.7 V.

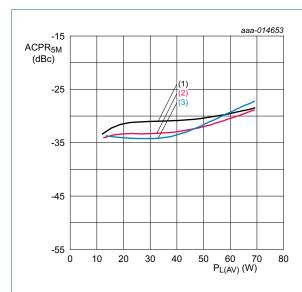
- (1) f = 2496 MHz
- (2) f = 2600 MHz
- (3) f = 2690 MHz


Fig 5. Power gain and drain efficiency as function of average output power; typical values

 V_{DS} = 28 V; I_{Dq} = 250 mA (main device); $V_{GS(amp)peak}$ = 0.7 V.

- (1) f = 2496 MHz
- (2) f = 2600 MHz
- (3) f = 2690 MHz

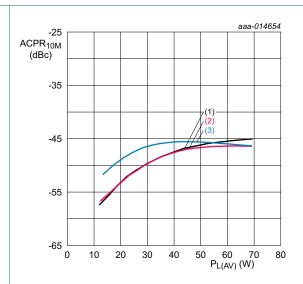
Fig 6. Peak-to-average power ratio as a function of average output power; typical values



$$\begin{split} V_{DS} = 28 \text{ V; } I_{Dq} = 250 \text{ mA (main device);} \\ V_{GS(amp)peak} = 0.7 \text{ V.} \end{split}$$

- (1) f = 2496 MHz
- (2) f = 2600 MHz
- (3) f = 2690 MHz

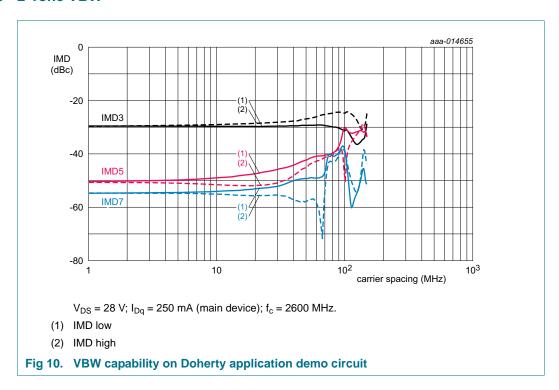
Fig 7. Input return loss as a function of average output power; typical values


BLC9G27LS-150AV

 V_{DS} = 28 V; I_{Dq} = 250 mA (main device); $V_{GS(amp)peak}$ = 0.7 V.

- (1) f = 2496 MHz
- (2) f = 2600 MHz
- (3) f = 2690 MHz

Fig 8. Adjacent channel power ratio (5 MHz) as a function of average output power; typical values



 V_{DS} = 28 V; I_{Dq} = 250 mA (main device); $V_{GS(amp)peak}$ = 0.7 V.

- (1) f = 2496 MHz
- (2) f = 2600 MHz
- (3) f = 2690 MHz

Fig 9. Adjacent channel power ratio (10 MHz) as a function of average output power; typical values

7.6.3 2-Tone VBW

BLC9G27LS-150AV

8. Package outline

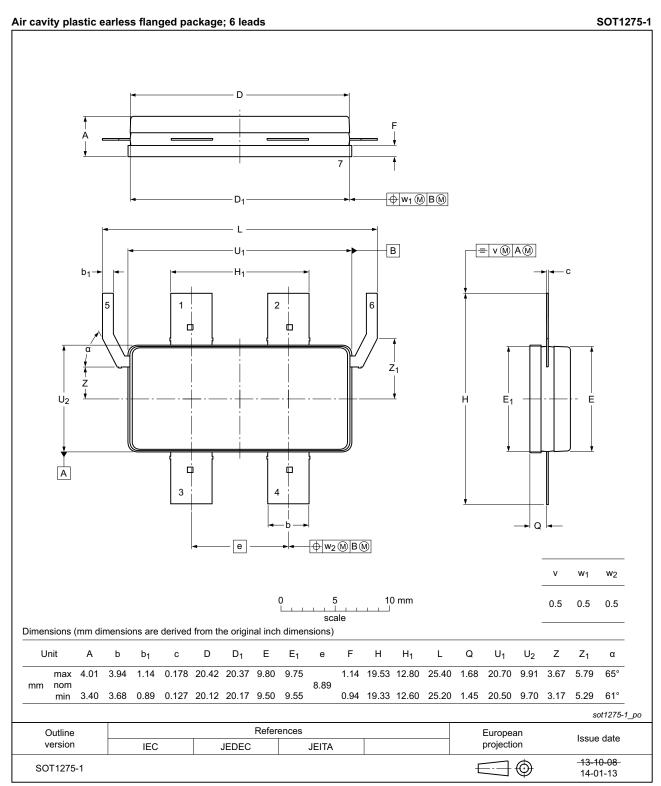


Fig 11. Package outline SOT1275-1

9. Handling information

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Observe precautions for handling electrostatic sensitive devices.

Such precautions are described in the ANSI/ESD S20.20, IEC/ST 61340-5, JESD625-A or equivalent standards.

10. Abbreviations

Table 14. Abbreviations

Acronym	Description	
3GPP	3rd Generation Partnership Project	
CCDF	Complementary Cumulative Distribution Function	
CW	Continuous Wave	
DPCH	Dedicated Physical CHannel	
ESD	ElectroStatic Discharge	
IS-95	Interim Standard 95	
LDMOS	Laterally Diffused Metal-Oxide Semiconductor	
MTF	Median Time to Failure	
PAR	Peak-to-Average Ratio	
SMD	Surface Mounted Device	
VBW	Video BandWidth	
VSWR	Voltage Standing Wave Ratio	
W-CDMA	Wideband Code Division Multiple Access	

11. Revision history

Table 15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BLC9G27LS-150AV v.1	20141106	Product data sheet	-	-

12. Legal information

12.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

12.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

12.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

BLC9G27LS-150AV

All information provided in this document is subject to legal disclaimers.

© NXP Semiconductors N.V. 2014. All rights reserved.

BLC9G27LS-150AV

Power LDMOS transistor

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Non-automotive qualified products — Unless this data sheet expressly states that this specific NXP Semiconductors product is automotive qualified, the product is not suitable for automotive use. It is neither qualified nor tested in accordance with automotive testing or application requirements. NXP Semiconductors accepts no liability for inclusion and/or use of non-automotive qualified products in automotive equipment or applications.

In the event that customer uses the product for design-in and use in automotive applications to automotive specifications and standards, customer (a) shall use the product without NXP Semiconductors' warranty of the product for such automotive applications, use and specifications, and (b) whenever customer uses the product for automotive applications beyond

NXP Semiconductors' specifications such use shall be solely at customer's own risk, and (c) customer fully indemnifies NXP Semiconductors for any liability, damages or failed product claims resulting from customer design and use of the product for automotive applications beyond NXP Semiconductors' standard warranty and NXP Semiconductors' product specifications.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

12.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

13. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

14. Contents

1	Product profile
1.1	General description 1
1.2	Features and benefits 1
1.3	Applications
2	Pinning information 2
3	Ordering information
4	Limiting values
5	Thermal characteristics 2
6	Characteristics
7	Test information 4
7.1	Ruggedness in Doherty operation 4
7.2	Impedance information 4
7.3	Recommended impedances for Doherty design 5
7.4	VBW in Doherty operation 5
7.5	Test circuit 6
7.6	Graphical data
7.6.1	Pulsed CW
7.6.2	1-Carrier W-CDMA 8
7.6.3	2-Tone VBW
8	Package outline
9	Handling information 11
10	Abbreviations11
11	Revision history
12	Legal information
12.1	Data sheet status
12.2	Definitions
12.3	Disclaimers
12.4	Trademarks
13	Contact information
14	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.