
EE 308 Spring 2003

68HCS12 Address Space

� 68HCS12 has 16 address lines
� 68HCS12 can address

�����
distinct locations

� For 68HCS12, each location holds one byte (eight bits)
� 68HCS12 can address

�����
bytes

� � ����� 	�
�
�
�	

� ����� � ����� ����� � 	�� � ����� ��� 	��
KB

� (
��� � � ����� ����� ���

� 68HCS12 can address 64 KB

1
www.DataSheet4U.com

EE 308 Spring 2003

68HCS12 Address Space

� Lowest address:
��������������������������������� � ������� ��� � � ���

� Highest address:
������������������������������� � � ������� ��� � 	�
�
�
�
 ���

0x0000

0xFFFF 65535

 0

2 − 1
16

2
www.DataSheet4U.com

EE 308 Spring 2003

MEMORY TYPES

RAM: Random Access Memory (can read and write)

ROM: Read Only Memory (programmed at factory)

PROM: Programmable Read Only Memory
(Program once at site)

EPROM: Erasable Programmable Read Only Memory
(Program at site, can erase using UV light and reprogram)

EEPROM: Electrically Erasable Programmable Read Only Memory
(Program and erase using voltage rather than UV light)

68HCS12 has: 12 K RAM

4 KB EEPROM
Can erase and reprogram any byte using normal 5V power supply

256 KB Flash EEPROM
Can erase using external 12V power supply

3
www.DataSheet4U.com

EE 308 Spring 2003

0x0000
Registers

0x03FF
1 K Bytes

68HCS12 Address Space

0x1000

0x0400

0x0FFF

0x3FFF

D−Bug 12
RAM

0x4000

0xFFFF

D−Bug 12
Flash

EEPROM

User RAM
0x3BFF
0x3C00

1 K

11 K

3 K Bytes EEPROM

4
www.DataSheet4U.com

EE 308 Spring 2003

68HCS12 ALU

� Arithmetic Logic Unit (ALU) is where instructions are executed.
� Examples of instructions are arithmetic (add, subtract), logical

(bitwise AND, bitwise OR), and comparison.
� 68HCS12 has two 8-bit registers for executing instructions. These

registers are called A and B.
� For example, the HCS12 can add the 8-bit number stored in B to

the eight-bit number stored in A using the instruction ABA (add
B to A):

COMBINATIONAL

BLOCK

A B

CLOCK

(ADD B TO A)

CONTROL

(0x1806 = ABA)

When the control unit sees the sixteen-bit number 0x1806, it tells
the ALU to add B to A, and store the result into A.

5
www.DataSheet4U.com

EE 308 Spring 2003

68HCS12 Programming Model

� A Programming Model details the registers in the ALU and con-
trol unit which a programmer needs to know about to program a
microprocessor.

� Registers A and B are part of the programming model. Some
instructions treat A and B as a sixteen-bit register called D for
such things as adding two sixteen-bit numbers. Note that D is
the same as A and B.

0 B

D

0

015

A 7 7

� The HCS12 can work with 8-bit numbers (bytes) and 16-bit
numbers (words).

� The size of word the HCS12 uses depends on the instruction.
For example, the instruction LDAA (Load Accumulator A) puts
a byte into A, and LDD (Load Double Accumulator) puts a word
into D.

6
www.DataSheet4U.com

EE 308 Spring 2003

68HCS12 Programming Model

� The 68HCS12 has a sixteen-bit register which tells the control
unit which instruction to execute. This is called the Program
Counter (PC). The number in PC is the address of the next in-
struction the HC12 will execute.

� The 68HCS12 has an eight-bit register which tells the HCS12
about the state of the ALU. This register is called the Condition
Code Register (CCR). For example, one bit (C) tells the HCS12
whether the last instruction executed generated a carry. Another
bit (Z) tells the HCS12 whether the result of the last instruction
was zero. The N bit tells whether the last instruction executed
generated a negative result.

� There are three other 16-bit registers – X, Y, SP – which we will
discuss later.

015

015

015

015

0 B

D

X

Y

SP

PC

CCR

0

015

A 7 7

NIHXS Z V C

7
www.DataSheet4U.com

EE 308 Spring 2003

Some HCS12 Instructions Needed for Lab 1

LDAA address Put the byte contained in memory at address into A

STAA address Put the byte contained in A into memory at address

CLRA Clear A (0 -> A)

INCA Add 1 to A ((A) + 1 -> A)

ABA Add B to A, store the result in A

ASRA Shift A right by one bit (keep the MSB the same)
This divides a signed byte by 2

LSRA Shift A right by one bit (put 0 into MSB)
This divides an unsigned byte by 2

NEGA Negate A (-(A) -> A)

TAB Transfer A to B ((A) -> B)

SWI Software Interrupt (Used to end all our HCS12 programs)

8
www.DataSheet4U.com

EE 308 Spring 2003

A Simple HCS12 Program

� All programs and data must be placed in memory between ad-
dress 0x1000 and 0x3BFF. For our short programs we will
put the first instruction at 0x1000, and the first data byte at
0x1100

� Consider the following program:

ldaa $1113 ; Put contents of memory at 0x1113 into A
inca ; Add one to A
staa $1114 ; Store the result into memory at 0x1114
swi ; End program

� If the first instruction is at address 0x1000, the following bytes
in memory will tell the HCS12 to execute the above program:
Address Value Instruction
0x1000 B6 ldaa $1113
0x1001 11
0x1002 13
0x1003 42 inca
0x1004 7A staa $1114
0x1005 11
0x1006 14
0x1007 3F swi

� If the contents of address 0x1113 were 0xA2, the program
would put an 0xA3 into address 0x1114.

9
www.DataSheet4U.com

EE 308 Spring 2003

A Simple Assembly Language Program.

� It is difficult for humans to remember the numbers (op codes)
for computer instructions. It is also hard for us to keep track of
the addresses of numerous data values. Instead we use words
called mnemonics to represent instructions, and labels to repre-
sent addresses, and let a computer program called an assembler
to convert our program to binary numbers (machine code).

� Here is an assembly language program to implement the previ-
ous program:

prog equ $1000 ; Start program at 0x1000
data equ $1113 ; Data value at 0x1113
result equ $1114 ; Result at 0x1114

org prog
CODE: section .text

ldaa data
inca
staa result
swi

� We would put this code into a file and give it a name, such as
test.s

� Note that equ ,org, and section are not instructions for the
HCS12 but are directives to the assembler which make it possi-
ble for us to write assembly language programs. They are called
assembler directives or pseudo-ops. For example the pseudo-op
org tells the assembler that the starting address (origin) of our
program should be 0x1000.

10
www.DataSheet4U.com

EE 308 Spring 2003

Assembling an Assembly Language Program

� A computer program called an assembler can convert an assem-
bly language program into machine code.

� The assembler we use in class is from a company called Cosmic.
� To assemble the above program using the Cosmic assembler, we

must first create a file called test.lkf which tells the assem-
bler where to put things in memory. Our test.lkf file would
look like this:

Link file for test program
+seg .text -b 0x1000 -n .text # program start address
+seg .data -b 0x1100 -n .data # data start address
test.o # application program

� To assemble the program, use the following commands:

ca6812 -a -l -xx -pl test.s
clnk -o test.h12 -m test.map test.lkf
chex -o test.s19 test.h12

� This will produce a file called test.s19 which we can load
into the 68HCS12.

11
www.DataSheet4U.com

