

Datasheet **AX-SIGFOX-MODS**Revision 2

AX-SIGFOX MINISTAMP AX-SIGFOX ANTSTAMP

Ultra-Low Power, AT Command Controlled, Sigfox Compliant Modules

AX-SIGFOX MINISTAMP/ANTSTAMP Modules

(note that the actual product comes with a metal cap)

OVERVIEW

The AX-SIGFOX modules are ultra-low power module solutions for a node on the Sigfox network with both upand down-link functionality. The AX-SIGFOX modules connect to the customer application using a logic level RS232 UART. AT commands are used to send frames and configure radio parameters.

The AX-SIGFOX module comes in two flavors

- AX-SIGFOX MINISTAMP with 50 Ohm antenna port
- AX-SIGFOX ANTSTAMP with on-board 0 dBi chip antenna

FUNCTIONALITY AND AXSEM ECOSYSTEM

- Sigfox up-link and down-link functionality controlled by AT commands
- The AX-SIGFOX modules are part of a whole development and product ecosystem available from AXSEM for any Sigfox requirement. Other parts of the ecosystem include
 - o AX-Sigfox ultra-low power, AT command controlled, Sigfox compliant transceiver IC
 - Ready to go AX-Sigfox development kit with fully functional AX-Sigfox module including Sigfox subscription
 - o Sigfox Ready certified reference design for the AX-Sigfox IC
 - AX-Sigfox API IC for customers wishing to write their own application software based on the AXSEM Sigfox Library

GENERAL FEATURES

- 18.2 x 22 x 3 mm³ without chip antenna, 18.2 x 39.7 x 3 mm³ with chip antenna
- Supply range from 1.8 V to 3.3 V
- -40°C to 85°C
- Temperature sensor
- Supply voltage measurements
- 10 GPIO pins
 - 4 GPIO pins with selectable voltage measure functionality, differential (1V or 10V range) or single ended (1V range) with 10 bit resolution
 - o 2 GPIO pins with selectable sigma delta DAC output functionality
 - o 2 GPIO pins with selectable output clock
 - o 3 GPIO pins selectable as SPI master interface

POWER CONSUMPTION

- Ultra-low power consumption
 - o Charge required to send a Sigfox OOB packet at 14 dBm output power: 0.29 C
 - o Deepsleep mode current: 500 nA
 - Sleep mode current: 1.6 μA
 - o Standby mode current: 0.5 mA
 - o Continuous radio reception at 869.525 MHz: 13 mA
 - Continuous radio transmission at 868.130 MHz for 14 dBm output power: 51 mA

for 0 dBm output power: 21 mA

• The output power of AX-SIGFOX modules can be programmed in 1 dB steps from 0 dBm – 14 dBm. They are optimized for best power efficiency at 14 dBm output power. For modules optimized for other output power values e.g 0 dBm transmission with 10 mA please contact us.

HIGH PERFORMANCE NARROW-BAND SIGFOX RECEIVER

- Carrier frequencies 868.525 MHz
- Data-rate 600 bps
- Sensitivity -126 dBm @ 600 bps, 869.525 MHz, GFSK
- 0 dBm maximum input power

HIGHLY EFFICIENT TRANSMITTER

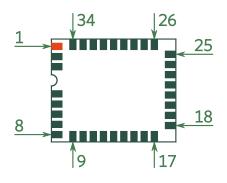
- Carrier frequencies 868.13 MHz
- Data-rate 100 bps
- Maximum output power 14 dBm
- Power level programmable in 1 dBm steps from 0 dBm to 14 dBm

REGULATORY

- Sigfox Ready certified
- EN 300 220

ABOUT THE SIGFOX TECHNOLOGY

Sigfox uses an Ultra Narrow Band (UNB) based radio technology to connect devices to its global network. The usage of UNB is key to providing a scalable, high-capacity network, with very low energy consumption, while maintaining a simple and easy to rollout star-based cell infrastructure.

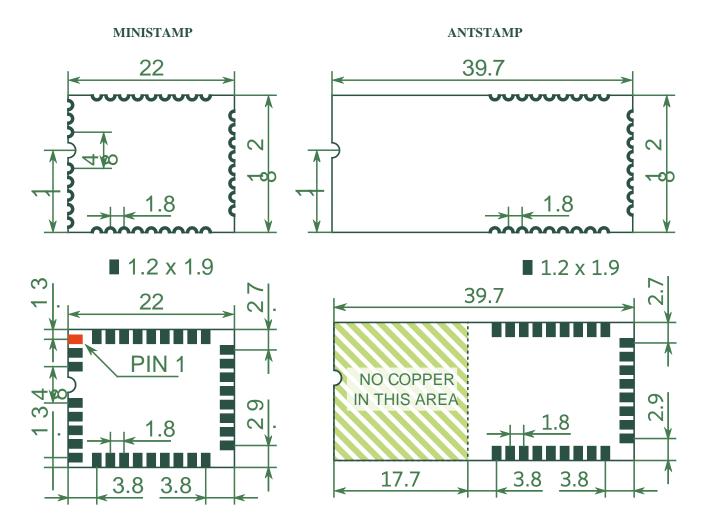

The network operates in the globally available ISM bands (license-free frequency bands) and co-exists in these frequencies with other radio technologies, but without any risk of collisions or capacity problems. Sigfox currently uses the most popular European ISM band on 868 MHz (as defined by ETSI and CEPT) as well as 902 MHz in the USA (as defined by the FCC), depending on specific regional regulations.


Sigfox only acts as a transport channel, pushing the data towards the customer's IT system.

An important advantage provided by the use of the narrow band technology is the flexibility it offers in terms of antenna design. On the network infrastructure end it allows the use of small and simple antennas, but more importantly, it allows devices to use inexpensive and easily customizable antennas.

The Sigfox protocol is compatible with existing transceivers and is actively being ported to a growing number of platforms.

PINOUT


MINISTAMP

ANTSTAMP

1* GND Ground 2* NC 3* NC Do not connect 4* NC 5* GND Ground	
3* NC Do not connect 4* NC	
4* NC	
5* CND Cround	
5 GND Ground	
6* ANT 50Ω 50 Ohm antenna port	
7* GND Ground	
8* NC Do not connect	
9 NC	
10 GPIO8 General purpose IO	
11 GPIO7 General purpose IO, selectable SPI functionalit	(MISO)
12 GPIO6 General purpose IO, selectable SPI functionalit	(MOSI)
13 GPIO5 General purpose IO, selectable SPI functionalit	(SCK)
14 GPIO4 General purpose IO, selectable ΣΔ DAC function	onality, selectable clock functionality
15 CPU_LED Module activity status, enabled whenever the m	odule is running
16 RADIO_LED Radio activity status	
17 VTCXO TCXO enable (used to control the on-board TC	KO)
18 GPIO9 General purpose IO and wake-up from deepsle	ер
19 UART_TX UART used to communicate with the module at	a bitrate of 9600 baud, no parity, 8 data bits and one stop
20 UART_RX bit.	
21 RX_LED Radio receive activity status	
22 TX_LED Radio transmit activity status	
23 NC Do not connect	
24 NC	
25 VDD Power Supply	
26 GND Ground	
27 RESET_N Optional reset (active low). Do not connect the	pin if not used.
28 GND Ground	
GPI00 General purpose IO, selectable ADC functional functionality	ty, selectable $\Sigma\Delta$ DAC functionality, selectable clock
30 GPIO1 General purpose IO, selectable ADC functional	ty
31 GPIO2 General purpose IO, selectable ADC functional	ty
32 NC Do not connect	
33 NC	
34 GPIO3 General purpose IO, selectable ADC functional	ty

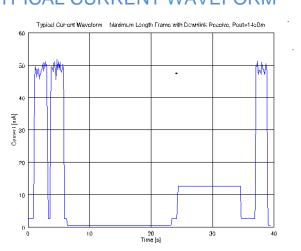
All digital pins are Schmitt trigger inputs, digital input and output levels are LVCMOS/LVTTL compatible. Pins GPIO[3:0] must not be driven above VDD, all other digital inputs are 5V tolerant. All GPIO pins and UART_RX start-up as inputs with pull-up.

DIMENSIONS (MM)

All dimensions in millimeter.

The area under the modules must be covered in solder stop. To guarantee good antenna performance with the AX-SIGFOX ANTSTAMP, the left part of the module must remain free from any copper (i.e. no ground plane and no traces).

SPECIFICATIONS


SUPPLIES

SYM	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
T _{AMB}	Operational ambient temperature		-40	27	85	°C
VDD	Supply voltage		1.8	3.0	3.3	V
I _{DS}	Deep sleep mode current	AT\$P=2		500		nA
I _{SLP}	Sleep mode current	AT\$P=1		1.6		μА
I _{STDBY}	Standby mode current			0.5		mA
Continuous	receive					
I _{RX_CONT}	Current consumption in Sigfox RX test mode	AT\$SR=1,1,-1		12.8		mA
Transmit at	14 dBm output power / receive					
I _{TXMODAVG_14}	Modulated transmitter current			51.0		mA
Q _{SFX_OOB_14}	Charge to send a Sigfox out of band message	AT\$S0		0.28		С
Q _{SFX_OOB_14}	Energy to send a bit	AT\$SB=0		0.19		С
Q _{SFX_OOB_14}	Energy to send a bit with download receive message	AT\$SB=0,1		0.33		С
Q _{SFX_LFR_14}	Energy to send the longest possible Sigfox frame (12 byte)	AT\$SF= 00112233445566778899aabb		0.37		С
Q _{SFX_LFR_14}	Energy to send the longest possible Sigfox frame (12 byte) with downlink receive	AT\$SF= 00112233445566778899aabb, 1		0.46		С
Transmit at (dBm output power /Receive Note1					
I _{TXMODAVG_14}	Modulated transmitter current			21.0		mA
Q _{SFX_OOB_0}	Charge to send a Sigfox out of band message	AT\$S0		0.12		С
Q _{SFX_OOB_0}	Energy to send a bit	AT\$SB=0		0.08		С
Q _{SFX_OOB_0}	Energy to send a bit with download receive message	AT\$SB=0,1		0.14		С
Q _{SFX_LFR_0}	Energy to send the longest possible Sigfox frame (12 byte)	AT\$SF= 00112233445566778899aabb		0.27		С
Q _{SFX_LFR_0}	Energy to send the longest possible Sigfox frame (12 byte) with downlink receive	AT\$SF= 00112233445566778899aabb, 1		0.29		С

Note 1

The output power of AX-SIGFOX modules can be programmed in 1 dB steps from 0 dBm – 14 dBm. They are optimized for best power efficiency at 14 dBm output power. For modules optimized for other output power values e.g 0 dBm transmission with 10 mA please contact us.

TYPICAL CURRENT WAVEFORM

BATTERY LIFE CALCULATION EXAMPLE

Scenario for example calculation:

- 2 AAA Alkaline batteries in series
- One OOB frame transmission per day at 14 dBm output power
- Four maximum length frames with downlink receive per day at 14 dBm output power
- Device in sleep mode when no other activity
- Neglecting battery self discharge

2 AAA alkaline capacity	1500 mAh * 3600 s/h	5400 C
Sleep charge per day	1.6 µA * 86400 s	0.14 C/day
OOB frame transmission		0.28 C/day
Frame transmission with downlink	4 * 0.46 C/day	1.84 C/day
Total charge consumption		2.26 C/day
Battery life		6.5 years

LOGIC

SYM	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
Digital inpu	uts					
V_{T+}	Schmitt trigger low to high threshold point			1.55		V
V _T -	Schmitt trigger high to low threshold point	VDD = 3.3 V		1.25		V
V_{IL}	Input voltage, low	VDD = 3.5 V			0.8	V
V_{IH}	Input voltage, high		2.0			V
V_{IPA}	Input voltage range, GPIO[3:0]		-0.5		VDD	V
V_{IPBC}	Input voltage range, GPIO[9:4], UART_RX, RESET_N		-0.5		5.5	V
IL	Input leakage current		-10		10	μΑ
R _{PU}	Programmable pull-up resistance			65		k Ω
Digital out	outs					
I _{OH}	Output current, high Ports GPIO[9:0], UART_TX, TX_LED, RX_LED, CPU_LED, RADIO_LED	V _{OH} = 2.4 V	8			mA
I _{OL}	Output current, low GPIO[9:0], UARTTX, TXLED, RXLED, TXLED, CPULED	V _{OL} = 0.4 V	8			mA
l _{OZ}	Tri-state output leakage current		-10		10	μΑ

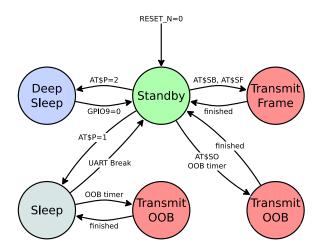
TRANSMITTER

SYM	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
SBR	Signal bit rate			100		bps
f _{carrier}	Carrier frequency			868.13		MHz
PTX_{min}	Lowest Transmitter output power	AT\$CW=868130000,1,0		0		dBm
PTX _{max}	Highest Transmitter output power	AT\$CW=868130000,1,14		14		dBm
PTX _{step}	Programming step size output power			1		dB
dTX_{temp}	Transmitter power variation vs. temperature	-40 °C to +85 °C		+/- 0.5		dB
dTX_{Vdd}	Transmitter power variation vs. VDD	1.8 to 3.3 V		+/- 0.5		dB
PTX _{harm2}	Emission @ 2 nd harmonic			-51		dBc
PTX _{harm3}	Emission @ 3 rd harmonic			-63		dBc
PTX _{harm4}	Emission @ 4 th harmonic			-84		dBc

RECEIVER

SYM	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT
SBR	Signal bit rate			600		bps
f _{carrier}	Carrier frequency			869.525		MHz
IS	Sensitivity	AT\$SB=x,1, AT\$SF=x,1, AT\$SR PER < 0.1		-126		dBm
BLK	Blocking at +/- 10MHz offset	Wanted signal is 3 dB above the typical sensitivity limit (PER=0.1) and the blocker is a continuous wave		78		dB

ADC / TEMPERATURE SENSOR


SYM	DESCRIPTION	CONDITION	MIN	TYP	MAX	UNIT		
ADCRE S	ADC resolution			10		bit		
V _{ADCREF}	ADC reference voltage		0.95	1	1.05	V		
Z _{ADC00}	Input capacitance				2.5	pF		
DNL	Differential nonlinearity			+/- 1		LSB		
INL	Integral non linearity			+/- 1		LSB		
OFF	Offset			3		LSB		
GAIN_E RR	Gain error			0.8		%		
ADC in dif	ferential mode							
V _{ABS_DIFF}	Absolute voltages & common mode voltage in differential mode at each input		0		VDD	V		
V _{FS_DIFF01}	Full swing input for differential signals	Gain x1	-500		500	mV		
V _{FS_DIFF10}		Gain x10	-50		50	mV		
ADC in sir	ngle ended mode							
V_{MID_SE}	Mid code input voltage in single ended mode			0.5		V		
V _{IN_SE00}	Input voltage in single ended mode		0		VDD	V		
V _{FS_SE01}	Full swing input for single ended signals	Gain x1	0		1	V		
Temperati	Temperature sensor							
T _{RNG}	Temperature range		-40		85	°C		
T _{ERR_CAL}	Temperature error			+/- 2		°C		

COMMAND INTERFACE

SERIAL PARAMETERS: 9600, 8, N, 1

The AX-SIGFOX modules use the UART (pins UART_TX, UART_RX) to communicate with a host and use a bitrate of 9600 baud, no parity, 8 data bits and one stop bit.

POWER MODES STATE DIAGRAM

STANDBY MODE

After Power-Up and after finishing a Sigfox transmission, the AX-SIGFOX modules enter Standby mode. In Standby mode, AX-SIGFOX modules listen on the UART for commands from the host. Also, OOB frames are transmitted whenever the OOB timer fires. To conserve power, the AX-SIGFOX modules can be put into Sleep mode or turned off (Deep Sleep mode) completely.

SLEEP MODE

The command AT\$P=1 is used to put AX-SIGFOX modules into Sleep mode. In this mode, only the wakeup timer for out-of-band messages is still running. To wake up the AX-SIGFOX module from Sleep mode, toggle the UART_RX pin, e.g. by sending a break (break is an RS232 framing violation, i.e. at least 10 bit durations low). When an Out of Band (OOB) message is due, AX-SIGFOX modules automatically wake up to transmit the message, and then return to Sleep mode.

It is strongly recommended to put AX-SIGFOX modules into sleep mode when they are not being used.

DEEP SLEEP MODE

In Deep Sleep mode, the AX-SIGFOX modules are completely turned off. Deep Sleep mode can be activated with the command AT\$P=2. To wake-up from Deep Sleep mode the pin GPIO9 is pulled to GND.

When using Deep Sleep mode, two things should be kept in mind:

Everything is turned off, timers are not running at all and all settings are lost (use AT\$WR to save settings to flash before entering Deep Sleep mode). Out-of-band messages will therefore not be sent.

The pins states are frozen in Deep Sleep mode. The user must ensure that this will not result in conditions at the module boundary that draw a lot of current.

AT COMMANDS

NUMERICAL SYNTAX

```
hexdigit
              ::=
                      [0-9A-Fa-f]
hexnum
              : :=
                      "0x" hexdigit+
                      "0" | [1-9] [0-9]*
decnum
             ::=
                      "0" [0-7]+
"0b" [01]+
octnum
             : : =
: : =
binnum
              ::= [01]
                      "-1"
optnum
              : :=
frame
             ::=
                     (hexdigit hexdigit)+
              ::= hexnum | decnum | octnum | binnum 
::= uint | optnum
uint
uint_opt
```

COMMAND SYNTAX

A command starts with 'AT' (note that everything is case sensitive!), continues with the actual command followed by parameters (if any) and ends with any kind of whitespace (space, tab, newline etc.)

If incorrect syntax is detected ("parsing error") all input is ignored up until the next whitespace character.

Also note that any number can be entered in any format (Hexadecimal, Decimal, Octal and binary) by adding the corresponding prefix ('0x', '0', '0b'). The only exception is the 'Send Frame' command (AT\$SF) which expects a list of hexadecimal digits without any prefix.

RETURN CODES

A successful command execution is indicated by sending 'OK'. If a command returns a value (e.g. by querying a register) only the value is returned.

EXAMPLES

Bold text is sent to the AX-SIGFOX module.

Here, we execute command 'I' to query some general information:

```
AT$I=0

AXSEM AT Command Interface
```

This sends a Sigfox frame containing { 0xAA : 0xBB : 0x12 : 0x34 } without waiting for a response telegram:

```
AT$SF=aabb1234
```

This sends a Sigfox frame containing { 0x00 : 0x11 : 0x22 : 0x33 : 0x44 }, then waits for a downlink response telegram, which in this example contains { 0xAA : 0xBB : 0xCC : 0xDD }.

```
AT$SF=0011223344,1
OK
RX=AA BB CC DD
```

The 'CB' command sends out a continuous pattern of bits, in this case 0xAA = 0b1010101010:

```
AT$CB=0xAA,1
OK
```

This transitions the device into sleep mode. Out-of-band transmissions will still be triggered. The UART is powered down. The module can be woken up by a low level on the UART, i.e. by sending break:

```
AT$P=1
OK
```

COMMANDS

COMMAND	NAME	DESCRIPTI	ON									
AT	Dummy command	Just returns check comm		nothing else. Can be u	ised to							
AT\$SB=bit[,bit]	Send bit		` '	Optional bit flag indicate ceive a downlink frame								
AT\$SF=frame[,bit]	Send frame			bytes. Optional bit flag d receive a downlink fra								
AT\$SO	Manually send out of band message	Send the ou	t-of-band mess	age.								
ATSuint?	Get register	Query a specific configuration register's value. See Chapter "Registers" for a list of registers.										
ATSuint=uint	Set register	Change a co	onfiguration reg	ister.								
AT\$IF=uint	Set TX frequency	Set the output carrier macro channel for Sigfox frames.										
AT\$IF?	Get TX frequency	Get the currently chosen TX frequency.										
AT\$DR=uint	Set RX frequency	Set the reception carrier macro channel for Sigfox frames.										
<pre>AT\$CW=uint,bit [,uint_opt]</pre>	Continuous wave	wave send a continuous wave, i.e. just the base frequency with any modulation. Parameters:										
		Name	Range	Description	Default							
											frequency	800000000 - 999999999, 0
		mode	0, 1	Enable or disable carrier wave.	-							
		power	0-14	dBm of signal	14							
AT\$CB= uint_opt,bit	Test mode: TX constant byte	The first par		seful to send a specific es the byte to send. Use Parameters:	•							
		Name	Range	Description	Default							
		pattern	0-255, -1	Byte to send. Use '- 1' for a (pseudo-) random pattern	-							
		mode	0, 1	Enable or disable pattern test mode.	-							
AT\$T?	Get temperature	Measure into	•	ure and return it in 1/10	o th of a							
AT\$V?	Get voltages	Return curre transmission		voltage measured dur	ing the last							

COMMAND	NAME	DESCRIPTION
AT\$P=uint	Information Set power mode	Display various product information: 0: Software Name & Version
Algr-ullic	Set power mode	manually. Depending on power mode, you will be responsible for waking up the AX- SIGFOX module again! 0: software reset (settings will be reset to values in the flash) 1: sleep (send a break to wake up) 2: deepsleep (toggle GPIO9 or RESET_N pin to wake up; the AX-SIGFOX module is not running and all settings will be reset!)
AT\$WR	Save config	Write all settings to flash (RX/TX frequencies, registers) so that they survive reset/deepsleep or loss of power. Use AT\$P=0 to reset the AX-SIGFOX module and load settings from flash.
AT:Pn?	Get GPIO pin	Return the setting of the GPIO pin <i>n</i> ; <i>n</i> can range from 0 to 9. A character string is returned describing the mode of the pin, followed by the actual value. If the pin is configured as analog pin, then the voltage (range 01 V) is returned. The mode characters have the following meaning: Mode Description 0 Pin drives low 1 Pin drives high Z Pin is high impedance input U Pin is input with pull-up A Pin is analog input (GPIO pin 03 only) T Pin is driven by clock or DAC (GPIO pin 0 and 4 only) The default mode after exiting reset is U on all GPIO pins.

COMMAND	NAME	DESCRIPTION				
AT:Pn=?	Get GPIO	Print a list of possible modes for a pin. The table below lists the				
	pin range	response.				
		Pin Modes				
		P0 0,1,Z,U,A,T				
		P1 0,1,Z,U,A				
		P2 0,1,Z,U,A				
		P3 0,1,Z,U,A				
		P4 0,1,Z,U,T				
		P5 0,1,Z,U P6 0,1,Z,U				
		P7 0,1,Z,U				
		P8 0,1,Z,U				
		P9 0,1,Z,U				
AT:Pn=mode	Set GPIO	Set the GPIO pin mode.				
AI · I II-mode	pin	For a list of the modes see the command AT:Pn?				
AT:ADC Pn[-Pn[Get GPIO	Measure the voltage applied to a GPIO pin. The command also				
(1V 10V)]]?	pin analog	allows measurement of the voltage difference across two GPIO				
	voltage	pins. In differential mode, the full scale range may also be				
		specified as 1 V or 10 V. Note however that the pin input voltages				
		must not exceed the range 0VDD. The command returns the				
		result as fraction of the full scale range (1V if none is specified).				
		The GPIO pins referenced should be initialized to analog mode before issuing this command.				
AT:SPI [(A B C D)]=	SPI	This command clocks out <i>bytes</i> on the SPI port. The clock				
bytes	transaction					
2, 302	tranoaction	MISO during output. Optionally the clocking mode may be				
		specified (default is A):				
		Mode Clock Inversion Clock Phase				
		A normal normal				
		B normal alternate				
		C inverted normal				
		D inverted alternate				
		SEL (GPIOx)				
		MOSI D7 \ D6 \ D5 \ D4 \ D3 \ D2 \ D1 \ D0 \				
		MO31				
		MISO D7 D6 D5 D4 D3 D2 D1 D0				
		SCK B L				
		36\ c				
		Note that SEL, if needed, is not generated by this command, and				
		must instead be driven using standard GPIO commands				
		(AT:Pn=0 1).				
AT:CLK=freq,reffreq	Set clock	Output a square wave on the pin(s) set to T mode. The frequency				
	generator	of the square wave is $\frac{freq}{2^{16}} \times reffreq$. Possible values for reffreq				
		are 20000000, 100000000, 50000000, 25000000, 12500000, 6250000,				
		312500, 156250. Possible values for freq are 065535.				
		orzeou, rouzou. Poddible values for freq are o 00000.				

COMMAND	NAME	DESCRIPTION
AT:CLK=OFF	Turn off clock generator	Switch off the clock generator.
AT:CLK?	Get clock generator	Return the settings of the clock generator. Two numbers are returned, freq and reffreq.
AT:DAC=value	Set Σ∆ DAC	Output a $\Sigma\Delta$ DAC value on the pin(s) set to T mode. Parameter value may be in the range -3276832767 . The average output voltage is $\left(\frac{1}{2} + \frac{value}{2^{17}}\right) \times VDD$. An external low pass filter is needed to get smooth output voltages. The modulation frequency is 20 MHz. A possible low pass filter choice is a simple RC low pass filter with R=10k Ω and C=1 μ F.
AT:DAC=OFF	Turn off $\Sigma\Delta$ DAC	Switch off the DAC.
AT:DAC?	Get ΣΔ DAC	Return the DAC value.

REGISTERS

NUMBER	NAME	DESCRIPTION	DEFAULT	RANGE	UNIT
300	Out of band period	AX-SIGFOX module sends periodic static messages to indicate that they are alive. Set to 0 to disable.	24	0-24	hours
302	Power level	The output power of the radio.	14	0-14	dBm

PART NUMBERS

PROTOCOL	MINISTAMP	ANTSTAMP
SIGFOX 868 MHz	AX-SF10-MIN21-868	AX-SF10-ANT21-868

PART VERSIONS

PART NUMBER	AT\$I=0	AT\$I=2	AT\$I=3
AX-SF10-MINI21-868	AX-Sigfox 1.0.6-ETSI	0x8F	0x51
AX-SF10-ANT21-868	AX-Sigfox 1.0.6-ETSI	0x8F	0x51

TRADEMARKS

Sigfox and Sigfox Ready are registered trademarks of Sigfox SARL.

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for read customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC products could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent r

PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada. Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Janan Customer Focus Center

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative