Lz ST

USER GUIDE

1 ABOUT THIS GUIDE

Welcome to the ST9 User Guide. The aim of this book is to help you to get a working knowl-
edge of the ST9 microcontroller family. Using this foundation, you will be in a good position to
understand and implement any of the ST9 microcontrollers. To make it easier, we have se-
lected the major technical concepts of the ST9 family and will introduce them gradually over
several chapters, always supporting theory with practical examples.

1.1 PREREQUISITES

This book addresses application developers. To fully benefit from the book content, you
should be familiar with microcontrollers and their associated development tools.

For basic information on microcontrollers and development tools, you should refer to one of
the many introductory books available on the subject.

1.2 RESULTS

The book will provide you with:
« A basic understanding of the ST9 microcontroller family
« Knowledge and ready-to-use examples on using ST9 peripherals

« Useful tips and warnings

Rev. 1.5

January 2004 1/146

Table of Contents

LABOUT THIS GUIDE e e e e e 1
1.1 PREREQUISITES e e e 1
1.2 RESULT S .. e e e e e 1
1.3 HOWTOUSETHISGUIDE e 5
1.4 COMPANION SOFTWARE e e s 5
1.5 ABOUTTHE AUTHORS e s 5
1.6 RELATED DOCUMENTS e s 6

2INTRODUCING THE STOBASICS . .. e e 7
21 PROCESSORCORE e 7
2.2 PERIPHERALS 8

2.2 1 STO2F 124 . . 9
2.2.2 STO2FA50 . . 11
2.2.3 STO2F250 . .ttt 13

3 PROCESSOR CORE: MAIN CONCEPTS ... i e 14

3.1 ADDRESS SPACES 14
3.1.1 Register-Oriented Programming Model 14
3.1.2 RegisterFile e 15
3.1.3 Directaccesstothe RegisterFile 15
3.1.4 Working Registers e 16
3.1.5 Peripheral Register Pages 16
3.1.6 Working Registers and Register Pointers 16
3.1.7 Memory ManagementUnit 22

3.2 STACK MODES e 31

3.3 INSTRUCTION SETo e e 32
3.3, OVeIVIEW ..ot e e 33
3.3.2 Advantages whenUsingClLanguage, 40

3.4 INTERRUPTS ... e e 41
3.4.1 Interrupt VeCtOrS e 42
3.4.2 Interrupt Priorities 47
3.4.3 External Interrupt Unit 51

3.5 DMACONTROLLER e 56
3.5 OVeIVIEW ..t e 56
3.5.2 Howthe DMAWOIKS e 57

3.6 RESET AND CLOCK CONTROLUNIT(RCCU) 60
3.6.1 ClockControlUnit i 60
3.6.2 Resetand StopManagerc.iiiii it 64

4 USING THE ON-CHIP PERIPHERALS e 65
4.1 PROGRAMMING THE CORE AND PERIPHERALS 65
4.2 PARALLEL /O . .. 66

2/146

Table of Contents

4.3 STANDARD AND WATCHDOG TIMERS 68
4.3.1 DesCHplioN i 68
4.3.2 Timer Application for Periodic Interrupts 72
4.3.3 Watchdog Application 1: Generatinga PWM 73
4.3.4 Watchdog Application 2: Using the Watchdog 74

4.4 MULTIFUNCTION TIMER e e e 75
4.4.1 Generating Two Pulse Width Modulated Waves with One MFT 79
4.4.2 Generating a Pulse Width Modulated Wave with a Cleaner Spectrum . . 82
4.4.3 Incremental Encoder Counterc..iiiiii 84
4.4.4 MFT Application 1: Generating 2 PWMs using Interrupts 86
4.4.5 MFT Application 2: Generatinga PWM usingDMA 86
4.4.6 MFT Application 3: Generating a PWM using the DMA Swap Mode ... 87

4.5 SERIAL PERIPHERAL INTERFACE e 88
4.5.1 DesCHplioN 88
4.5.2 Static Liquid-Crystal Display Interface Example 88
4.5.3 EEPROM Serial Interface Example using 12C 91

4.6 SERIAL COMMUNICATIONS INTERFACE 92
4.6.1 DeSsCHplioN e 92
4.6.2 SCI Application 1: Sending Bytes using Interrupts 97
4.6.3 SCI Application 2: Sending BytesusingDMA 97
4.6.4 SCI Application 3: Sending and Receiving Bytes using DMA 97
4.6.5 SCI Application 4: Matching InputBytes 97

4.7 ANALOG TODIGITAL CONVERTER e 98
4.7.1 DesCHplioN e 98
4.7.2 AnalogWatchdog e 100
4.7.3 Interrupt VECIONNGo ot 100
4.7.4 %)1(: Application: A/D Conversions and Analog Watchdog using Interrupts

4.8 PERIPHERAL INITIALIZATION e e e 102
4.8.1 initialization Header File 102
4.8.2 Peripheral FunctionFile 103

5 USING THE DEVELOPMENT TOOLS e 112

5.1 DEVELOPING INCLANGUAGE 112

5.2 AVAILABLE TOOLS e e e e e e e 112

5.3 INTRODUCING THE DEVELOPMENT TOOLS 113

5.4 PROGRAM CONFIGURATION AND INITIALISATION 113
5.4.1 Writingthe Makefile 114
5.4.2 Writing the Linker Command File using a ScriptFile 119
5.4.3 Writingthe Start-Up File 121

5.5 GLOBAL INITIALISATION: CORE AND PERIPHERALS 129
5.5.1 Corelnitialisation 129
5.5.2 Peripheral Initialisation 129

4

3/146

Table of Contents

5.5.3 Port Initialisation 130

5.5.4 Final Initialisation 130

5.6 INTERRUPT CONSIDERATIONS e 130

6 DETAILED BLOCK DIAGRAMS s, 131
6.7 EXTERNAL INTERRUPT CONTROLLER 131
6.8 TOP-LEVEL INTERRUPT INPUT e e 132
6.9 WATCHDOG TIMERo e e 133
6.10 MULTIFUNCTION TIMER e e e 134
B.11 ADC . . 136

7 GLOS S ARY 137
IND EX . .o, 142

4/146

4

ST9 USER GUIDE

1.3 HOW TO USE THIS GUIDE

As a first approach, we recommend that you study each chapter in sequence and carry out the
exercises at each step.

1.4 COMPANION SOFTWARE

A downloadable file entitled ST9 User Guide Companion Software is available. This file pro-
vides all the source text files, listings, object files and any other files mentioned in the docu-
ment.

You can download the ST9 User Guide Companion Software from the http://www.stmcu.com
website product support page. Unless otherwise specified, all the examples can be compiled
for ST92F124/ST92F150/ST92F250 by modifying the makefile and the “device.h” file, if in-
cluded in the application directory.

1.5 ABOUT THE AUTHORS

This User Guide has been initially written by Jean-Luc Grégoriadés and Jean-Marc Delaplace
and revised for the ST9 by Jean-Luc Crébouw.

Jean-Luc Crébouw

A signal processing engineer, he has developed a voice synthesizer with an ST9 and con-
ducts ST9 training programs. He acts as a field application engineer consultant for all STMi-
croelectronics microcontrollers.

Jean-Marc Delaplace

A former electronics design engineer, he has worked throughout his career for various U.S.
companies involved in lab automation equipment. He has used microprocessors since they
first appeared on the market and programmed microcontrollers of various brands in industrial
applications using both assembler and high-level languages.

Jean-Luc Grégoriadés

Teaches automated systems and industrial computer science at the Electrical Engineering de-
partment of the University of Cergy-Pontoise. He introduced the STMicroelectronics ST6 as a
teaching base for his microcontroller course. On this occasion, he wrote with his friend J.M
Delaplace, the book “Le ST6: Etude progressive d'un microcontrdleur” published at “Editions
DUNOD”.

4

5/146

ST9 USER GUIDE

1.6 RELATED DOCUMENTS

The following reference documents should be available for additional information:
— ST9 Datasheet

— ST9 Programming Manual

— ST9 Family GNU Software tools

— ST9 GNU C Toolchain Release note

— ST9 Family GNU C Compiler

— GNU Make Utility

You can get a current list of documentation at http://www.stmcu.com.

6/146

4

ST9 USER GUIDE

2 INTRODUCING THE ST9 BASICS

The ST9 microcontroller family has a common processor core surrounded by a range of pow-
erful peripherals for interfacing with many different devices. The peripherals have sufficient
built-in intelligence to be able to perform even complex jobs on their own, freeing the core al-
most entirely from 1/0O handling. The core can thus be fully utilized for classical micropro-
cessing tasks.

The ST9 architecture is an original STMicroelectronics design, with the objective of providing
an innovative and efficient microcontroller architecture dedicated to real-time control.

2.1 PROCESSOR CORE

When you compare different microcontrollers, you can estimate the relative computing power
of the core, and also of the peripherals (if they include some intelligence). In some architec-
tures, the peripherals make heavy use of the core and thus take up a part of its computing
power. Many microcontrollers available on the market have a relatively powerful core, sur-
rounded by very simple peripherals. This approach has the advantage of making the periph-
erals easy to use and configure, but at the expense of the overall computing power.

The ST9 is an example of a radically different compromise. Its core is among the best 8-bit mi-
croprocessors on the market in terms of computing performance and system management ca-
pabilities. It is assisted (rather than just surrounded) by peripheral blocks of which most can
perform complex tasks without the intervention of the core. The net result is a powerful ma-
chine that can even perform impressive tasks just using its peripherals. The three applications
described in this book give meaningful examples of processes handled solely by the periph-
erals.

The ST92F150 is the latest generation of the powerful ST9 microprocessor family. The new
ST9 core executes software more than three times faster than the previous ST9 core using
optimized instructions and up to double the CPU frequency. The core as well as many periph-
erals have been enhanced, like for example, the Memory Management Unit (MMU), which is
now more flexible, with a single 4-Mbyte memory space that is directly accessible without
using bank switching. Another example is the Reset and Clock Control Unit (RRCU) which has
added features for reducing power-consumption.

The ST9 is a register-oriented machine. This means that a large number of registers is avalil-
able in the core; but above all, this implies that the instruction set is tailored to make efficient
use of its registers through optimized addressing modes. It is also well suited to the use of C
language.

4

7/146

ST9 USER GUIDE

2.2 PERIPHERALS

The ST9 family includes a large number of peripherals. The main ones are:

Acronym

Name

Function

MFT

Multi-Function Timer

All counting and timing functions. Includes auto-reload on con-
dition, interrupt generation, DMA transfer, two inputs for fre-
guency measurement or pulse counting, two outputs that can
change on condition, PWM signal generation.

Conditions include: overflow/underflow, comparison with one
or two compare registers.

Capture registers used to record transitions on inputs with their
time of occurrence.

SCI-M

Serial Communication In-
terface

Asynchronous transfer with either internal bit-rate generation or
an external clock. Parity generation/detection. Address recog-
nition feature that can request an interrupt on match of an input
character. DMA transfer.

wDT

Watchdog timer

Can be used either as a watchdog or as a timer with input and
output capable of pulse counting or waveform generation.

I/0 port

Parallel input/output port

Parallel input/output ports. Each bit individually configurable as
input, output, bi-directional, or alternate function. Inputs can be
high impedance or with pull-up, CMOS or TTL-level. Outputs
can have open drain or push-pull configuration.

ADC

Analog to digital converter.

10-bit analog to digital converter. One to sixteen channels can
be converted in series. On each of two of the sixteen channels,
an Analog Watchdog function is used to define two thresholds.
When exceeded, an interrupt is generated.

These peripherals are available with the standard variants. More peripherals are available on
custom devices on request, e.g. a videotext decoding logic.

The ST9 family includes so many variants it would go beyond the scope of this book to de-
scribe them all. They are all made up of the same ST9 core surrounded by a set of peripherals,
ROM and/or RAM and/or EEPROM and/or FLASH being optional. This book has chosen to
show the three most generic variants and provide a basis for understanding all the others.

8/146

4

ST9 USER GUIDE

2.2.1 ST92F124

Figure 1.ST92F124R9 Block Diagram

Il

MEMORY BUS

FLASH
64 Kbytes
E3 ™
1 Kbyte
RAM
2 Kbytes
NMI <:> 256 bytes
Register File
8/16 bits
CPU
Interrupt
INT[5:0] Management
WKUP[13:0]
ST9 CORE
OSCIN
0OSCOUT
RESET E RCCU
CLOCK2/8
INTCLK
CK_AF
STOUT <:| ST. TIMER
TINPAO
TOUTAO
TINPBO <:> MF TIMER 0
TOUTBO
TINPAL
TOUTAL
TINPB1 <:> MF TIMER 1
TOUTB1
vV VOLTAGE
REG <: REGULATOR

and Port7.

REGISTER BUS

I

I

Fully
Prog.
1/0s

12C BUS

SDA
SCL

WATCHDOG

WDOUT
HWOSW1

—
2

SPI

MISO

<:>M°S'
SCK

ADC

AVpp
Ao AVSS
AIN[15:8]
EXTRG

TXCLK

SCIM

RXCLK
SIN

E—

SOuUT

CLKOUT

The alternate functions (Italic characters) are mapped on Port 0, Port 1, Port2, Port3, Port4, Port5, Port6

RTS

(574

9/146

ST9 USER GUIDE

Figure 2. ST92F124V1 Block Diagram

il

MEMORY BUS

Ext. MEM.
ADDRESS
DATA
Port0

FLASH
128 Kbytes
E3 TM
1 Kbyte
RAM
E 4 Kbytes
DS
VJ:¥¥<::::::> 256 bytes
NMI Register File
2%% 8/16 bits
CPU
Interrupt
INT[6:0] Management
WKUP[15:0] |:> oTo CORE
OSCIN
OSCouUT
RESET RCCU
CLOCK2/8
INTCLK
CK_AF
STOUT <:::] ST. TIMER
ICAPAO
OCMPAO
ICAPBO < EF TIMER O
OCMPBO
EXTCLKO
ICAPA1L
OCMPA1
ICAPB1 < EF TIMER 1
OCMPB1
EXTCLK1
TINPAO
TOUTAO
TIPEO <::: MF TIMER 0
TOUTBO
TINPAL
TOUTA1
TINPB1 MF TIMER 1
TOUTB1
v VOLTAGE
REG <:::: REGULATOR

Port8 and Port9.

REGISTER BUS

JU 00U

Ext. MEM.
ADDRESS
Ports
1,9

il
L1

Fully
Prog.
1/0s

12C BU

A[7:0]
D[7:0]

A[10:8]
A[21:11]

PO[7:0]

P5[7:0]
P6[5:2,0]
P6.1
P7[7:0]
P8[7:0]
PO[7:0]

SDA
S <:::::>SCL

WATCHDOG

SPI

ADC

N——————

SCIM

SCIA

>

> Vwosw
HWOSW1

MISO
MOSI

SCK

Ss
AVpp
AVgg
AIN[15:8]
AIN[7:0]
EXTRG
TXCLK
RXCLK
SIN
DCD
souT
CLKOUT
RTS

RDI
TDO

The alternate functions (Italic characters) are mapped on Port 0, Port 1, Port2, Port3, Port4, Port5, Port6, Port7,

10/146

4

ST9 USER GUIDE

2.2.2 ST92F150

Figure 3.ST92F150C(R/V)1/9 Block Diagram

FLASH
128/64 Kbytes

Ext. MEM.
ADDRESS
DATA
Port0

MEMORY BUS

il
L1

>

ES ™
1 Kbyte
RAM
g 2/4 Kbytes
DS
ﬁ <:> 256 bytes
NMI Register File
FE{’% 8/16 bits
CPU
'NIT’ﬁgl Interrupt
Management
WKUP[13:0] > 9
WKUP[15:14]* ST9 CORE
OSCIN
0OSCOUT
RESET<: RCCU
CLOCK2/8
INTCLK
CK_AF
STOUT <:| ST. TIMER
ICAPAO
OCMPAO
ICAPBO <:> EF TIMER 0 *
OCMPBO
EXTCLKO
ICAPAL
OCMPA1
ICAPB1 <:> EF TIMER 1 *
OCMPB1
EXTCLK1
TINPAO
TOUTAO
TINPBO <:> MF TIMER 0
TOUTBO
TINPAL
TOUTAL
TINPB1 <: MF TIMER 1
TOUTB1
v VOLTAGE
REG <:> REGULATOR

>

REGISTER BUS

Ext. MEM.
ADDRESS
Ports
1,9*

Fully
Prog.
1/0s

A[7:0]
D[7:0]

A[10:8]
A[R21:11]

PO[7:0]

P5[7:0]
P6[5:2,0]
P6.1*
P7[7:0]
P8[7:0]*
PO[7:0]*

12C BUS

SDA
SCL

S

WATCHDOG

WDOUT
HWOSW1

2

SPI

MISO
MOSI

K >scx

SS

ADC

AVgg

, AIN[15:8]
AIN[7:0]*
EXTRG

TXCLK
RXCLK

SCIM

SIN
DCD
SOUT

CLKOUT
RTS

SCI A*

RDI
TDO

Port8* and Port9*.

* Not available on 64-pin version.
The alternate functions (Italic characters) are mapped on Port 0, Port 1, Port2, Port3, Port4, Port5, Port6, Port7,

INNR

11l

CAN_O

RX0
TXO0

(574

11/146

ST9 USER GUIDE

Figure 4. ST92F150JDV1 Block Diagram

‘/\
AV

]

MEMORY BUS

FLASH
128 Kbytes
FLASH
128 Kbytes g3 ™
1K byte
RAM
— 6 Kbytes
AS
DS
—Wi\l’\T’ <:> 256 bytes
NMI Register File
DS2 8/16 bit
RW CPU
INT[6:0] Interrupt
: Management
WKUP[15:0] |:> 9
ST9 CORE
OSCIN
0SCOoUT
RESET< RCCU
CLOCK2/8
CLOCK2
INTCLK
CK_AF
stout | ST.TIMER
ICAPAO
OCMPAO
ICAPBO ¢ EF TIMER O
OCMPBO
EXTCLKO
ICAPA1
OCMPA1
ICAPB1 EF TIMER 1
OCMPB1
EXTCLK1
TINPAO
TOUTAO
TINPBO <: MF TIMER 0
TOUTBO
TINPAL
TOUTAL
TINPB1 <: MF TIMER 1
TOUTB1
v VOLTAGE
REG <:> REGULATOR

REGISTER BUS

(S

(—
—
N—
N
N—
N
N—
>

Port8 and Port9.

000 0 uduiga g Uil

Ext. MEM.
ADDRESS <:>A[7ZO]
DATA D[7:0]
Port0
Ext. MEM.
ADDRESS <:>A[21:8]
Ports 1,9
PO[7:0]
P1[7:0]
P2[7:0]
P3[7:1]
Fully Prog. P4[7:0]
wos KT >psi7io)
P6[5:0]
P7[7:0]
P8[7:0]
P9[7:0]
J1850 VPWI
JBLPD <:>VF’WO
SCL
T —r
MISO
MOSI
s K >sek
S
AVpp
ADC NG
AIN[15:0]
EXTRG
TXCLK
RXCLK
SIN
sam K____»beD
SOUT
CLKOUT
RTS
an K,
I
B —

The alternate functions (ltalic characters) are mapped on Port0, Portl, Port2, Port3, Port4, Port5, Port6, Port7,

12/146

(574

ST9 USER GUIDE

2.2.3 ST92F250

Figure 5. ST92F250CV2 Block Diagram

N
A4

MEMORY BUS

FLASH
256 Kbytes
E3 ™
1K byte
RAM
— 8 Kbytes
AS
DS
RW
—= S| 256 bytes
WAIT Register File
NMI
DS2 8/16 bit
RW CPU
INT[6:0] Interrupt
: Management
WKUP[15:0] |:> g
ST9 CORE
OSCIN
0SCOUT
RESET
CLOCKy8<:::: RCCU
CLOCK2
INTCLK
STOUT<::::::] ST. TIMER
ICAPAO
OCMPAO
ICAPBO<:::::> EF TIMER 0
OCMPBO
ICAPA1
OCMPA1
ICAPB1 <:> EF TIMER 1
OCMPB1
TINPAO
TOUTAO
Teas <:> MF TIMER 0
TOUTBO
TINPAL
TOUTA1L
ﬂNPBl<::::::> MF TIMER 1
TOUTB1
VOLTAGE
VREG <:> REGULATOR

Port8 and Port9.

REGISTER BUS

00 0 0ougy 1 Ul

Ext. MEM.

ADDRESS <:>A[7ZO]
DATA D[7:0]
Port0

Ext. MEM.

ADDRESS <:>A[21:8]

Ports 1,9 PO[7:0]
P1[7:0]
P2[7:0]
P3[7:0]
Fully Prog. P4[7:0]
I/0s <:::::::::>Pa7m]
P6[7:0]
P7[7:0]
P8[7:0]
P9[7:0]
I’C BUS _0 <:::::>SDA0
- SCLO
I’CBUS _1 <::::::>SDA1
- ScL1
WATCHOOG [WOOUT
MISO
MOSI
SPI <:::::>§9K
SS
AVpp
ADC ‘————WAVSS
AIN[15:0]
EXTRG
TXCLK
RXCLK
SIN
sCIM <:>§85T
CLKOUT
BT —c
oo (RS

The alternate functions (ltalic characters) are mapped on Port0, Portl, Port2, Port3, Port4, Port5, Port6, Port7,

(574

13/146

ST9 USER GUIDE

3 PROCESSOR CORE: MAIN CONCEPTS

The term ST9 designates a family of components. Each component shares the same core,
surrounded by a particular configuration of memory and peripherals that make up the specific
variant. The ST9 core has a unique and powerful structure. This chapter explains the main
building blocks that you need to get familiar with to be able to make full use of its capabilities.

The main features of the core architecture are:

— Register-Oriented Programming Model

— Single-Space memory addressing

— System and User Stacks

— Interrupt system with fully integrated controller
— Built-in DMA mechanism

— Reset and Clock Control Unit (RCCU) with PLL

3.1 ADDRESS SPACES

The ST9 provides two different address spaces: Register Space and Memory Space. The
Register Space draws its power from its size: 256 registers of which 224 are uncommitted,
and from the fact that it can hold data or pointers to data that reside in any of the two spaces.
The Memory spaces can address up to 4 Mbytes. This address space is arranged as 64 seg-
ments of 64 Kbytes to address Programs and as 256 segments of 16 Kbytes to address Data
when the DMA is not used.

3.1.1 Register-Oriented Programming Model

The usual microprocessor core structure is based on an accumulator. The accumulator is the
one register that holds the data to work on and the results of the arithmetic or logical opera-
tions applied to it. This structure has become a classic - for its simplicity - the internal data
paths of the microprocessor all converge to the accumulator. The instruction set is simple,
since you need to specify only one memory address in a data move instruction, the other
being implicit: the accumulator itself.

This simplicity has its own drawbacks: the accumulator is the computation bottleneck, since to
move data from one place in memory to another place, you have to do it through the accumu-
lator. The simplest transfer involves at least two instructions: one to get the data, the other one
to store it.

Register-Oriented models, in contrast, allow you to move data directly from one place to an-
other in a single instruction. Data can come from a register or from a memory address and can
go to either to a register or a memory address. You can code the addresses in the instruction,
or store them in registers referenced by the instruction. This allows you to optimize your code

14/146 172

ST9 USER GUIDE

by choosing to store frequently used data in registers, leaving less frequently used data in
memory.

3.1.2 Register File

The ST9 has a special addressing space for registers, providing 256 different register ad-
dresses. This large amount of registers gives you considerable flexibility in allocating vari-
ables. Register addresses are coded using one byte. You can use any of these registers to
hold data or as a pointer either to other registers or to bytes in memory(l). Contrast this with
processors that feature a certain number of registers, but in which some of these registers are
meant to be only pointers or indexes, and some others not. These processors only allow trans-
fers between memory and registers. The register organization of the ST9 gives you a real ad-
vantage you can make use of.

3.1.3 Direct access to the Register File

The entire Register File can be accessed directly by its address prefixed by an “R” except for
register group D (13) that can only be addressed through the Working Register mechanism.

For example to address the register at the address 73, address it as R73, R49h or R1001001b
in decimal, hexadecimal or binary. For a double register (16 bits) you can use the “RR” prefix
to address any data with an even address.

Any register can be given a user-defined name.
In C language:

#pragmaregister filedatal
char dat al;
#pragnmaregister filedata260
i nt dat a2;

and accessed with:

dat al=13;
dat a2=0x1234;

datal is automatically allocated in the register file by the linker as no register number is pro-
vided. data2 is manually allocated in register RR60. This pragma should be repeated in each
file where the variable is made visible through an external declaration.

However using these registers needs an additional byte with the instruction mnemonic. Using
Working Registers is more efficient, because it avoids using this address byte.

@ Except for group E (14) reserved for the system registers and group F (15) reserved for
the peripherals.

I<72 15/146

ST9 USER GUIDE

3.1.4 Working Registers

To further improve coding efficiency, a special mechanism has been created: the concept of
working registers. This reduces to just 16 bytes the register space accessible by the instruc-
tions in the so-called working register addressing mode. Only four bits are required to address
this space, allowing both the source and the destination of a data move to be coded in a single
byte, thus saving both code size and execution time.

256 registers, when split into groups of 16, give 16 groups. The group used is indicated in a
special register, called the Working Register Pointer. The register address is made up of the
group number and the register address within the group, as follows:

Figure 6. Register Group Addressing Scheme

RegisterAddress | 7|6 | 514 |3 |2 |1] 0
| I |
' v

Group Number Register Number
(16 Register Groups) within Group Number

3.1.5 Peripheral Register Pages

All internal peripherals are mapped into the register space. Most of them have a multitude of
features and can be configured in different ways. This implies that they have a large number
of registers. Since only the last group of 16 registers is allocated for peripherals, a special
scheme must be used to overcome this problem. It is called paging. The last group of registers
actually addresses one pack of sixteen registers that belongs to the peripheral itself. Which
pack of which peripheral depends on the value of a register called the Page Pointer Register.
There can be as many as 64 different pages, providing plenty of space for accessing periph-
erals.

Here are more details on these two mechanisms.

3.1.6 Working Registers and Register Pointers

The working registers offer a workspace of 16 bytes. This is sufficient for most applications,
and much more convenient than a single accumulator. However, in some applications, this is
still not enough. In this case you can easily allocate more than one register group to a partic-
ular program module. Since any register can be accessed directly, it is up to you to decide
whether you want to switch working register groups or not to access the other groups of reg-
isters.

Since changing the current group involves only one instruction, the concept of working regis-
ters can greatly reduce context switching time, for example in the case of an interrupt service

16/146 172

ST9 USER GUIDE

routine. Doing this preserves the contents of the whole group, and the reverse operation re-
stores them, as in the example:

; The mai n programuses t he wor ki ng regi ster group O
| nt errupt Rout i ne:
pushw RPP ; Keep track of current group
srp #2 ; Switchtogroup 1 (seetext bel owfor details)

; Body of theinterrupt serviceroutine

popw RPP ; Restore what ever group was active
i ret ; Returnfrominterrupt

Supposing we could not switch working registers, we would have to push 16 bytes to the stack
to ensure that the contents of the working area have been preserved, and pop them back be-
fore returning. Obviously the example above is more efficient, both in code and data memory
size, and also in execution time.

You use register pointers to allocate the working registers in a particular group. When writing
in C or assembly language, you must position the working registers before you use them@.

Switching groups involves the RPP register pair, made of the two registers RP0 and RP1.
These registers are directly accessible, but since their bits are laid out in a non-trivial manner,
it is recommended that you set them using only one of the sr p, sr p0 or sr pl instructions.

The registers are considered as sixteen groups of sixteen registers each. This is the way they
are represented in the register number summary table (See Table 1.). Use the numbers in this
table to refer to a register directly, e.g. when writing R35, this designates the fourth register of
group 2.

3.1.6.1 Switching the 16 Groups of Working Registers

This is done using the sr p instruction. In spite of what we have explained up until now, and
how it is usually represented, the core does not actually divide the registers in 16 groups of 16
registers, but 32 blocks of 8 registers. This is why the sr p instructions require arguments
ranging from 0 to 31 instead of 0 to 15. Here is how the Register Pointers select the desired
register group among 16 such groups.

@ Device Datasheet; Address spaces of the register file § 2.2.1 and following, system regis-
ters § 2.3.

4

17/146

ST9 USER GUIDE

Figure 7. Selecting a 16-Register Working Group

1
1
R255
Group F
Paged Registers
R240 n
R239
Group E
System Registers
232 - - RPOR loaded
R Register Pointer 0 (RPOR) | - - - - using instruction code srp #2
.- R224 ,
T R223 :
: L Groups 2to D] :
' R32 !
* R31 ris
General Purpose: Group 1 :
Registers | as Working k---:
: Register Group
. R16 0
' R15
, Group O
' ROO
« mVa = momow

Using sr p defines one group of sixteen working registers named r0 to rl5, and occupying 16
contiguous registers in the register file. The lower case r for the register number indicates that
it is a working register number, in contrast to upper case R registers that indicate an absolute
register number. For example, accessing r3 is the same as accessing R19 if the current group
is group 1:

srp#2 ; Switchtogroupl
incr3 ; increnent 4thregister of the group

4

18/146

ST9 USER GUIDE

inc RL9 ; increnment the sane regi ster again

The following table summarizes the use of the sr p instruction and its effect in terms of group
selection.

Table 1. Register Page Number Summary

Hexadecimal Decimal Register group srp #n
register register Function decimal instruction to select a
number number (hexadecimal) group to provide r0-r15

FO-FF 240-255 Paged registers 15 (F) srp #30
EO-EF 224-239 System registers 14 (E) srp #28
DO-DF 208-223 13 (D) Srp #26
CO-CF 192-207 12 (C) srp #24
BO-BF 176-191 11 (B) Srp #22
AO-AF 160-175 10 (A) srp #20
90-9F 144-159 9 srp #18
80-8F 128-143 8 srp #16
General
70-7F 112-127 purpose 7 srp #14
60-6F 96-111 registers 6 srp #12
50-5F 80-95 5 srp #10
40-4F 64-79 4 Srp #8
30-3F 48-63 3 srp #6
20-2F 32-47 2 Srp #4
10-1F 16-31 1 srp #2
00-0F 00-15 0 srp #0

Notes: Though it is possible, it normally makes no sense to set the working register group either to
group E (14) or F (15), since the registers in these groups have pre-defined meanings. You can-
not use them to store intermediate values of calculations without greatly affecting the behavior
of the microcontroller in an unpredictable way. However, bit-level instructions are only available
using working register addressing, so when you need to do bit manipulations in these groups,
setting the register pointer to either 28 or 30 is an efficient way of programming when accessing
these two groups.

The sr p instruction is the only one you have to use to switch register groups, and is the way
working registers are used in most programs. However, the working register scheme includes
a subtlety that is seldom used, but that could give you even more flexibility in some cases. This
is what is described in the next paragraph.

The same register group number can be selected by an odd or even number. In fact, the for-
mula is:

srp 2*n+1l ; for groupn
or
srp 2*n ; for groupn

I<72 19/146

ST9 USER GUIDE

3.1.6.2 Defining Two Separate Groups of Eight Working Registers

In this mode, the sr p instruction is not used. Instead, we use the pair of instructions sr p0 and
sr pl. When using a working register, r0 to r7 address the first to the eighth register of the
whole group selected by half the value in RPO i.e. all the registers of the half group selected by
RPO. Registers r8 to r15 relate to the first to the eighth register of the group pointed to by RP1.
Here is how the two blocks are selected:

Figure 8. Register Numbers

R255

>

General Purpos

Registers R24

R23

R16
R15

= m mmmmmmmmmmmmma@=" === mmmmmmmmmm= oo

<

Group F
paged registers

Group E
system registers

Register pointer 1 (RP1R

Register pointer 0 (RPOR

Upper part of Group D

as working
register group

Lower part of
group D

- Groups 2to C 4

11}

Upper part of
group 1

Lower part of Group 1
as working
register group

r7

ro

Group O

RPOR loaded
using the
instruction code
srp0 #2

RP1R loaded
using the
instruction code
srpl #27

20/146

4

ST9 USER GUIDE

As an example, if RPO is set to half group 2 (lower part of whole group 1) and RP1 to half
group 27 (upper part of whole group 13), rO will designate R16 (2 x 8 + 0) while r15 designates
R223 (27 x 8 + 7).

Using either method depends on the organization of the data in the register file. You may find
it convenient to use two 8-register blocks if you need to make quick calculations on pairs of
data that are far apart in the register file.

The page numbering and switching instructions are summarized below:

Table 2. Register Page Number Summary

He?(a- Decimal Eight-Register |. sr'pO #n (or srpl) #n
decimal : . . instructions to select a block to
: register Function block decimal .
register number (hexadecimal) provide rO-r7'
number and r8-r15 respectively
F8-FF 248-255 Paged registers 31 (1F) srp0 or srpl #31
FO-F7 240-247 Paged registers 30 (1E) srp0 or srpl #30
E8-EF 232-239 System registers 29 (1D) srp0 or srpl #29
EO-E7 224-231 System registers 28 (1C) srp0 or srpl #28
D8-DF 216-223 27 (1B) srp0 or srpl #27
DO0-D7 208-215 26 (1A) srp0 or srpl #26
C8-CF 200-207 25 (19) srp0 or srpl #25
78-7F 120-127 General 15 (OF) srp0 or srpl #15
purpose
20-27 32-39 registers 4 srp0 or srpl #4
18-1F 24-31 3 srp0 or srpl #3
10-17 16-23 2 srp0 or srpl #2
08-0F 08-15 1 srp0 or srpl #1
00-07 00-07 0 srp0 or srpl #0

When you use an 8- or 16-register group, you may very likely have a subroutine or an interrupt
routine that uses a different set of working registers. You must save (push) the pair of register
pointers RPP that include RPO and RP1 at the beginning of the routine and restore them on
exit.

3.1.6.3 Peripheral Register Paging

Group F of the 16-register groups is paged so that as many as 64 different groups can be
mapped to this address range. This large space is used to accommodate the registers related
to the peripherals. The paging technique allows you to add any number of peripherals and still
be able to handle them without using up more addresses in the register space.

When you access a register in group 15, first set the Page Pointer Register to the number of
the page that contains the register you want. Here is how a page is selected:

I<72 21/146

ST9 USER GUIDE

Figure 9. Selecting Page Registers

R255
Group F <
Paged Registers
/
PPR loaded using
P X ;
R240 / instruction code spp #3.
R239 /
Group E System Registers f
R234 Page Pointer Register (PPR) | -/
R224
= Groups0to D =
R0OO

As with the working registers, if a subroutine or an interrupt routine needs to access a periph-
eral that uses paged registers (which is very likely), you must save (or push) the register
pointer PPR at the beginning of the routine and restore it on exit.

Notes: In both assembly and C languages, include files are supplied with symbolic names pre-defined
for all the peripherals. These names are unique for each peripheral; however several different
names relate to the same register, but in a different page. You must bear in mind that writing for
example (in C language):

S ISR=0; /* clear serial peripheral error register */

does not automatically select the proper page; this statement must be preceded by another one
that selects the SCI page. Since no predefined C statement exists for this, a convenient way is
to define an assembler statement under the form of a macro that will read nicely in the C source.

An example of the correct way to access the SCI register is:

#def i ne Sel ect Page(Page) asm("spp %®":: "i" (Page)) ; /* pseudo function
t o sel ect a page */

Sel ect Page(SCI 1_PG); /* Sel ect the serial peripheral page */
S ISR=0; /* Cl ear serial peripheral error register */

3.1.7 Memory Management Unit

Like most microcontrollers, the ST9 has a bus for interfacing internal and external memories.
This allows you to store both programs and data. A special feature of the ST9 is that it can ad-
dress a 4 Mbyte single space to address ROM, RAM, EPROM, EEPROM, FLASH.

4

22/146

ST9 USER GUIDE

To address the 4 Mbytes of memory, the address bus is 22 bits wide. To manage the 22-bit
address with 16-bit direct or indirect addressing, the memory mechanism adds extra bits to the
16-bit address and then works with segments (see Figure 10) or pages (see Figure 13). The
memories are arranged in 64 segments of 64 Kbytes for the program and in 256 segments of
16 Kbytes for data.

A set of special registers is used to extend the 16-bit address. Programs use the CSR, DMA
uses the DMASR or ISR and interrupts use the ISR or CSR register to provide the 6 Most Sig-
nificant Bits to make a 22-bit address. Data uses a set of four registers (DPRO0-3) to provide
the 8 Most Significant Bits to make a 14-bit address.

Data can be addressed in the Program segment by using special move instructions: | ddp,
[dpp, | dpd, | ddd.

It is easier from a hardware point of view to use only one address space for Program and
Data.

Figure 10. Addressing via CSR, ISR and DMASR

MMU Registers 16-bit Virtual Address

SRS
0 O

Fetching program
C:D instruction

11
57

<2> Data Memory
accessed in DMA

Fetching interrupt
@ instruction or DMA
access to Program
Memory

22-bit Physical Address

4

23/146

ST9 USER GUIDE

3.1.7.1 Program Segment

We can consider this memory as linear since we can jump anywhere in memory space using
the special JPS, CALLS and RETS instructions.

The 6-bit CSR register is used to extend the 16-bit address to a 22-bit address by concatena-
tion (see Figure 10). To make a fast branch in the same segment, use the common JP, CALL
and RET instructions.

To branch to another segment using a far call, the use of CALLS saves the current PC value
and the CSR value (Code Segment Register) in the stack, before loading the PC and the CSR
registers with the new values. Every time the segment changes you have to use the far branch
even if you branch from address (n)FFFFh to (n+1)0000h. This is because the program
doesn’t manage the 6 high-order bits of the 22-bit program addresses if you don’t use a far
branch to change the CSR register value. The script file (described in the Development Tools
chapter) allows you to place all your program modules anywhere in a single segment.

The far branch instruction adds only 2 to 4 additional cycles compared to a near branch in-
struction.

Note: In C language, using the small code model (this means only one 64 Kbyte segment is used), all
calls use local branches. If more than one segment is used, the large code model is required
and all calls use far branches even when branching locally. To avoid far calls in the same seg-
ment, the segment to be called has to be declared as static if it is not called from another seg-
ment.

3.1.7.1.1 Segment and Offset in Assembler Mode or C Language

The Offset represents the address in the segment with 16 bits. If the Segment and the Offset
are known, the following syntax is used for the far branches:

i ps segnent , of f set ; 6bits+16 bits
i ps symbol ; 22 bits
calls segnent , of f set 1 6bits+16bits
calls symbol : 22 bits
calls (R, (rr) ; 6bits+16 bits
calls (r),(rr) ; 6bits+16 bits
rets : 22 bits

The assembly tools accept a set of directives which retrieves the elements of a function ad-
dress or of a label.

The operator SEG (stands for SEGment) allows you to extract the segment number of a label,
similarly, the operator SOF (stands for Segment OFfset) allows you to extract the offset of a
label within its segment.

4

24/146

ST9 USER GUIDE

These operators are especially useful when applied to a function or instruction label, although
the macro-assembler and assembler do not verify the type of the label.

Example:
| d r 0, #SEG Functi on ; extract the 6-bit segment
| dw rr2, #SOF Functi on extract the 16-bit of fset

calls (r0),(rr2)
The same functions exist in C language: SEG(Function); SOF(Function).

3.1.7.2 Interrupt Service Routine Segment

One program segment is reserved for storing the Interrupt Service Routines. All the interrupt
routines start in this segment.

To obtain a 22-bit address, the 16-bit address is concatenated with 6 bits from the ISR register
(the 6 bits from the ISR register are the high-order bits of the address).

To offer compatibility with the previous ST9 versions and to have a new powerful address
mechanism, you can select “ST9” mode using the EMR2 bit in the ENCSR register.

Both modes use the concatenation of the ISR register value and the 16-bit address as shown
in Figure 10 to address the interrupt vector.

Then, in “ST9” mode, only the ISR register value is used during the interrupt routine. So it's not
possible to jump to another segment from the Interrupt Service Routine because the CSR reg-
ister value is not saved with the FLAGR value and the current PC value when the interrupt oc-
curs. The advantage of “ST9” mode is to reduce stack memory usage and CPU cycles by not
saving the CSR value (see Figure 11). This figure shows you the different mechanisms that
are used when an interrupt occurs, when a branch or a call is executed during the interrupt
routine and when the return from interrupt instruction (RET]I) is executed.

4

25/146

ST9 USER GUIDE

Figure 11. Interrupt Processing in “ST9” Mode

When an interrupt occurs, the 8-bit
IVR address is extended to 22-bits
to obtain the address of the
Interrupt Service Routine

as shown above.

| 16-bit Address of

1

6-bif]
ISR
6-bit
22-bit
22-bit 16-bit nterrupt
- I - I .
- Service
8 bits_| Tnterrupt ;
at'o’ 74> Routine
Address
8-bit
STACK FLAG
PC MSB
PC LSB

22-bit

VN

Only the
PC value
is saved
for a
CALL
instruction|

Addresses of local branches |

(within the same segment as

the Interrupt Service Routine, |

using the CALL instruction) are

extended to 22-bits as shown |
I

6-bi
CSR
22-bit
16-bit
g
ELAG —P}FLAGR register
4 pc MSB
— PCLSB STACK

Return from interrupt.
The current PC value saved in the
stack and the CSR value are

concatenated to make the 22-bit
return address.

In “ST9"” mode, saving the CSR value allows you to change its value to branch to another seg-
ment. When the interrupt occurs and when the current PC, CSR and FLAGR values are
saved, the ISR register value is stored in the CSR register (see Figure 12).

26/146

4

ST9 USER GUIDE

Figure 12. Interrupt Processing in “ST9” Mode

I Next segment for I
| a far branch |
| 6-bit | 6-bit
[ISR]
6-bit | CSR | CSR
" CSR |
6-bit
22-bit | 22-bit | pobi
DA -bi
| [e2bit___aebif [P —> |
8 bltS_ |nterrupt+ Service)
at’'o’ 7P Vector Routinel 16-bit Address |
8-bit Address of any branch
-DI . hi
| 16-bit | 16-bit
| | >
i | CSR |
FLAG | PC MSB | FLAG —P|FLAGR register
STACK CSR CSR+PC PC LSB —|__CSR
L
o MSE represent | FLAG |l pc msB
the 22-bit STACK CSR | | pcLsB STACK
PC LSB current address PC MSB
saved. |
| PC LSB |
When an interrupt occurs, the 16-bit | Addresses of local and far | Return from interrupt.
Interrupt Vector is extended to 22-bits branches (to any segment) are The current PC value and the
as shown above. | extended to 22-bits as shown | CSR value saved in the stack are
| 'zibovef. CALL. the CSR val | concatenated to make the 22-bit
))) or a far , the value
Before loading the CSR register with is saved with the current PC value. i address.
the ISR value, the CSR value is saved | iy the stack and the CSR
In the stack. | register is loaded with the new |
segment to jump to.

3.1.7.3 DMA Segment

To address the total 4 Mbytes of memory in a DMA transaction, the DMASR points to a
64-Kbyte segment. Since there is no need to have more than one segment at the same time
for the transaction, the DMA uses a single 64-Kbyte segment instead of 4 pages like a Data
Segment (see below). To use the DMASR register, the DP bit in the DMA Address Register
(DAPR) must be set. If DP is reset, the DMA uses the ISR register instead of the DMASR reg-
ister.

4

27/146

ST9 USER GUIDE

3.1.7.4 Data Segment
Data uses the page mechanism to address the 4 Mbytes of memory.

To authorize data coming from different 64-Kbyte segments, a set of 4 Data Page Registers
(DPRO to DPR3) allows you to address 16 Kbytes per register (see Figure 13). The DPR is se-
lected with the 2 high-order bits of the 16-bit data address:

DPRO: from 0000h to 3FFFh (b15-b14=00)
DPR1: from 4000h to 7FFFh (b15-b14=01)
DPR2: from 8000h to BFFFh (b15-b14=10)
DPRS3: from C0O00h to FFFFh (b15-b14=11)

After you select the DPR, the 8-bit value of the selected DPR register is used to extend the 14
remaining bits of the address to 22 bits.

For example, if DPRO equals 20h and DPR1 equals 2h, each memory access in the range of
0000h to 3FFFh uses the DPRO page and addresses data from 080000h to 083FFFh, and
each memory access in the range of 4000h to 7FFFh uses the DPR1 page and addresses
data from 008000h to 00BFFFh (see Figure 13). For example:

16-bit address = 0010 0101 1010 0101 = 25A5h 0000h < 25A5h < 3FFFh
DPRO is selected, so the 6 high-order bits are equal to 20h
22-bit address = 0010 0000 100101 10100101

DPRO value, 14 LSB of the 16-bit address

=00 1000 0010 0101 1010 0101 = 0825A5h

With this mechanism, if the 16-bit addresses are different only on the 2 highest bits and if all
the DPR registers selected with these two bits have the same value, the resulting 22-bit ad-
dress will be the same.

Four pages of 16Kbyte of data memory are enough for many applications and allow you to use
data from different segments without costing additional CPU cycles. With four DPRSs, you can
access up to 64K (4 x 16K) of data without changing the DPR values. Data can be variables
stored in RAM or constants stored in program ROM.

The four DPR registers are located in the MMU register page (page 21 of register group F). If
you use them frequently, you can relocate them to register group E, by programming bit 5 of
the EMR2 register (R246 in page 21). This prevents you from having to switch to the MMU
register page from another peripheral register page in order to change a DPR register value.

4

28/146

ST9 USER GUIDE

Figure 13. Addressing via DPRO-3

MMU Registers 16-bit Virtual Address

DPRO DPR1 DPR2 DPR3

N

8 bits

22-bit Physical Address

3.1.7.4.1 Accessing the Page and the Offset in Assembler or C Language

The assembly tools implement a set of operands which allows you to extract the components
of a data address.

The PAG operator (stands for PAGe) extracts the page number of an address; similarly, the
POF operator (stands for Page OFfset) extracts the offset of the address within the page.

Syntax:
PAG label
POF label

Be careful that directly using the data label and using the POF operator on a data label are not
equivalent: the data label gives the 16 bits of the logical label address; the POF operand gives
the 14 lowest bits of the label's physical or logical address.

Example:
Assuming data is mapped at address 0x129876:

| dw rr2, #POF dat a 1 rr2=0x1876
| dw rr4, #dat a ; rr4 =0xD876 (wi t h DPR3=0x4A)

Remember that you must take care of which data pointer has to be set before accessing a
variable.

I<72 29/146

ST9 USER GUIDE

Example:

Assuming that data has been mapped in a page aligned on address 0xC000, this means that
DPR3 will be used, therefore the following code is correct:

I d DPR3, #PAGdat a
| dw rr2, dat a
I d ra,(rr2)

In assembly language, it is possible to access data through another DPR:
Example:
Still using data at an address aligned with 0xC000, following code is correct:
| d DPR2, #PAGdat a ;i f dat a address=0x01C765, DPR2=7
| dw rr2, #(POF dat a) +0x8000; rr 2=0x8765
; #(POFdata) toreset bit 15and 14

: and 0x8000 t o use DPR2
I d ra,(rr2) ; indirect addressi ng node

I d r4, (POF dat a) +0x8000 ; direct addressi ng node

It is important to look at the explicit usage of the immediate addressing mode (#) to get the
page number and the offset; it is consistent with the ST9 assembly syntax shown in the fol-
lowing example:

| dw rr2, #Var
I d ra,(rr2)
| d r4, Var

The same functions exist in C language: PAG(data); POF(data);

30/146

4

ST9 USER GUIDE

3.2 STACK MODES

The ST9 allows you to have two separate stacks: a system stack and a user stack. The core
uses the system stack in interrupt routines and subroutines to save return addresses, the flag
register and the CSR depending on option (EMR2 register bit Enable Code Segment Reg-
ister). You can also use it under program control to save data, using the push and pop instruc-
tions.

The user stack works exactly the same way, using the pushu and popu instructions but only
under program control, which means that the user stack is not changed by the system. You
may choose to use a separate space for your data, or to store them in the same stack as the
return addresses.

Both stacks can independently be located either in RAM or in the register file. You select this
using the SSP and USP bits in the MODER register (R235) for the system stack and the user
stack, respectively. A low bit value selects a RAM stack, and a high bit value selects a Reg-
ister File stack.

Since the stacks grow towards low addresses, the stack pointers must be initialized to the
highest location plus one® of the space reserved to it. This location becomes the “bottom” of
the stack. When the stack is located in the register file, take care that it does not overwrite
other data, in particular the registers located in groups 14 (OEH) and 15 (OFH). For this reason
it is advisable to set the system stack pointer to the end of group 13 (ODH).

The last register of this group being R223, the instruction that sets the stack pointer will be:

Id sspr, #224 ; set stack poi nter toone above end of group 13
Note 1: Using two separate stacks in the same kind of storage (memory or register) area is likely to con-
sume more space than if a single stack is used. So most of the time, only one stack will hold
both return addresses and arguments for functions. You can then use pushu and popu instruc-
tions to manipulate data with the convenience of auto incrementing or decrementing the pointer
after each access.

As an example, refer to the C language start-up files which initialize both the user and system
stacks.

The following diagram illustrates the two options for locating the stack: in the register file or in
memory.

®) The push instruction decrements the stack pointer before writing the data, so this location
would never be used if set to the top location.

4

31/146

ST9 USER GUIDE

Figure 14. Stack Location Options

R255
Group F
Paged Registers
R240
R239
Stack Pointer Low]|- - -
Stack Pointer High
Group E
System Registers
Bottom
of Stack
Stack
ROO
System or User Stack
in Register Space
High byte of pointer irrelevant

R255
Group F
Paged Registers
R240
R239

Group E
System Registers

ROO

System or User Stack
in Data Memory Space

Stack Pointer Low} - - s
Stack Pointer High[™~

Bbttom
of:Stack

Data Memory
(RAM)

3.3 INSTRUC

TION SET

The ST9 is said to be an 8/16-bit microcontroller. This means that although the size of the in-
ternal registers and the width of the data bus are 8 bits, the instruction set includes instructions
that handle a pair of registers or a pair of bytes in memory at once. These instructions repre-
sent roughly one half of the total instructions, which means that the ST9 can be programmed
with the same ease as if it were advertised as a full 16-bit device.

This is why it is well suited for C programming, as illustrated in this book.

32/146

4

ST9 USER GUIDE

3.3.1 Overview

For a complete description of the instruction set, you should refer to the ST9 Programming
Manual. The aim here is to give you an introduction to the ST9 instruction set and highlight
some of its best features in terms of power and ease of programming.

Most instructions of the ST9 exist in both byte and word forms. That is, they can operate on ei-
ther 8 (byte) or 16-bits (word). The mnemonics of the word-instructions all end with a “w”, as
in the following examples:

Load Add Subtract Lc;gnlgal Logical or | Compare Push Pop
Id add sub and or cp push pop
ldw addw subw andw orw cpw pushw popw

The new powerful instructions added to the ST9 are the CALLS, RETS, JPS instructions for
far branching to change the program segment and the instructions used for C language appli-
cations, LINK, LINKU, UNLINK and UNLINKU. Moreover, all instructions have been optimized
compared to Previous ST9.

3.3.1.1 Load Instructions

Beside the classical load instructions found on most microprocessors, there are four special
load instructions for moving data between two locations in memory.

One instruction to move data from data segment to data segment; | ddd. This instruction al-
lows you to post-increment the destination and the source index register at the same time. The
Id instruction needs two instructions to do this. An example for moving a block of data would
be:

| d rr0, #Sour ce
| d rr2, #Desti nati on ;initialisationof thepointers
| d r5, #Num | oop : nunber of el enents to npve
| oop:
I d ra,(rr0)+ ; transfer of one byte
Id (rr2)+,r4
dj nz r5, | oop

The two | d instructions are coded using 6 bytes and executed in 24 cycles.
The same program with the | ddd instruction:

| d rr0, #Sour ce

| d rr2, #Desti nati on ;initialisationof thepointers

I<72 33/146

ST9 USER GUIDE

| d r5, #Num | oop : nunber of el enents to npve
| oop:

| ddd (rr2)+, (rr0) + ; transfer of one byte

dj nz r5, | oop

The | ddd instruction is coded using 2 bytes and executed in 14 cycles.

Here are the four possible data transfers:

Instruction Moves data from... ...to
lddd data segment (uses the DPRO-DPR3 registers) data segment
Idpp program segment (uses the CSR register) program segment
Iddp program segment data segment
Idpd data segment program segment

These four instructions improve the performance of data block moves (frequently used in C
programs).

As you can see in the table above, the data move can be between data and program seg-
ments. Here’'s an example of a data move from a Data segment using the DPR register to a
Program segment using the CSR register:

| d rr0, #Sour ce
| d rr2, #Desti nati on ;initialisationof thepointers
| d r5, #Num | oop : nunber of el enents to npve
| oop:
| dpd (rr2)+, (rr0) + ; transfer of one byte
dj nz r5, | oop

The data load with rrO comes from the data segment selected by one of the four DPR register
values depending on the rr0 value and then are stored in the program segment selected by the
CSR register value.

(Please refer to the MMU Section 3.1.7 for an explanation of data and program segments).

3.3.1.2 Test Under Mask

These instructions, tm and tmw, perform a logical (bitwise) AND between the two operands,
but do not store the result. They only set the Z and S bits of the flag register for a later condi-
tional jump on zero or sign. The mask is a value in which the bits that are set to 1 select the
corresponding bits of the value to be tested for non-zero. As an example, in the following in-
struction:

t mval ue, mask

4

34/146

ST9 USER GUIDE

If the mask is a byte whose binary value is 11000000, only the left-most two bits of the un-
known value will be tested, and a later branch if zero will be taken or not according only to
these bits. As shown below, the same mask is used for two values that differ only by one bit:

000110101 Byte to be tested 1 01 1 0 1 0 1
1100000O00O0 Mask used for testing 11 0 0 0 0 0 O
000O0O0O0OOO0ODO Result of the logical AND operation 1 0 0 00O OO

jump taken Result of the “jump if zero” jump not taken

Two more instructions, tcm and tcmw, work essentially the same way, but they take the com-
plement of the value to be tested before ANDing it with the mask, as follows:
t cmval ue, mask
The same two cases will provide the following results:
000110101 Byte to be tested 1 01 1 0 1 0 1

111001010 Complement of the byte to be tested 0 1 0 01 0 10
1100000O00O0 Mask used for testing 11 0 0 0 0 0 O
1100000O00O0 Result of the logical AND operation 0O 1 0 0 00 0O

jump not taken Result of the “jump if zero” jump not taken

The jump would be taken if the byte to be tested had two 1's in its most significant two bits, for
example 11110101.

3.3.1.3 Push and Pop

Since there are two stacks, there are two kinds of push and pop instructions. The mnemonics
push, pushw, pop and popw act on the system stack, which can be either in the register space
or in the memory space. The mnemonics pushu, pushuw, popu and popuw act on the user
stack, that can also be either in the register space or the memory space. The stack pointer
used in each case is the SSPR or the USPR register pair respectively. The stack pointers are
always decremented before writing on pushing, and they are incremented after reading on
popping. Thus the stack pointer always points to the last byte written. This is worth knowing if
you need to manipulate the stack contents.

The operands to be pushed can be a register, a pair of registers or an immediate value:

4

35/146

ST9 USER GUIDE

pushr6
push (R120)
push #80
pushw RR100
pushw #1500
Pushing an immediate value is especially useful when you are programming in C.

A special push instruction is Push Effective Address. This instruction does not push the data
itself, but the memory address of the data. For example:

pea 5(rr2)
This takes the contents of rr2, adds 5 and pushes the result onto the stack. This is widely used
in C programming.

3.3.1.4 Multiply and Divide

The multiply instruction takes two byte operands and provides a word result. All numbers are
treated as unsigned numbers (operands 0 to 255, result 0 to 65535). Though both operands
are bytes, the first one must address a word to receive the result. The first operand should
then reside in the low byte of the word, and the high byte, not used in the operation, will be
overwritten. The flag register is affected but the state of the flags after the operation is mean-
ingless.

To multiply a signed number (operands -128 to 127) by an unsigned number (operands 0 to
255) with a result in the range of -32768 to 32767, refer to the example given below:

Id ril, #si gned_dat a
Id r4, #unsi gned_dat a
btjt rl.7,neg
mul rrO,r4 ;rr0=r1*r4, withrlvalueapositive signed
: nunber
ip end
neg:
mul rrO,r4 ;rr0=r1*r4, withrlval ue anegative signed
: nunber
sub ro,r4 :rrO=rr0-100h*r4
end

With the signed operand equal to 226=0E2h (means -30 for signed data) and the second un-
signed operand equal to OFh (+15) the result will be -450 (OFE3Eh).

4

36/146

ST9 USER GUIDE

This “eight bits signed by eight bits unsigned” multiplication with a “sixteen bits signed” result
takes a maximum of 36 cycles.

There are two divide instructions.

The div instruction divides a word by a byte, and returns the quotient and the remainder as the
low and the high bytes of the destination respectively. For example:

| dw rr0, #31184 : rr0=#31184
I d r2, #201 ;r2=#201
div rrO,r2 : rr0=1D9Bh, 1Dh=#29 and 9Bh=#155

This puts the value 155 in rl (the quotient) and the value 29 (the remainder) in r0, and r2 still
contains 201.

If the divider is greater than the dividend, nothing is done. If the divisor is zero, a trap is trig-
gered that acts like an interrupt request, and uses the vector at locations 2 and 3 in program
memory. It is up to you to write the appropriate code to handle this trap. Finally, the numbers
to be divided should be such that the quotient be less than 256, that is, can be stored in a
single byte. Otherwise, the results are undefined.

The usable result is only the data stored in r1 which is 155 (for the previous example), the re-
mainder must be divided by the divisor (201) to give more precision (16-bits precision).

| dw rr0, #31184 : rr0=#31184

I d r2,#201 ; r2=#201

div rrO,r2 : rr0=1D9Bh, 1Dh=#29 t he remai nder and
; 9Bh=#155t he quot i ent

| d rd,rl : 14=9Bh=#155

clr ri : rr0=1D00h

div rrO,r2 : rr0=0BC24h, 0BCh=#188t he remai nder and
; 24h=#36 t he quoti ent

| d ro,r4 ; rr0=09B24h, 09B24h neans i nfi x-point

i Withthepoint inthe 16-bits nm ddl e
: 09B24h=155. 140625 i nst ead of
: #31184/ #201=155. 1442786

In the best case, the number of cycles required to divide a word by a byte with 16-bits preci-
sion is 80 cycles. This program has to manage overflow and divide by zero functions in order
to be able to be used.

The divws instruction performs one of the sixteen partial divides required to divide a double
word by a word, so you need to write a subroutine to perform the division completely. An ex-
ample subroutine is given in the ST9 Programming Manual.

I<72 37/146

ST9 USER GUIDE

3.3.1.5 Bit Operations

Microcontrollers are often used for controlling inputs and outputs on a single-bit basis, in order
to read the state of a contact, switch a relay on or off, etc. Because of this and because the
data is stored in bytes, instructions for bitwise manipulation of data are welcome.

The ST9 provides instructions to load, and, or, exor, set, clear, complement and test single
bits. These are bld, band, bor, bxor, bset, bres, bcpl, btset.

To designate a single bit in a byte, the notation .n is used. For example, r0.3 means bit 3 of r0.
Here are examples of bit manipulation instructions:

bl d ro.2, r6.4 ; bit 4of r6copiedtobit 20of r0

bl d ro.3, !'r6.0 ; conpl enent of bit Oof r6copiedtobit 3of r0
band ro.2, r0.3 ; 0.2 contains now(r6.4) and not (r6.0)

bor ro.2, r2.7

bset ro.o :bitOorrOsettol

bcpl r0.1; bit 10of rOis conpl enented
All the above instructions act on single working registers. If the source operand is preceded by
‘I', the complement of the source bit is used.

To test a bit, to condition a later jump, we have already described the tm and tcm instructions.
There is another instruction, btset, that can act on either a single or a double working register,
and that sets the Z bit of the FLAGR register if the designated bit is zero. After which, the bit
is set to one. You can use this instruction in an interrupt service routine to test for a request
and acknowledge it in a single instruction.

Warning. Don't use the bit manipulation instructions directly on bidirectional ports. To avoid
unwanted modifications to the port output register contents, use a copy of the port register,
then transfer the result with a load instruction to the I/O port. (Refer to the Input/Output Bit
Configuration section in the Device Datasheet for more details.)

3.3.1.6 Test and Jump

The btjf and btjt instructions test if a bit is set or cleared respectively and branch to another
program location if true. For example:
btjt rl.5, Lanpon
bset ri1.5 ; switchlanp on
Lanpon:
; continuationof the program

Two instructions are well-suited for implementing lookup tables. These are cpjfi and cpijti. They
compare a byte in a register with a byte pointed to by a register pair, and increment the pointer

38/146 172

ST9 USER GUIDE

if the condition is not met. If the condition is met, the pointer is not incremented and the branch
is taken. Example:

; Find the position of a letter in a text.

Message: .ascii "Thisisatrial"

| d rr0, #Message : wheretosearch

| d r2,#1t' : thecharacter tosearch for
Sear ch:

cpjfi r2,(rr0), Search ; thisisthe searchl oop

; hererrOpointstothe 11t h character of message
: continuation

3.3.1.7 Far Branch

As explained in Section 3.1.7, the 4-Mbyte memory is a segmented memory. It is not possible
to reach another segment with the common CALL, RET and JP instructions because they do
not manage the CSR (Code Segment Register) register. This is managed by the three new
CALLS, RETS and JPS instructions. Only 2 to 4 cycles are added to the common instructions.

3.3.1.8 Optimized C Instructions

In C functions when a function is called, the compiler needs to push the variables in the user/
system stacks and to keep the return address location of the function inside the stack.

Therefore, a frame pointer is used, and 2 pieces of code named prologue and epilogue need
to be added by the C Compiler at the beginning and at the end of the function respectively.
The LINK and UNLINK instructions (LINKU, UNLINKU to use the user stack) are used to re-
duce the code overhead generated by the compiler inside the function. These instructions are
automatically added by the C Compiler instead of prologue and epilogue (if option -mlink is
specified).

The number of cycles gained by using these instructions is about 34 to 42 cycles and 8 bytes
per called function.

4

39/146

ST9 USER GUIDE

3.3.2 Advantages when Using C Language

The ST9 has been designed with high-level languages in mind. In particular, the instructions
described above are of special interest to C programmers.

First, as a structured language, C typically uses the stack to pass arguments to functions, re-
turn values from functions, and store the local variables of the functions. An instruction such
as:

pushw #1500
pushes a constant integer value as the constant argument of a function. This is used in the fol-
lowing example:
/* defineafunctionthat has asingl e argunment of i nt type*/
voi d MyFunction (i nt Param) ;

{
/ * body of the function */
}
voidmain(void) ;
{
/* sone code ... */

MyFunction (1500) ;/* invokethisfunctionw thaconstant argument */
/* nore code ... */

}

Since C makes heavy use of pointers, the instruction:

pea 4(rr2)
pushes the address of the 5th byte of a structure.
For example:
/* defineastructuredtype*/
struct sMyStruct {
i nt N1 ;
i nt N2 ;
char C1;
b

struct sMyStruct MyStruct ;/* create avari abl e of t he above defi nedtype
*/

40/146 "_l

ST9 USER GUIDE

/* defineafunctionthat has asingl eargunent of type poi nter tocharacter
*/

voi d MyFunc (char * Arg) ;

{
/ * body of the function */

}

voidmain(void) ;

{

/* sone code */

/* invokethe functionw ththe address of t he character el enent of the
structure */

MyFunc (&WStruct.Cl) ;/* &WStruct.Cl = 4(rr2) if rr2containsthe
addr ess of MyStruct */

/* nore code */

}

The Iddd, Idpp, Iddp, Idpd instructions are used for block copies such as assignments of struc-
tures, etc.

Powerful addressing modes such as indirect, indirect with increment or decrement and in-
dexed shorten the code needed to access data even in structures or arrays. They also facili-
tate access to local variables created on the stack on entering functions. Working registers
that benefit from the most powerful instructions and addressing modes are heavily used by the
compiler. In fact, the GNU9 compiler does not always translate the source code as suggested
above. There are optimization schemes that save execution time and/or memory by judi-
ciously allocating the working registers, so that in many cases arguments are not pushed to
the stack, but merely to an available working register.

3.4 INTERRUPTS

The interrupt system of the ST9 is very powerful, and, in consequence, requires some thor-
ough study to get the most out of it. However, it is worth learning since it allows you to build
very efficient programs with excellent interrupt response times.

The ST9 interrupt system works the same as that of any microcontroller, except for two points
that call for special attention: the vector mechanism and the priority mechanism®.

@ Device Datasheet; Interrupts § 4.

4

41/146

ST9 USER GUIDE

3.4.1 Interrupt Vectors

Unlike most microcontrollers, the ST9 uses a two-level indirect interrupt vector system. This
means that each peripheral able to generate interrupt requests has a vector register that
points to a location in program memory (the vector array). This location contains the address
of the start of the interrupt service routine. This allows each peripheral to generate several dif-
ferent interrupt requests: the peripheral vector register points to an array of pointers to rou-
tines, each routine responding to a different interrupt cause. All pointers to interrupt pro-
cessing routines, except the Reset, must be located in the first 256 bytes of the Interrupt Ser-
vice Routine (ISR) segment (one of the 64 code segments). The trap for divide by zero with
the associated far call to the Interrupt Service Routine has to be repeated in all memory seg-
ments containing programs that perform division. Code may also reside in this 256-byte
space, provided that it does not overlap with the interrupt vectors.

Figure 15 shows the complete mechanism of the 22-bit address construction from the interrupt
which provides the Interrupt Vector Register value to the return from interrupt.

For each peripheral, the layout of the vector array is specified in the section related to its own
Interrupt Vector Register.

4

42/146

ST9 USER GUIDE

Figure 15. Interrupt Vectors

(2)
22-hit CSR Memory Space
CSR from stack

At the end of the Interrupt Service ~<«—PC from stack--e— .
Routine, the IRET instruction returns / Interrupt Program 22-bit
to the program in the segment

selected by CSR (CSR_5 to CSR_0) 22-bit

ISR
Segment

ISR or CSR®

16-bit

Interrupt Service

| /ks-bit“ | Routine Address
00
ISR ISR Address of | -« — — — — 4
8-bit Divide by Zero Trap| |SR 0002 I
I
ISR 0000 I
, . XX FFFF I
' ' I
Pa i : : [
ged Registers 01 0000 |
[00 FFFF .
[
[Divide by zero trap
| Segment repeated at each
R255] 0 segment

Interrupt Vector ISR Address of | ¢ — — — — -

Register (IVR) Divide by Zero Trap 00 0002

ISR Address of | - - - -Only for the first
RESET 00 0000 segment
L Bit DO of IVR is always 0
R240 — since the addresses of the
— interrupt service routine

start at even addresses

(1) If the ENCSR bit of EMR2 is set (Enable Code Segment Register), the CSR is saved in the stack and then
loaded by the ISR. If it's reset, the CSR is not saved and only the ISR is used.

(2) If the ENCSR is set, the CSR is reloaded with the value saved in the stack when the interrupt occurs.
If it's reset, CSR is used instead of ISR when the RETI instruction occurs (Return from interrupt).

As an example, let's take the ST92F150 Multifunction Timer 0. The registers that define the
MFTO functions are all contained in pages 9 and 10 of register group 15 (OFH). Register 242,
called the Interrupt Vector Register (IVR), holds the address of the beginning of the vector
array in program memory. The IVR has the following bit layout:

4

43/146

ST9 USER GUIDE

TO_IVR (R242 page 9)
[va | v3 [v2 | vi | vo | wi [wo | 0o |

Where V4-VO (fixed by software) are the high bits of the low byte address memory where the
vector for the first interrupt cause is located. Since there are three different interrupt causes,
and the address of each interrupt service routine occupies two bytes, the IVR must be loaded
with an address between 8 and 250 that is a multiple of 8 (i.e. the lower three bits are zero).
The layout above shows two bits W1 and WO (fixed by hardware), and a third bit that is per-
manently set to zero. The two W1-WO bits code four different possible interrupt causes, as in
the following table:

W1 WO Interrupt Source
0 0 Overflow/ Underflow event interrupts
0 1 Not available
1 0 Capture event interrupts
1 1 Compare event interrupts

When an interrupt occurs, the resulting value is an address that is the value written in IVR
(here 40H), plus the value coded by the cause (if the cause is a capture event, W1-WO0 are 10,
thus the value is 4).

This gives an even number, since the least significant bit is zero, as follows:

\Z V3 V2 V1 VO wi WO 0
0 1 0 0 0 1 0 0

So IVR points to address XX 0044H (with XX the ISR segment number), which must contain
a word that is equal to the address in the ISR segment of the Interrupt Service Routine for that
cause.

An example of the code for setting the IVR is:
voi d ConfigTimer0O (void)
{

/* settingother registers... */

Sel ect Page (TOC PG ;

TO_| VR=(unsi gned char) | NTRELOADVECT ;/* Array of pointerstoservice
routi nesinROM*/

/* settingother registers, continued... */

}

4

44/146

ST9 USER GUIDE

Figure 16. Interrupt Vectors: Example with Multifunction Timer O

Memory
(16-bit address space)
65535
Group F
Paged Registers
(8-bit address space) ISR on
R255 compare event
ISR on '
capture event .
= T ISRon o
OVF/ UNFevent D
<- o
Interrupt vector register IVR) | _ _ _ _ _ _ . L
R242 contents = 40h ! : b
page 09 Z T =
R240 ' , : :
The value 40h as the base : Do
X ' 47h ISR address on v
address of the interrupt R o -l
vector table is chosen ' 46h compare event o
arbitrarily by the programmer . _ _45h > ISR address on o
' 44h capture event ' |
. 3h ' nterrupt
4 . 1
- aoh > Not available . Vector Table
: 41h ress on '
ISR add !
™ > OVF/ UNF
00h

The corresponding source code could be:

; Thi s programuses the 3interrupt possibilitiesof MFTO

; Constants
| T_M-TO_VECT = 40h

: Vector tabl e
. section.text
.org 00h ; (default address)
.word Reset ; reset vector
- ; i f needed di vi de by zero, NM vectors

I<72 45/146

ST9 USER GUIDE

.org | T_MFTO_VECT

. word i sr_ovf _unf; | SRaddress on OVF / UNF

Cfi 1,2,0xffff ; does not exist in MTOinterrupt ; skip onevector
. word i sr_capt ; | SRaddr ess on capt ur e event

. word isr_conmp ; | SRon conpare event

: somewhereintheinitialisationcode...

:MFTOinitialisation

nftO_ init:
spp #TOC_PG ; sel ect MFTO control register page
- ; settingof sone other registers. ..
I d TO_ I VR, #| T_MFTO_VECT,; pointer for the vector table

; continuationof theprogram..

A similar scheme applies for all other peripherals, though the number of interrupt causes may
vary, and thus the size of the pointer table.

Note:

46/146

To summarize, the table of vectors to an interrupt service routine in ROM for a given peripheral
is itself pointed to by the Interrupt Vector Register of this peripheral that must be set to the prop-
er value. This gives you an unusual degree of flexibility: a peripheral may have different interrupt
service routines at different times, without the need to add tests at the beginning of the interrupt
service routine. Let's consider for example that we want to transfer a string of data from a pe-
ripheral. When the first byte of data comes in, we must initialise some variables to handle the
string. Then, all subsequent transfers merely copy the data from the peripheral to memory and
increment the pointer. Switching between these two modes is very easy. Initially, the IVR of the
peripheral is set to the block of vectors that point to the interrupt service routine that serves the
first time. This interrupt service routine changes the value of the IVR to another block of vectors
and returns. The next interrupt will be automatically re-routed to the other, lighter, interrupt ser-
vice routine. This reduces the execution time of this routine, since we do not need to test wheth-
er this is the first time that the interrupt service routine is called or not.

4

ST9 USER GUIDE

3.4.2 Interrupt Priorities

In any microprocessor-based system, there is a trade-off between the computational power of
the main program and the interrupt latency time. Expressed simply, the less the main program
is disturbed, the sooner it finishes its job. On the other hand, we often need to serve interrupt
requests generated by the peripherals as quickly as possible. Since this is a trade-off, we
need to find a compromise that gives both enough power to the main program while still
keeping it as responsive as possible to interrupts. It is likely that we will need to modify this
compromise according to the current status of the program.

If we define that some interrupt requests are more urgent than others, we can define a priority
or a hierarchy of interrupt requests. The main program itself, if given a priority level, should be
considered as having the lowest priority (except sometimes when interrupts are undesirable).

In most cases, when the main program is running, it can be interrupted by any interrupt re-
guest. But once a request is being served, it most likely needs to continue undisturbed, unless
a request from a higher priority level occurs. Then, the higher priority request is served until
completion. The service routine then returns to the lower priority interrupt service routine, that
terminates and eventually returns to the main program. In the ST9, this behavior is called
Nested Mode.

Other types of behavior may be required depending of the kind of processing. For this, the
ST9 interrupt system has two Boolean parameters to select the way interrupts are handled,
which allow four basic choices.

The priority mechanism is driven by the Current Priority Level parameter. At a given time, the
part of the program being executed runs under a certain level. You can change this CPL by
writing a different value in the core’s Central Interrupt Control Register (CICR). You can assign
Priority Level (PL) to each interrupt source. At initialisation time, this value is written in one of
the control registers specific to the corresponding peripheral.

Note: The PL is a three-bit word that ranges from 0 to 7. Note that 0 stands for a high priority and 7

for a low priority. These bits belong to one of the configuration registers of each peripheral.

When a peripheral requests an interrupt, the built-in interrupt controller compares the priority
level of the interrupt request to the Current Priority Level. The interrupt is only acknowledged
if its priority level value is strictly less than (higher priority) than the Current Priority Level
value. This allows you to filter out interrupt requests according to their degree of importance or
of urgency according to the current activity of the program. The Non-Maskable Interrupt input
(NMI) is hard wired with a higher priority than any level, and thus is acknowledged immediately
in all circumstances.

The ST9 offers two modes for managing interrupt priorities:
— Concurrent Mode
— Nested Mode

"_l 47/146

ST9 USER GUIDE

The difference between them is explained below.

3.4.2.1 Global Interrupt Enable Flag

In both modes, when an interrupt request is acknowledged, the Interrupt ENable (IEN) bit is
cleared, preventing the interrupt service routine from being interrupted again until it is finished.
If required, you may prefer to keep it cleared for the duration of the routine or to set IEN at
some place in the routine using the ei instruction. In the first case, if an interrupt request of a
sufficient priority level is received, it will only be serviced as soon as the service routine cur-
rently running returns. In the second case, the same interrupt request is serviced as soon as
both it occurs and the IEN bit is set. In short, interrupt service routines may be re-interrupted
or not, at will.

3.4.2.2 Concurrent Mode versus Nested Mode

Selecting either Concurrent Mode (automatically chosen on reset) or Nested Mode changes
the way the Current Priority Level is managed.

In Nested Mode, the CPL is automatically set to the priority of the current interrupt service rou-
tine, and is reset to the previous value on return. This allows you handle the interrupt request
according to priority at all times, since during the execution of the service routine for a given in-
terrupt, only those interrupts whose priority is strictly higher than that of the one currently being
served will be taken into consideration. Then if, as must normally be done, the IEN bit is set
during the current service routine, it will be interrupted at once if an interrupt request of higher
priority occurs. If the IEN remains cleared for the whole duration of the service routine, those
interrupt requests will be served first after the current routine has returned.

4

48/146

ST9 USER GUIDE

Figure 17. Example with Nested Interrupts Enabled

0

A Priority
Level

Interrupt #2
is requested
and served

Interrupt #6 is requested
but not served because
its priority is lower than |f

|

Interrupt #2
CPL=2

Interrupt #5
is requested

PL=5

Main program

Nested mode: IAM bit ="1"
IEN is set to “1” by the programmer

Interrupt #2 has priority level 2
Interrupt #5 has priority level 3
Intereupt-#6 has priority level 6
Main program has priority level 7

di

CPLis

setto 7

(automatically)|gj

(Interrupt #5 can be served)

Main program)

CPL=7

Figure 18. Example with Nested Interrupts Disabled

0

Priority
Level

»
»

Interrupt #2
is requested

Interrupt #6
is requested

v v

Interrupt #5

Nested mode: IAM bit ="1"
IEN is not set to “1” by the programmer

CPL=2

Interrupt #5
is requested

i setto?

CPL=5

interrupt #2-has prierity- level 2
Interrupt #5 has priority level 3
Interrupt #6 has priority level 6
Main progran has priority level 7

(T v
Interrupt #6

CPL=6

(_ Main program
CPLis

(automatically)

_ (Interrupt #5
€l can be served)

Main program)

CPL=7

4

49/146

ST9 USER GUIDE

In Concurrent Mode, the CPL is set exclusively by the programmer. You can change it if you
need to shift the compromise mentioned above either towards main program efficiency, or to-
wards short interrupt latency times. So you can have a high-priority service routine that is re-
interrupted by a low-priority interrupt request, if the CPL has been set to a low priority and the
IEN bit is set. This mode gives you maximum flexibility, but it is the most difficult to use since
you must keep track of every combination of interrupt requests to achieve the efficiency you
expect from your program.

Figure 19. Example with Concurrent Interrupts Enabled

A
o r - — — — — Interrupt#4 b — — — — — - — — — — — — -
is requested
T+ - - - — Interrupt#4is = 0|} — — - — — — — =
served first because
2 Interrupt #2 &:jnd L it's priority is higher
| arerequested. ~_than the interrupt #6 — Tinterrupt#2f~ — — — —
The Interrupt #2 is — —
3 served first because CPL=7 —I—
M itspriorityishigher [™ — Tol —A— — — — — — |_ - - — — =
than the interrupt #6 J
4 —- - = — = Interrupt #4 — _— — -
CPL=7
5 Interrupt #5 nterrupt#5F — — — —lef— — —F — — — — T Interrupt#S)— - -
is requested CPL=7 CPL=7
b~ - - — -~ - - -
¢ o Interrupt #6
CPL=7
7 Main program |} — — — —— —— _ — — — — — — — — Main
CPLissetto 7 CPL=7

Interrupt #2 has priority level 2
Interrupt #4 has priority level 4
Interrupt #5 has priority level 5
Interrupt #6 has priority level 6
Main prog has priority level 7

Concurrent mode does not look like a reasonable way to handle interrupts if you enable inter-
rupts in your interrupt service routine. It should be thought of as a way to fully control priorities
through programming, if nesting priorities cannot meet your processing requirements. For ex-
ample, let us consider the case when a timer produces a periodic interrupt that outputs some
data on an external digital to analog converter. The requirement is that the new data be output
at the very time of the interrupt, so as to reduce the jitter (or parasitic frequency modulation)
that would compromise the spectral purity. Then, once the data is output, the interrupt service
routine does some processing to make or get the data for the next interrupt. The latter part of
the processing is much less critical in terms of execution time, provided it is finished before the
next timer interrupt. Using Concurrent mode, you can assign that interrupt the highest priority
so that it will be served immediately, then re-enable the interrupts and, if needed, give it a pri-

4

50/146

ST9 USER GUIDE

ority level as appropriate. The service routine will then allow other interrupts to gain control, at
the expense of delaying its own completion.

Note 1: In practice, Concurrent mode does not differ much from nested mode if the interrupts are not re-
enabled during an interrupt service routine. Concurrent Interrupts Disabled looks like Nested In-
terrupt Disabled with the difference that the CPL is changed only by software when necessary.
The interrupt requests pending while the interrupt service routine is executing, will only be ser-
viced after the current service routine returns.

Note 2: An interrupt with priority level 7 will never be served.

3.4.3 External Interrupt Unit

This is a functional block that can receive interrupt requests from up to eight external pins, and
also from some internal devices such as the Watchdog Timer, the Serial Peripheral Interface,
etc. It is used to select the active edge for pin or device, and define the priority for each of the
four pairs. In addition, an NMI pin can be programmed as being maskable or non-maskable. It
is maskable on reset, and once set to nhon-maskable, it cannot again be set to maskable until
the next reset. This works as explained below.

3.4.3.1 Maskable External Interrupt Pins

These are eight external inputs you can set individually to rising-edge or falling-edge sensitive,
and masked. You assign priorities by pairs, making four groups with different priorities. Within
each group, the two interrupt requests have two successive priorities. For example, if you set
group C to priority 2, the INT4 input will have priority 2 and INT5 will have priority 3 (which is
lower).

4

51/146

ST9 USER GUIDE

The simplified block diagram is the following:

Figure 20. External Interrupts Simplified Block Diagram

External Interrupt pin
(INTO to INT7)

. Edge trigger event
selection: one bit of EITR

Internal interrupt

Only for:

AO: INTO or WDT interrupt Internal/External
BO INT2 or SPI interrupt source selection
(Device dependent)

One bit of
EIPR

Pending Bit

One bit of

EIMR Mask Bit

=

Current priority Priority External interrupt
level (CPL) 3 Comparator 3 priority level

Bit IEN of CICR

Interrupt enable
A detailed block diagram
is provided in Section 7

Interrupt to
the core

3.4.3.2 Top-Level Interrupt

The Top Level Interrupt can have two sources: either the NMI pin, or the watchdog end-of-
count®. This interrupt level has a special feature that allows you to mask it like any other in-
terrupt, or to make it a real non-maskable interrupt. For this, the TLNM bit (see Figure 21) can
remove the effect of the mask. Once set, it cannot be reset, thus preventing this interrupt from

©) see Section 4.3 on the Watchdog Timer.

4

52/146

ST9 USER GUIDE

being accidentally masked even in the case of a program failure. In any case, the Top Level
Interrupt uses the third fixed vector at addresses 4 and 5 in program memory. As the name im-
plies, it has a fixed priority that is higher than any other interrupt request. Though it does not
clear the IEN bit when acknowledged, unlike all other interrupt requests, its service routine
cannot be interrupted by any cause, including the Top Level Interrupt itself.

The simplified block diagram is the following:

Figure 21. Top-Level Interrupt Simplified Block Diagram

Two bits of
CICR

Watchdog timer

End of Count

Interrupt bit
Interrupt enable:

One bit of
NICR

Top Level not
maskable

NMI pin

. Edge trigger event
selection: one bit of EIVR

Watchdog/NMI
source selection:
one bit of EIVR

One bit of

Pending Bit j——
ng =i CICR

A detailed block diagram
is provided in Section 7

Top Level Interrupt to
the core

4

53/146

ST9 USER GUIDE

3.4.3.3 External Interrupt Vectors

There are eight external interrupt causes. They are each connected to an external input that is
the alternate function of an I/O port. Some of these are shared with other causes in an exclu-
sive manner, i.e., the INTO pin is multiplexed with the Watchdog/Timer interrupt request, and
the INT5 pin is multiplexed with the Serial Peripheral Interface interrupt request (on the
ST92F150). Each cause is associated with a separate vector in Program Memory. All vectors
are contiguous, generating an array of 8 vectors starting with the INTO vector, and ending with
the INT7 vector. This array may be freely located in program memory between addresses 8 to
240 (0OFO0h) in program memory.

These interrupt causes are grouped by pairs, and are given new names inside the interrupt
controller, as shown in the following table:

Interrupt Source Interrupt Cause
INTO INT AO
INT 1 INT A1
INT 2 INT BO
INT 3 INT B1
INT 4 INT CO
INT 5 INT C1
INT 6 INT DO
INT 7 INT D1

You can independently assign a priority to each pair (A, B, C, D), with levels that are multiple
of two, i.e. you can set them to priority levels 0, 2, 4, or 6. In each pair, the cause bearing the
figure zero assumes this priority, and the cause bearing the figure 1 assumes the next level
above. For example, if you assign level 4 to pair C, this means that INTCO will have level 4 and
INTC1 level 5. You set this in register EIPLR (R245 page 0), where each group of two bits
gives the level of the corresponding interrupt cause.

The interrupt vectoring is summarized in the table below:

4

54/146

ST9 USER GUIDE

Figure 22. External Interrupt Vectors

EIVR (R246, Page 0)

External Interrupt Vector Register

0

V7

V6

V5| V4 |TLTEV|TLIS

IAOS

EWEN

MSB of the
Vector Table address
for the
8 external interrupts

(Software fixed)

1111b [o
1110b [Hi

ISR address for INTD1

0111b
0110b [Hi

(0]
ISR address for INTBO

0011b Lo
0010b | Hi

ISR address for INTA1

0001b [
0000b [Hi
A

© ISR address for INTAO

for the 8 external interrupts
(Hardware fixed)

LSB of the Vector Table address

Vector Table:
(Addresses less than FFh)

4

55/146

ST9 USER GUIDE

3.5 DMA CONTROLLER

3.5.1 Overview

One of the most important advantages of the ST9 is its ability to handle input/output data flows
without using core instruction cycles. This is made possible by the built-in DMA controller.
Once properly initialized, it allows peripherals to exchange data either with memory or the reg-
ister file, with no more use of the core resources than the stolen memory cycles strictly needed
to transfer the data.

To see how much faster DMA is than the simplest interrupt service routine, let us compare the
execution times.

Let us assume that the data comes from the serial port. The simplest interrupt routine is the
following:

Get OneByte:; interrupt | atency: 22 cycl es
push PPR ; save current page 8
pushw rr0 . saverrO 10
spp #SCl PG ; change regi st er page 4
| dw rr0, PO NTER ; get pointer 12
I d (rr0)+, S RXBR ; nove data 12
| dw PO NTER, rrO ; store pointer 14
popw rr0 ; restorerrO 10
pop PPR ; restorecurrent page 8
i ret preturn 16

: Total : 116

With an internal clock of 24 MHz, this corresponds to an execution time of 4.8364 ps. In con-
trast, the DMA cycle time for the transfer of one byte from a register to a register file takes only
8 cycles (16 cycles to the memory), that is 0.33 ps. The DMA feature saves you from using
valuable core processing power for simple tasks like storing an input byte to memory. For ex-
ample, if a continuous flow of data is input at 19200 bits per second, the interrupt service rou-
tine would consume 1.11% of the total cycles of the core, as compared to the 0.0767% with
the DMA solution. Since the DMA is built-in and works with most of the peripherals, it is a good
idea to use it even for slow transfers.

The DMA uses the Segment mechanism to address 64 Kbytes along the linear 4 MBytes. See
Section 3.1.7 for more details.

4

56/146

ST9 USER GUIDE

3.5.2 How the DMA Works

The DMA consists of a transfer between a memory or register file and a peripheral, in either di-
rection. Assuming the peripheral is configured to handle externally supplied data or to provide
data to external circuits, two steps are needed for a transfer to occur.

The transfer must be requested by some event or condition.
A mechanism must handle reading the data from one part and writing to the other part.

The term DMA transfer represents the transfer of a single byte of data. Usually, more than one
byte is transferred and the transfer occurs in bursts. Thus, a third step is involved:

A mechanism that counts the transfers and stops them when the count is finished.

To the programmer, these mechanisms appear as registers to be properly initialized. The
three steps are handled as follows (see Figure 23).

3.5.2.1 Transfer Requests

The DMA transfer is requested in exactly the same way as an interrupt is requested. Ac-
cording to its type, the peripheral concerned sends a request based on an external event such
as a character received or transmitted by the Serial Channel Interface. You configure this in
the registers belonging to the peripheral involved. Special bits in the registers indicate that the
peripheral ready status, instead of requesting an interrupt, requests a DMA transfer.

3.5.2.2 Transfer Execution

A DMA transfer can involve a memory location or a register in the register file. In any case, the
transfer requires an address and a counter. This address and counter are stored in registers
which you can define anywhere in the register file. The address register value is automatically
incremented after each transfer and the counter register value is decremented so that the next
transfer will involve the next address and this mechanism will continue until the counter is
equal to 0. Depending on whether the transfer addresses memory or the register file, there are
two cases.

If the transfer addresses the register file, the address register and the counter register are
single registers (a byte is enough to address 256 registers). The address of this address reg-
ister is stored in one of the peripheral's registers, named DCPR. The low bit (RM) of this reg-
ister is set to zero indicating that the register file is involved in the transfer. The address reg-
ister must have an even address to address the DMA address, the next register storing the
DMA transaction counter.

If the transfer addresses the memory, the registers that hold the address and the counter must
be two double registers. In this case, the DMA address is pointed by the DAPR pointer register
and the DMA transaction counter is pointed by the DCPR pointer register. The low bit of the

I<72 57/146

ST9 USER GUIDE

DAPR indicates whether the memory segment is pointed by DMASR or ISR (see Section
3.1.7). The DMA address and the DMA transaction counter are not necessarily consecutive.

3.5.2.3 Transfer Termination

A burst terminates when the count of transfers reaches a predefined value. To set this up, you
set a counter register in the register file that holds the count of transfers to execute at the start
of a burst. Each transfer decrements it, and the DMA mechanism is stopped when the counter
reaches zero.

The way DMA controller terminates the transfer differs from one peripheral to another, but typ-
ically it consists of resetting the bit in the configuration register that tells the peripheral to issue
DMA requests instead of interrupt requests. Then, on the last transfer, when the transfer
counter reaches zero, it toggles the DMA/Interrupt request bit so that the peripheral issues an
interrupt request again. If this request is unmasked, you should vector it to an interrupt service
routine that handles the DMA termination.

To summarise:

For register transfers, the DCPR of the peripheral points to a user-defined pair of registers that
holds the address and the count. Register DAPR is unused. For memory transfers, the DAPR
points to the user-defined register pair that holds the address. The DCPR register points to the
user-defined register pair that holds the count.

Some peripherals, such as the Multifunction Timer, even have a double pair of DAPR/DCPR
registers. Only one pair is used at a time. In so-called Swap Mode, this allows the timer to use
one data buffer for output and another buffer for input. The pair of registers used is automati-
cally changed when one transfer burst terminates, allowing a continuous data flow between
the program and the peripheral, with minimum data handling overhead.

In addition, the MFT has 16-bit registers. Transfers imply two byte transfers for each register.
This is ensured by a mechanism that gives the DMA the highest priority as soon as the first
byte is transferring. This guarantees that the second byte will also be transferred in the
shortest delay, even if other DMA requests become pending while the transfer is in progress.

4

58/146

ST9 USER GUIDE

Figure 23. DMA Data Transfer

REGISTER FILE

PERIPHERAL

DF

REGISTER FILE

COUNTER

DATA peripheral

ADDRESS

REGISTER FILE

OR
MEMORY
Current
COUNTER value
Decrease after
v each transfer
> Current ADDRESS
Start ADDRESS

4

59/146

ST9 USER GUIDE

3.6 RESET AND CLOCK CONTROL UNIT (RCCU)
The RCCU is composed of the Clock Control Unit (CCU) and the Reset and Stop Manager.

3.6.1 CLOCK CONTROL UNIT

The CCU generates the peripheral clock INTCLK and the CPU clock CPUCLK. It is a useful
clock generator with low power function and low external frequency oscillator to reduce elec-
tromagnetic emissions.

The diagram can be reduced as in Figure 24.

Figure 24. CCU Simplified Block Diagram

Clock Multiplier
Quartz > \
Oscillator, ™ [ws2t014] ®
P Prescaler 3 CPUCLK
CK_AF
Source >/
@ P> INTCLK

The CCU is composed of 5 main blocks:

BLOCK COMMENTS
1 Quartz oscillator gives the main frequency generator. The frequency is in the range of 3to 5
MHz.
2 External clock for very low power consumption with a very low frequency.
The Clock Multiplier can reduce or increase the input frequency by using prescaler and
3 PLL.The increase is for the normal use and the decrease for low power consumption.
4 The selector aims the clock coming from the Clock Multiplier for normal or low power use or
aims the clock CK_AF for a very low power consumption.
The prescaler is used also for low power consumption. The INTCLK is not change giving a high
5 frequency to the internal peripheral. This allows the user to slow down program execution
during non processor intensive routines.
60/146 Ky_[

ST9 USER GUIDE

3.6.1.1 Clock Multiplier
The Clock Multiplier is a part of the Figure 26.

The advantage of the Clock Multiplier is that it can produce a variable clock frequency de-
pending on the needs of the CPU.

Since the input clock to the PLL circuit requires a 50% duty cycle for correct operation, the di-
vide by two should be enabled (DIV2 bit of MODER register set) if the PLL is enabled. It is nec-
essary when a crystal oscillator is used, or when the external clock generator does not provide
a 50% duty cycle. In practice, the divide-by-two is virtually always used in order to ensure a
50% duty cycle signal to the PLL multiplier circuit.

The Clock Multiplier output is one of the CLOCK2, CLOCK2/16 or CLOCK2*PLLMUL/(DX+1)
(PLLMUL is the PLL multiplier coefficient) frequencies.

The two frequencies CLOCK2 and CLOCK2/16 are for low power consumption or reduce
power consumption, depending on the Wait For Interrupt instruction (refer to the flow chart
Figure 25).

The PLL has four clock multiplier factors (6,8,10 and 14) controlled by the two bits MX0 and
MX1 in the PLLCONF register. The clock divider is controlled by three bits DX0:2 in the
PLLCONF register for seven rates which are 1/(DX+1). Setting DX2:0=7 turns OFF the PLL to
reduce consumption.

When you switch on the PLL, you have to allow a delay for the PLL to lock.

4

61/146

ST9 USER GUIDE

Figure 25. INTCLK and CPUCLK Flow Chart

Yes

CKAF_SEL==0

Yes NO
CK_AF\ >
Present
Yes

No

CKAR_SEL=0 CKAKF_SEL=1

CKAR_ST=0 CKAF_ST=1 EL=0 CSU_CKSEL=0
N DU AR AR S AU AN SR AR v
L INTCLK=
CLOCK2/16 CK_AF CLOCK2/16 Previous CK_AF PLL-CLOCK CLOCK2 CLOCK2 CLOCK2/16
Lo _ _ _ _ _tocek - _ (PLL OFF)_(PLLON) _(PLL OFF)
\/Y\/ l l Fast mode

LOW POWER Reduced power consumption Slow mode

Reduced power consumption

PLL is OFF

CPUCLK=INTCLK/N

CPUCLK Stopped

4

62/146

ST9 USER GUIDE

Figure 26. Clock Control Unit Programming

XTSTOP DIV2 CSU_CKSEL CKAF_SEL
(CLK_FLAG) (MODER) (CLK_FLAG) (CLKCTL)
' ' CLOCK MULTIPLIER ' '
| - —_— - — f — - — - — - — - - — . |
I r I I 1 I
. | 1/16 ' I
I | I | !
| | |
| 1 | ! |
I I
I | 0 INTCLK
Yy =§\ PLL
> 1
> x HN o
oggiﬁgé)r | > 1/2 > 1/ CLOCK2 6/8/10/14 | | | Peripherals
| y A | and
ICLOCKl * | : . | CPU Clock Prescaler
I
I__________I___:_____'J !
CK_AF L I I
source | CK AF | : I I
_ | |
I I I |
I I I Y
MX(1:0) DX(2:0) XT_DIV16 CKAF_ST
(PLLCONF) (CLK_FLAG)
Wait for Interrupt and Low Power Modes:
LPOWEFI (CLKCTL) selects Low Power operation automatically on entering WFI mode.
WFI_CKSEL (CLKCTL) selects the CK_AF clock automatically, if present, on entering WFI mode.
XTSTOP (CLK_FLAG) automatically stops the Xtal oscillator when the CK_AF clock is present and selected.

3.6.1.2 CK_AF Source

When you execute a Wait For Interrupt (WFI) instruction using the Clock Multiplier with output
clock CLOCK2/16, the power is put in Low Power mode. To reduce this power further you
have the possibility of slowing down the INTCLK frequency by using an external clock source
CK_AF. The CK_AF clock will be selected if the WFI_CKSEL bit in the CLKCTL register is set
and if CK_AF is present.

The CK_AF source can also be used in Run mode (no WFI) to reduce power consumption if
CKAF_SEL is set and CK_AF is present.

4

63/146

ST9 USER GUIDE

3.6.1.3 Low Power with Frequency Slow Down

When the PLL has been frozen by a WFI instruction you need a delay after the interrupt to wait
for the PLL to lock. To avoid this delay but not to lose the Low Power consumption, you have
two choices which are:

— To use a WFI instruction with LPOWFI reset and initialize INTCLK to CLOCK2 with
XT_DIV16 bit set (CSU_CKSEL register). When the WFI occurs, CPUCLK is stopped and
INTCLK doesn’t change.

— To not use the WFI instruction. Set XT_DIV16 bit of CSU_CKSEL register. Initialize DX2:0
of PLLCONF to 6 to divide the PLL output clock by 7 which is the maximum. Initialize the
CPUCLK clock prescaler to 7 to divide INTCLK by 8.

3.6.2 Reset and Stop Manager

RESET normally means restarting from the beginning with everything initialized. However
sometimes it's necessary to know the context of the ST9 before the RESET and if it was an ex-
ternal or internal RESET. Two bits, SOFTRES and WDGRES in the CLK_FLAG register indi-
cate the previous context. Table 3. shows the three cases to manage.

Table 3. Three Types of RESET

RESET Type SOFTRES bit | WDGRES bit Meaning
External RESET 0 0 High to low level on RESET pin.
The Watchdog Timer is activated and the Timer
has reached 0.
The HALT instruction is executed, waiting for an
Software RESET 1 0 external Reset to restart (if the SRESEN bit in the
CLKCTL register is set).

Watchdog RESET 0 1

These bits are read-only and change with each Reset.

4

64/146

ST9 USER GUIDE

4 USING THE ON-CHIP PERIPHERALS

This chapter introduces the main peripherals of the ST9 family. Each variant includes none,
one or several peripherals of each type. This allows you to select the variant that best fits your
requirements. For high-volume markets, you can order custom versions with exactly the type
and number of peripherals required, including the relatively exotic ones not described here but
available on request, such as videotext decoders etc.

4.1 PROGRAMMING THE CORE AND PERIPHERALS

In addition to describing how each peripheral works, we give examples of the code needed to
use them in several configurations. This code is available on the Companion software. You
can experiment with the original code or modify it to do the functions you require.

Configuring and using the core and the peripherals involves a considerable amount of bit ma-
nipulation in the registers. Many variables that drive microcontroller states are Boolean
values. To reduce the use of addressable space in registers, bits have been logically grouped
in bytes, so the majority of the control registers have their eight bits fully used.

To properly program these registers, you need to track the exact position of each bit in each
register. You can do this by referring systematically to the appropriate Data Sheet, and com-
menting the source text so that it can be easily read and understood later. See the following
example:

| d R235, #11100000B ; R235i s regi st er MODER
: [1]1I1]]+-- HHMP: no forei gnaccess to bus
: [1]]]]+--- BRQEN: noforeignaccesstobus
: ||| +++---- PRS2,1,0: processor at full speed
: [| +------- Dl V2 : crystal frequency di vi ded by 2
: | #-------- USP: user stack pointer inregisters
: Fommeeaaa SSP: systemstack pointer inregisters
spp #0 ; SPI page
| d R254, #10000001B
: [11]l]]+-- SPRO: SPR1, SPRO =01: cl ock di vi ded by 16
LI +-- SPRL:
: [1]]]+---- CPHA: I nput sanpl ed on ri si ng edge
: []]]+----- CPOL : Rest | evel of serial clock=0
: []]+------ BUSY : Set toready
: [| +------- ARB: Nol2Carbitration
: | #-------- BMS: SPI used as ashift register (not 12C)
: R SPEN: SPI enabl ed

4

65/146

ST9 USER GUIDE

This style has the advantage of clarity. However, there is still a problem that it does not ad-
dress: the variety of the different products of the ST9 family.

The different products available in the ST9 family are very diverse and as a result it is not al-
ways the case for all products that a given function is performed by the same bit of the same
register. The location of a register in one peripheral may be different in another. To avoid this
problem, the GNU9 programming tool chain provides a set of include files that define the phys-
ical location of every bit and register, by their symbolic name. These files correspond to the
appropriate variant of the ST9. Using them guarantees that switching to another member of
the family will not need more than changing the Include statement at the beginning of the
source text. The same example as above, using the predefined symbols reads as follows:

.include "systeminc" ; Systemregister

Id MODER, #MOm_sspm+MOmM uspm+-MOm di v2m Bot h st acks i n
;registers, clock dividedby 2

spp #SPlI PG ; SPI page

Id SPI CR, #SPm spen+SPm SP_16 ; Enabl e SPI, 1st cl ock

; configuration, Clock/16
This notation is more compact, and is independent of changes either between variants in the
same family, or by changes made globally to the family in the future. This writing style is rec-
ommended for this reason.

4.2 PARALLEL /O

The parallel input-outputs have a basically very straightforward functionality. Once initialized,
they appear as a register that can be written or read. However in many cases, direct byte-wide
input-output is not sufficient. Bit-oriented 1/O is often what is used in microcontroller systems.
A powerful feature of the ST9 is that you can address the eight bits of each port individually.
The ST9, like most microcontrollers also provides the external pins of the other peripherals
(timers, UARTS, etc.) by diverting some bits from the parallel I/O ports.

The ST9 parallel I/0O has an additional very flexible feature. You can independently configure
each bit as:

— An input with two variants (TTL or CMOS levels)

— An output with also two variants (open-drain or push-pull)

— A bi-directional port with either a weak pull-up or an open-drain output side

— An alternate function output (that is, the output pin of an internal peripheral), with also either
open-drain or push-pull output driver.

66/146 172

ST9 USER GUIDE

— Analog Input (see note)

Note: On the port that accommodates the inputs of the Analog to Digital Converter, there is a special
feature. In all other peripherals that require an input, you only need to configure the correspond-
ing pin as an input. However, when using the ADC you can put the input pins to any voltage level
from ground to Vcc. This is normally badly handled by standard logic gates that dissipate con-
siderable power when the voltage reaches the limit range. To avoid this, the port that provides
the input pins of the ADC has a special Alternate Function mode. Unlike the other ports it is used
for input. This mode disconnects the input buffer from the pin and shorts the buffer input to the
ground. The output buffer is put in high-impedance mode. The pin is permanently connected to
the input of the ADC, thus allowing its voltage to be read at any time.

To handle all these capabilities, each port requires three configuration registers, PxC1, PxC2
and PxC3, where x is the port number. Once configured, a port exchanges data with the core
through the PxDR data register.

The configuration registers are placed in various pages of the register group 15, as well as the
data registers, except for the first six ports. These six belong to the system register group
(group 14) for easy access.

Some ports also include DMA capability, configurable to work with the Multi-Function Timer.

4

67/146

ST9 USER GUIDE

4.3 STANDARD AND WATCHDOG TIMERS

You can use this timer both as a regular timer and as a watchdog timer.

4.3.1 Description
The block diagram of the Watchdog Timer is the following:

Figure 27. Watchdog Timer Simplified Block Diagram

INTCLK/4 WDIN Pin

Input Modes and P — 3 bits of
d Clock Control Logic WDTCR

2 bits of
Prescaler (8-bit) 4— WDTCR

16-bit Downcounter

v
3 bits of
—
Logic 1 bit of
WCR
y
INTO Pin (——» Resetand
Reset and Interrupt —————» mterrupt)t
; Control Logic reques
NMI Pin —» tothe core
A
_ A detailed block diagram
2 bits of is provided in Section 7
EIVR

In Counter/Timer mode, the WDT can count pulses coming either from an input pin (WDIN; in
the ST92F150, alternate function of P5.3) or from the internal clock divided by 4. When the in-
ternal clock is used, the external pin, if enabled, can either gate the clock, start the counter, or

68/146 172

ST9 USER GUIDE

reload it with its initial value. You select these modes using three bits in the WDT Control Reg-
ister, as follows:

INEN INMD1 INMD2 Mode
1 0 0 Event counter mode_
1 0 1 Gated mode
1 1 1 Retriggerable input mode
1 1 0 Triggerable input mode
0 X X Input section disabled. Internal clock selected.

4.3.1.1 Event Counter Mode

The counter value is decremented at each falling edge on the WDTIN pin if ST_SP is high (bit
7 of WDTCR).

Figure 28. Timer in Event Counter Mode

WDTIN Pin [| [.l |_| [1] | []
ST SP | : | I_'_I
A D - ;

Counter —|—|—I

Value

4.3.1.2 Gated Input Mode

The counter value is decremented by WDTCLK (INTCLK / 4) if the WDTIN pin and ST_SP are
high.

Figure 29. Timer in Gated Input Mode

wotnpin [1| L[1

sTsp | : |_|__'_|_
A D : L

Counter
Value

4

69/146

ST9 USER GUIDE

4.3.1.3 Retriggerable Input Mode
The counter value is decremented by WDTCLK (INTCLK / 4) if ST_SP is high.

The initial value is reloaded either at the rising edge of ST_SP or at each falling edge of the
WDTIN pin if ST_SP is high.

Figure 30. Timer in Retriggerable Input Mode

WDTIN Pin [] [| []
ST_SP | | | |

. Initial Value ' .
Counter '
Value '

4.3.1.4 Triggerable Input Mode

The counter value is decremented by WDTCLK (INTCLK / 4) if ST_SP is high and falling edge
of WDTIN occurs.

The initial value is reloaded at the first falling edge of the WDTIN pin if ST_SP is high.

Figure 31. Timer in Triggerable Input Mode

WDTIN Pin |—| | | | I_I |_

ST.SP __ | ! | |]

A : . Initial Value

Counter
Value

4

70/146

ST9 USER GUIDE

4.3.1.5 Single/Continuous Mode

On counter underflow (End Of Count), the counter is always reloaded with the value of the
latch that is actually accessed when writing to the WDTHR and WDTLR register pair.

The counter has two modes: Single-shot or Continuous, selected by the S_C bit of WDTCR.
In Single-shot mode, the End Of Count also resets the ST_SP bit of the WDTCR, which stops
the counter after one cycle. In Continuous mode on reaching the End Of Count condition, the
counter reloads the constant and restarts. When the ST_SP bit is set, the contents of the latch
are written again to the counter, allowing the initial count value to be changed before starting
the counter.

You restart the down counter by setting the ST_SP bit. The constant value can be either the
initial value or a new one as shown on the following diagram:

Figure 32. Timer in Single Mode

ST SP | |_|7

—_— Initial Value

Counter
Value

A f

| End of Count1\

© A new value may be written in the counter latches at any time. It will be transferred :

: into the counter on end of count or on various conditions on WDTIN and ST_SP.

4.3.1.6 Output Pin

Another pin, WDOUT (alternate function of P5.1 for ST92F150), when enabled by the OUTEN
bit, can change its state in two ways on the end of count of the main counter. Basically, each
time the counter overflows, it updates the output value. This can produce two different effects,
selected by the OUTMD bit: either the state of the WROUT bit is copied to the output at that
time, or the output is complemented.

4

71/146

ST9 USER GUIDE

Figure 33. Output Pin Block Diagram

WDTCR (R251 page 0)
Timer/Watchdog Control Register

7 0

ST_SP|S_C|INMD1| INMD2| INEN|OUTMD WROUT|OUTEN

Logical level user definable
while counter is running

y

1 WDTOUT

> Pin
0
EOC

L

4.3.2 Timer Application for Periodic Interrupts

In this application, the clock is internal and the input and output pins are unused. The counter
is set to Continuous mode, and the value of the reload registers chosen so that the overflow
occurs exactly every 128 microseconds.

4.3.2.1 Initialisation of the WDT for a Periodic Interrupt

Very few registers are involved when you use the WDT for this purpose, since there is no input
apart from the internal clock and no output. However, the WDT interrupt handling is a little dif-
ferent from most other peripherals in that it borrows the interrupt circuit named INTAO that is
normally assigned to external interrupt pin INTO. So you configure the WDT in two steps: ini-
tializing the WDT itself, and also the external interrupt INTAO.

In this example application, the internal frequency is 24 MHz and the interrupt rate must be
8192 Hz. The timer starts with the preset count on the low-to-high transition of the ST_SP bit
of the WDT Control Register.

The initialisation routine for the WDT is then:

4

72/146

ST9 USER GUIDE

[* xxxkxxkxxxAk* Confi gure Wat chdog f or Periodic |l nterrupt ***x*xkxkxkxx/
voi d Confi g\WDT (void)

{

Sel ect Page(WDT_PG) ;1 * sel ect Wat chdog page */

WDTPR=0;/* 122 us =366 ticks */

WDTR=365;/* preset isnbticks-1(WTRisthe pair WOTLRand WDTHR) */

WDTCR = (VWDTm stsp) ;/* WDT i s set to continuous node, noinputs, no
out puts */

/* I nterrupt nust be connectedtointA0Ointhe El VRregi ster */
}

The initialisation routine for INTAO follows. In this example application, interrupt AO is the only
"external" interrupt enabled, and it is assigned priority level 2:

[* Fxxxxkxxkxk|nitialiselnterrupt AOand Current Level **xx*x*xxkxsxxx/
voi d Configlnterrupts (void)

{

Sel ect Page(EXI NT_PG) ;

EIVR=(EImtlism-(unsignedchar) | NTAOVECT) ;/* int. AOis generated
on VDT over fl ow*/

EIPLR=1;/* intr AO (andthat of same group) withhighpriority?*/
EIMR=EIm.iaOm;/* intr AO al one enabl ed */

CICR= (I mgcenm+l miamt+l m.ienn) +7 ;

/* current processinglevel: mninum; int. enabl ed, nested node */
/* This starts al sothe MFT */

}
4.3.3 Watchdog Application 1: Generating a PWM

This application provides a PWM with a programmable duty cycle. You can use it as an appli-
cation exercise for learning to use the programming and debugging tools since it is very
simple. The only hardware required to watch the effect of the program is a LED in series with
a resistor connected between P4.4 and Vcc (anode towards Vcc). You will find the application
in the Companion software in the WDT/applil directory.

The WDT can only provide a delay after which the output may change its state, and an inter-
rupt is triggered. The principle of using the WDT as a rectangular signal generator is to set it
to Continuous mode, to load it with a time value, and let it count down until zero. The control
register is set so that an interrupt is then generated, and the output pin is updated at the same
time. The interrupt service routine will reload with the other value, and preset the WROUT bit
to the complement of the current value, so that the opposite state will be transferred to the

I<72 73/146

ST9 USER GUIDE

output pin at the next end of count. By alternating between two time values, a duty cycle other
than 50% can be obtained (PWM). When the interrupt occurs, the output has already changed
its state, so that the waveform can be very precise since it depends only on the timer hardware
and not on the software. All that the interrupt service routine has to do is to load the timer latch
with the value to be used when the end of count is reached. Thus, the constraint is that the re-
load interrupt must be guaranteed a latency time less that the shortest time between two
output transitions. This may or may not be difficult to realize according to the intended timing
and the presence of portions of the program where the interrupts are disabled. It is thus rec-
ommended to properly manage the interrupts and thoroughly use the priorities to achieve this
requirement.

The WDT does not have an interrupt cause and a vector of its own. It must borrow them either
from the Top Level Interrupt or the INTAO input. We have chosen to use INTAOQ here, and to
give it a priority of 6 which is high, but not the highest (which is 0).

4.3.4 Watchdog Application 2: Using the Watchdog

A watchdog timer is a safety measure to prevent a program going adrift. It relies on a hardware
timer that must be periodically reset by the program. Failing to do this will reset the whole pro-
gram (at the End Of Count). You will find it in the Companion software in the WDT/appli2 di-
rectory.

The efficiency of this approach varies with the type of program and depends on the following
conditions:

The hardware action to perform in order to reset the timer must be so complex that if the pro-
cessor goes adrift, it cannot accidentally reset the watchdog. In the ST9, you need to write
O0AAh and 055h successively to the WDTLR.

The chosen time-out value must be greater than the interval at which the program resets the
watchdog. It must also be as close as possible to that interval for maximum safety. Since the
watchdog time-out value is set once at the beginning of the program, this condition is best ful-
filled if the resetting action is performed at constant intervals.

A special software arrangement must be designed to reduce the chance that the part of the
program that resets the watchdog can continue undisturbed when other parts of the program
are faulty. This may include an interlock mechanism that requires that several program
branches be executed to enable the resetting of the Watchdog count.

As you can see, achieving a very secure program malfunction detection by the sole means of
a watchdog is a very difficult thing to realize. However, the watchdog can still play a key role
in the safety of some systems, an example of which is an induction motor controller.

4

74/146

ST9 USER GUIDE

4.4 MULTIFUNCTION TIMER

This device is the most powerful of the ST9 on-chip peripherals. This description only covers
its main features. You can study the more intricate details with the help of an ST9 Datasheet.

The Multifunction Timer can handle many different operating modes; so many in fact, that vir-
tually the only limit is your imagination. Let’s first have a look at the general organization.

The first diagram in Figure 34 represents the inputs and outputs, the prescaler register and the
clock selection blocks, with their associated configuration registers.

4

75/146

ST9 USER GUIDE

Figure 34. MFT Input/Output Modes

TXINA pin TxINB pin
L N
Inputpin | o 4 pits of
configuration ICR
Input pin function la@— 4 bits of
ICR
Internal clk/3 2 bits of 3 bits of
TCR i TCR
CLK logic U/D logic Clear logic
8 bit prescaler
\ Clock \ u/D \ Clear
16 bit counter of the MFT
¢ 5 bits of
Action on outputs l FLAGR g its of
after a successful eventon |[€—F— OACR
<Cmp0> <Compl> <OVF> <
¢ ¢ ¢ 8 bits of
2 bits of OBCR
TMR .) . -
(output enable) E— Output pin configuration
TXOUTA pin TxOUTB pin

The two outputs are actually the Q outputs of a flip-flop which set and reset. Flip-flop inputs
can be individually configured to receive pulses from either of the following events: compare
with CMO, compare with CM1, and overflow/underflow. This is used to generate single-shot or
periodic wave forms simply by using the timer.

76/146 172

ST9 USER GUIDE

In addition to providing output signals, the timers can generate so-called “internal events” that
can be used to synchronize other internal peripherals such as the DMA and the Analog to Dig-
ital Converter. Not all peripherals to be synchronized can be connected to just any MFT. For
each ST9 variant, the connection between each MFT and the other peripheral is unique. Refer
to the corresponding datasheet for more information.

The second block diagram represents the counter, the capture and compare registers, the re-
load logic and the associated configuration and status registers. The interrupt and DMA blocks
are not represented.

Figure 35. MFT Simplified Block Diagram

6 bits of 2 bits of
T™MR —> Load/Capture/Monitor —> FLAGR
Logic (result:)
Capture/Load Register 0 Capture/Load Register 1
A
. +Z (OVF/UNF)
16-bit Counter (result:)
u/D —> with Comparator
Clear —— ‘ Counter f€&—— 1 bit of TCR
ll\ Enable g 1 bitof CICR
Compare 0 Register Compare 1 Register
> 2 bits of
Compare Logic ‘ ELAGR
(result:)
VR02111J

In the above diagrams, the interrupt and DMA logic are not represented. They obey the gen-
eral interrupt and DMA rules described earlier, and are controlled by three registers.

The Interrupt Vector Register controls the location of the interrupt vectors in program memory.
They must be located at addresses that are multiples of 8.

I<72 77/146

ST9 USER GUIDE

Figure 36. MFT Interrupt Vector Register

IVR (R242 page 9 MFTO) (R246 page 9 MFT1)
7 Interrupt Vector Register 0

V4 | V3 V2 V1| VO DO

MSB of the vector
|address table, fixed

|bysoftware inside the || e
| Interrupt Source
mterrupt vector table
_____ JL——T——————————J
| 00 Overflow/underflow event interrupts |
0 1 | NotAvailable
| 10 | Capture event interrupts |
| 11 | Compare event interrupts |
Lo — X ;|

The Interrupt and DMA Mask Register individually enable and disable the various interrupt
and DMA sources.

Figure 37. MFT Interrupt and DMA Mask Register

IDMR (R255)

Interrupt / DMA Mask Register
7 0

GTIEN|CPOD |CPOI|CP1l|ICMOD|CMOI|CM1I1| OUI

|OVF Interrupt Mask

Compare 1 Interrupt Mask
Compare 0 Interrupt Mask
Compare 0 DMA Mask
Capture 1 Interrupt Mask
Capture 0 Interrupt Mask
Capture 0 DMA Mask
Global Timer Interrupt Enable

The upper five bits of the Interrupt and DMA Control Register indicate the status of the inter-
rupts and the DMA blocks. The lower three bits set the Interrupt and DMA priority level.

4

78/146

ST9 USER GUIDE

Figure 38. MFT Interrupt and DMA Control Register

IDCR (R243, Page 9, MFT 0) (R247, Page 9, MFT 1)

7 Interrupt/DMA Control Register

CPE |CME|DCTS|DCTD [SWEN|PL2 | PL1| PLO

Interrupt/DMA Priority Level

The Input and Output Control Register has only two active bits. They are used to internally
connect the Output A of each MFT to its own Input A. One bit does this connection for all even-
numbered MFTs, and the other for all odd-numbered MFTSs.

Figure 39. MFT 1/O Control Register

IOCR (R248)

I/O Connection Register
7 0

SC1| SCO

TXINA and TXOUTA
Internally connected or not
for each even MFT.

TxINA and TxOUTA
Internally connected or not for each odd MFT.

4.4.1 Generating Two Pulse Width Modulated Waves with One MFT

4.4.1.1 Description Example

The Multifunction Timer is used here as a double pulse-width modulator. It is also possible to
have a single PWM output if needed. Let's look at a simplified block diagram of the MFT
showing only the functional blocks that are actually used. See Figure 40.

This is possible using the two comparators that simultaneously compare each capture register
with the free-running counter. When the counter overflows, it is reloaded with the contents of
the Load Register 0. At that time, both outputs are reset.

When the value of the counter becomes equal to one of the compare registers, a pulse is sent
to the output flip-flop of the corresponding side, thus setting the output. So the low time is the
time between the counter overflow and the comparison. The high time is the remainder of the
period.

4

79/146

ST9 USER GUIDE

Figure 40. MFT Block Diagram

Compare Signal

Compare Register 1

CPU
Clock {} Set

——>
Phase A PWM
Clock Comparator 1 Reset
4 Prescaler Free-running
—N Counter ——»| Overflow Signal
Load Register 0 ‘)
Full Count Comparator 0 —
E———_
ﬁ} Set Phase B PWM
|

Compare Register 0

Compare Signal

Figure 41. Using a Counter and 2 Compare Registers to Modulate 2 Pulse Widths

/—. Current contents of the counter,

A

Reload
Value

Compare
Register 1
Value

Compare
Register 0
Value

A '

Output B

\

A '

Output A

>

Actually, as nearly everything is configurable by values in control registers, this is only one of
the ways to do it. In particular, the direction of the counter (upward or downward) and the ef-
fect of the actions on the outputs (set/reset) can be chosen at will.

80/146 172

ST9 USER GUIDE

This value of the Load Register determines the frequency of the output signals. For example,
with a reload value of 255 and a 25 Mhz internal clock, the PWM frequency is 1/256 of the 25
MHz clock divided by 3, that is 32,552 kHz. In this case, the range of the compare registers is
1 to 255 inclusive. A value of 0 locks the outputs to the high state.

To use the timer to deliver variable PWM, we need to change the value of the compare regis-
ters from time to time. The simple way that first comes to mind is to write into the compare reg-
ister whenever we need to update the PWM rate. This can lead to problems.

If we write the new value into the compare register while the counter value matches the pre-
vious contents, this can make the comparison fail and the pulse that changes the state of the
output is not produced. The result is the output signal misses one cycle, as follows:

Figure 42. Compare Register is modified while its Content matches Counter

Reload Al
Value
Compare
Register 0
Value

] T _ : - - L)

: . : This comparison has failed
Output A A—' : . :
N Z >
\— This pulse is missing.

This will obviously have a bad effect on the electronic circuit connected to this output.

Another problem can occur if the reload value exceeds 255. Then, two bytes are needed to ex-
press the compare values. Since the ST9 is an 8-bit machine, the two bytes that make up the
word are sent one after the other. If the high bytes of the old and new values are the same,
there is no problem. But if they differ, there are three possibilities for the value in the compare
register:

— The register contains the old value
— The register contains one byte of the old value, and the other byte of the new value
— The register contains the new value

I<72 81/146

ST9 USER GUIDE

Depending on the relative values of the old and new values, on the order of writing the bytes
(high byte first, or low byte first), and on the direction of the timer (up-counting or down-
counting), various things may happen. These can range from a missed comparison (see
Figure 42) to two comparisons in the same cycle (not a problem).

This indicates that you have to pay attention to the time at which the compare register has to
be updated. If we consider that the duty cycle does not vary widely from one cycle to another,
the safest time to change value is as soon as possible after the match. The best way to do it
is to store the new value in a variable (a register is a good choice), and configure the MFT to
trigger an interrupt when the match occurs. Then, the interrupt service routine is executed and
the new value is safely copied into the compare register.

4.4.2 Generating a Pulse Width Modulated Wave with a Cleaner Spectrum

The use of a MFT to produce two PWM signals is convenient, especially for example in a
stepper motor application. There, an ST92F150 is used and only one MFT is available for
PWM generation, since the other one is used for other purposes. However, this method suf-
fers from a parasitic phase modulation of the signal since the falling edge is fixed, and the
rising edge moves with the desired duty cycle. This leads to the production of unwanted har-
monics in the resulting spectrum. This is not a problem for a lot of applications.

Sometime these harmonics are prohibited. Example: when we want to drive a high power in-
duction motor, these harmonics have two serious drawbacks:

— They produce parasitic frequencies that are injected in the mains, which is not allowed by
power distribution companies,

— They feed the induction motor with even ranked harmonics, which degrade the efficiency of
the motor and reduce the peak output power.

You can improve this situation by using a symmetrical PWM generation, producing waveforms
as follows:

Figure 43. Symmetrical PWM Waveforms

18%

>
>

82%)

You use the MFT in the following way. One MFT being used for one output signal, you use
only output A. You configure it so that it is set on a comparison with compare register 1, and
reset on a comparison with compare register 0. These registers are always loaded with values

50%

82/146 172

ST9 USER GUIDE

that are symmetrically centred on half of the reload value. For example, if the reload value is
255, the compare registers are set to the following values:

Duty Cycle Compare Register 0 Compare Register 1
10% 115 140
25% 96 159
50% 64 191
75% 32 223
90% 13 242

You need to ensure that the compare registers are not written while they are used for a com-
parison. Because of this, they are written in an interrupt service routine that is triggered by the
MFT itself. To allow maximum latency time, the interrupt is triggered either by a compare 0 or
a compare 1 event, according to the value of the duty cycle. For duty cycles between 0 and
50%, the compare 0 event is used. Between 50% and 100%, the compare 1 event is used.
The following figures shows the timing diagram.

Figure 44. Output A Timing

A

Reload
Value

Compare
Register 1
Value

Compare
Register 0
Value

A

Output A

Reload ' '
Interrupt . '

4

83/146

ST9 USER GUIDE

4.4.3 Incremental Encoder Counter

An incremental encoder is a device that generates two square signals in quadrature when its
shaft rotates. Its main specification is the number of cycles per revolution, i.e. the number of
square signal cycles for one shaft revolution. The greater the number of cycles, the more ac-
curate it is, and the more it costs.

In a stepper motor application, it is used to monitor the rotation of the motor. Here however, we
have taken an encoder that has a great resolution, and this section will show you how to use
an MFT to count encoder pulses, and rescale it to another resolution to meet your project
needs.

4.4.3.1 Description

The MFT includes an input block, a counter block, an event block and an output block. In this
application, no output signal is required, since the counter is expected to produce a value that
is read in registers.

The MFT must provide the following functions:

— Use the inputs to drive the counter according to the amount and direction of rotation
— Keep the count undisturbed by events other than the transitions at the inputs

— Allow reading the current counter value

— Allow setting the counter to an arbitrary initial value

We configure the input block to use the two square signals delivered by the encoder to drive
the up and down counting of the counter. We do this using a special mode of the input block
called “autodiscrimination”. In this mode, the input pulses clock the counter, and the phase re-
lationship between the two signals selects up or down counting. Since the process is incre-
mental, once the MFT configured this way, it automatically follows the rotation of the encoder
shaft and the counter value reflects its position relative to the position it was in when the
counter was configured. In our example, the encoder produces 512 cycles per revolution. Be-
cause the counter is 16-bit, it can monitor shaft positions 65536/512 = 128 (or +/-64) full rev-
olutions from the original position.

To operate with an encoder as the input pulse source, we need to set the MFT to Continuous
Mode. When the counter crosses the FFFF to 0000 boundary in either direction, this is called
an End-Of-Count event. In the normal Continuous mode, the End-Of-Count event reloads the
counter with the contents of REGOR (or REG1R in biload mode). In this application, no auto-
matic reload may occur at any time so we can use the full range of the counter and be able to
cross the boundary. To prevent the reload from occurring, we must set the REGOR register to
Capture Mode. The MFT is then said to be in Free-Running Mode.

We have thus selected Free-Running Mode, yet we need to be able to set the counter to any
arbitrary value that is taken as the initial position. For this we need to use the REGOR register

84/146 172

ST9 USER GUIDE

as the Load register. The solution is to initialise the MFT with REGOR in capture mode by set-
ting the RMO bit of the TCR register to ensure Free-Running Mode. When we need to load a
value in the counter, we temporarily clear the RMO bit. Then we set REGOR to the value that
must be written in the counter. The CPO bit in the FLAGR register is pulsed high to write the
contents of REGOR into the counter. Then we set bit RMO again.

4.4.3.2 Initialisation

The code for initializing the MFT is given below.

Note: The ICR register sets the input to Autodiscrimination mode. In this mode, the lower four bits are
irrelevant.
voi d ConfigTimerl (void)
{

Sel ect Page (T1D PG ;

T REGOR=0;/* Thisregister i susedtopreloadthe counter */
T REGIR=0;/* Thisregister isusedtoreadthe counter */

/* T_CMPORand T_CWMP1Rar e not used */

T TCR=Tm cen ;/* enabl e counter */

/* The counter will not start until the d obal Counter Enablei s set in
regi ster CICR*/

T TMR=TmrnD ;/* capture usi ng REGQOR and noni t or usi ng REGLR */
/;* Thi s node i s not desired, but isinpliesfree-running, whichwe need
*
T ICR=Tm ab_aa;/* i nputs usedin autodi scrim nating node */
/* For so, the port 3 nust be set toinput onpins P3.4andP3.6 */
T PRSR=0;/* prescalerrate=1*/
T OACR=0;/* out put Anot used*/
T OBCR=0;/* out put Bnot used */
T FLAGR=0;/* not used */
T IDVMR=0;/* not used*/
}
4.4.3.3 Reading
To read the value of the counter, you need to capture it in one of the registers, since the

counter itself does not have an address and cannot be read directly. There are two ways of
reading the counter:

Set one of the registers REGOR or REG1R to Capture mode. A pulse on bit CPO or CP1, re-
spectively, transfers the contents of the counter to the corresponding register.

I<72 85/146

ST9 USER GUIDE

Put REG1R in Monitor mode. In this mode, REG1R continuously reflects the value of the
counter, without the need for pulsing a bit in a register.

In the stepper motor application, we have chosen to use Monitor mode. No special function is
needed to read the counter. A simple assignment of REG1R to a variable is enough, such as:

Pos = REGIR;/ * Get current counter val ue */
4.4.3.4 Updating

As mentioned in Section 4.5.3.1, updating requires switching the mode of REGOR from Cap-
ture to Load.
/* This functionforcesthe MFT1 counter to aval ue gi venin argunent */
voi d Set Encoder (i nt Val ue)
{
Sel ect Page (T1D PG ;
T TMRE& ~TmrnD;/* Switchtenporarilyto"Loadw th REGQR' node */
T REGOR=Val ue ;/* set encoder */
/* convert notor positiontomatchthe encoder'sresol ution?®*/
T _FLAGR| =Tm cpO;/* Load counter wi ththisval ue by pul si ng CPO hi gh*/
T FLAGR&= ~Tm cpO;/* ReturnCPOto |l ow*/
T TMR|=TmrnD;/* Go back to "Capture wi th REGQOR" node that i nplies
free-running */

}
4.4.4 MFT Application 1: Generating 2 PWMs using Interrupts

This application generates 2 independent PWM signals on pins TOOUTA and TOOUTB pro-
vided that a logical low level is applied to gate TOINA. The outputs are reset on compare
events and set on the counter underflow. This application is found in the MFT/applil directory.

Counter compare interrupts are used to reload compare registers in order to modify the duty
cycle.

When running one of these three examples on an ST92F150 microcontroller, note that MFT
outputs are pure open drain.

4.4.5 MFT Application 2: Generating a PWM using DMA

This application generates a PWM signal on pin TOOUTA using a DMA channel to transfer
duty cycle data from memory to register COMPQ. The DMA transfer only occurs once as it is
not re-initialized in the DMA end of block interrupt routine. This application is found in the MFT/
appli2.

4

86/146

ST9 USER GUIDE

4.4.6 MFT Application 3: Generating a PWM using the DMA Swap Mode

This application generates a PWM signal on pin TOOUTA using the DMA swap mode to
transfer duty cycle data from memory to register COMPQO. This application is found in the MFT/
appli3 directory.

Swap mode uses two sets of DMA registers and swaps from one to the other at the end of
each transfer. The end of block interrupt routine reloads the unused set of DMA registers for
the next transfer.

4

87/146

ST9 USER GUIDE

4.5 SERIAL PERIPHERAL INTERFACE

4.5.1 Description

The SPI is a synchronous input-output port that you can configure in various modes, including
S-Bus. It can have many more uses, of which two are considered here: interfacing with serial-
access EEPROMs and interfacing with a liquid-crystal display.

The main block of the SPI is an 8-bit shift register which can be read or written in parallel
through the internal data bus of the ST9, and that can shift the data in or out on two separate
pins, named SDI and SDO, respectively. The serial transfer is initiated with a write to the SPI
Data Register (SPIDR). Data is input and output simultaneously with each most significant bit
being output on SDO while the level at SDI becomes the least significant bit. Each time a bit
is transferred, a pulse is output at the SCK pin. When eight bits are transferred, eight pulses
have been sent on SCK, and the process stops. If the proper bits are set in the SPI Control
Register (SPICR), an interrupt can be requested on end of transmission. To summaries:

— Transfers are started by writing a byte into the SPI data register

— Data is input and output at the same time

— Data is input and output with the most-significant bit being sent first

— Eight clock pulses are output on the SCK pin synchronously with bit shifting
— An interrupt request can be issued on end of transmission

The SPI is configured with the SPICR register. Four bits of this register are of special interest
in the applications detailed here: these are the CPOL-CPHA pair, and the SPR1-SPRO pair.

The CPOL-CPHA pair defines the polarity and phase of the clock pulses. This allows them to
adapt to the external device. CPOL selects between rising edge or falling edge as the active
transition, and CPHA selects whether the first active edge is the first edge of the pulse train or
the second one.

The SPR1-SPRO pair selects one of four different transfer speeds.

4.5.2 Static Liquid-Crystal Display Interface Example

This example uses a static liquid-crystal display that shows a simple number. This can be the
voltage in a digital voltmeter, or any 3 1/2 digit value. A very simple demonstration program is
supplied in the Companion Software. Some of the routines are reused in the bar code reader
described later.

A static liquid-crystal display is composed of a glass back-panel, and a set of front-panel elec-
trodes printed on a glass front-panel. The space between both panels is filled with a liquid-
crystal solution. The electrodes are transparent, and the panels may be fitted with a combina-
tion of polarisers, so that the whole display, unpowered, is either transparent or opaque ac-
cording to the selected polariser combination. When a difference of potential is applied be-

88/146 172

ST9 USER GUIDE

tween one electrode and the backplane, the area delimited on the front panel by the shape of
the electrode takes the reverse state, i.e. opaque or transparent, respectively. Using a seven-
segment pattern, it is possible to display numbers, by activating the appropriate segments to
show the desired figures.

A liquid-crystal display presents a high impedance between its electrodes, ranging typically in
the megaohm region. It is thus a voltage-controlled device, with a threshold of about 3 V to
change from one state to the other. Driving such a display is then a simple matter, but one fun-
damental precaution must be taken to avoid premature destruction of the display: it must be
driven with alternating voltage, to avoid electrolysis within the inter-electrode solution. The fre-
guency is of little importance, and the best values range between 30 and 100 Hz.

This basic explanation does not cover all the details and precautions relative to LCDs but is
sufficient to understand the use of the SPI as a LCD driver.

In this application, the display is installed on a separate board. Since it has 40 pins, it is not
convenient to connect this board with a 40-wire cable. Using a serial synchronous transmis-
sion, only four wires are required. The block diagram of the circuit of the display board is:

Figure 45. LCD Interface Example

Liquid Crystal Display

f/L/b WA NN
= . 1. 11,11
5 5 T > > <>

[+1 back panel [dpgfedchballdpgfedcbaldpgfedchal

A

32 bit serial input, parallel output shift register

Serial Input — >
Shift Clock—— >y

+5V |
Ground

As shown by this diagram, to make it easy to wire our display board, the correspondence be-
tween the segment positions and the bit positions in the bytes transferred is actually:

Bit position 7 6 5 4 3 2 1 0
Segment dp g f a b c d e

And the conversion between the figures (0 to 9) and the display pattern is done by a constant
array defined in this case as:

; Tabl e of characters. Gvesthepatternsfor thelast 3digits, fromOto9.

I<72 89/146

ST9 USER GUIDE

Characters:
. byt e 3Fh, 0Ch, 5Bh, 5Eh, 64h, 76h, 77h, 1Ch, 7Fh, 7Eh
The LCD electrodes are connected to the outputs of a serial input, parallel output shift register.

The backplane is also connected to one output. This allows us to provide the A.C. drive for the
electrodes, as shown in the table below:

Level of the back- | Level of one of the |State of the liquid crystal
plane segments between the electrodes
0 0 off
0 1 on, positive voltage
1 0 on, negative voltage
1 1 off

In short, the segment is On if its level is different from that of the backplane. It is Off if its level
is the same as that of the backplane. Thus, to generate the drive pattern, it is only necessary
to build the four bytes that correspond to the various segments, keeping the bit corresponding
to the backplane at level zero. Then, using a periodic interrupt, these four words are trans-
mitted serially, but complemented every other time. As an example, to display the value 375,
as in the demonstration program, the following message is built:

Hundreds Tens Units
01011110 00011100 01110110

Symbols
00000000

Since in this original message the backplane bit is kept at zero, all bits that are 1 correspond
to an activated segment; the others remain invisible. This message is sent at intervals of about
16 ms, but it is inverted every other time, giving the succession:

Symbols Hundreds Tens Units

00000000 01011110 00011100 01110110
11111111 10100001 11100011 10001001
00000000 01011110 00011100 01110110
11111111 10100001 11100011 10001001
00000000 01011110 00011100 01110110
11111111 10100001 11100011 10001001

etc.

This succession of inverted words guarantee a zero D.C. component across the liquid crystal
solution, which is absolutely necessary.

4

90/146

ST9 USER GUIDE

4.5.3 EEPROM Serial Interface Example using I12C

An I2C Serial EEPROM is a very convenient device that stores a few bytes for at least 10 years
in a secure manner. The serial 12C access uses only two wires, which allows the memory to fit
in an 8-pin DIL package. The serial access requires a serial transmission protocol, which
makes the access more difficult than with a parallel-bus EEPROM device. This, however, is
not a real drawback, for two reasons:

— The serial synchronous transmission is very easy to implement, and is not time-critical

— Using a serial protocol makes it impossible (or very unlikely) that you will overwrite or erase
data by mistake, which ensures a high safety level for the application

Thus, for applications that can manage with a small amount of permanent data, a serial EE-
PROM is the best choice. Examples include storing the reading of a counter or a recording
meter, storing configuration parameters or calibration values. The application described here
uses a 24C08 memory chip from STMicroelectronics, that takes advantage of the SPI to ex-
change data with minimum software overhead.

4.5.3.1 Additional Clock Timing

Compared to I12C timing, SPI timing needs additional software to manage the following:
— The start condition

— The ninth bit for acknowledgement

— The stop condition

These three timing differences are implemented by changing the input/output port data and
configuration registers, to pull the level on the SDA and SCL pins up or down.

4.5.3.2 EEPROM I2C Protocol

To connect more than one device to an I2C interface, each device needs an address to be se-
lected. The EEPROM 24C08, used for our example, has an address equal to AOh.

Following a start condition, the bus master (SPI) must output the address of the EEPROM it is
accessing. The most significant four bits are the device type identifier (1010). The following bit
identifies the specific memory location on the bus (it is matched to the chip enable signal).
Once the 6th and 7th bits are sent, select the block number and the 8th bit sent is the read or
write bit (1 for read, O for write). After the address has been sent, ten data bytes can be sent
to the EEPROM for writing, and all the data bytes can be read successively from the EEPROM
for verification.

4

91/146

ST9 USER GUIDE

4.6 SERIAL COMMUNICATIONS INTERFACE

4.6.1 Description

The SCl is the association of a UART and a complex logic that handles tasks such as char-
acter recognition and DMA. It can also work as a simple serial expansion port that then resem-
bles the SPI. The example given here appears as a classical UART application, viewed exter-
nally, but it is assisted by the built-in DMA controller to provide effortless transfers of data in
and out of the application. As serial communication is a feature that is very often used, it will
be found in all three applications.

The SCI has four operating modes:

— Asynchronous mode where data and clock can be asynchronous. Each data is sampled 16
times per clock period. The baud rate should be set to the 16 division mode and the frequen-
cy of the input clock is set to suit.

— Asynchronous mode with synchronous clock where data and clock are synchronous but the
transmit and receive clock are asynchronous. The receive clock must be given by the exter-
nal peripheral.

— Serial Expansion mode where data and clock are synchronous and the clock is supplied by
the transmitter (ST9 in transmission and externally in reception).

— Synchronous mode where data and clock are synchronous, the transmit data clock is sup-
plied by the ST9 and the receive data clock is received by the external peripheral. In this
mode there are no start and stop bits.

These four operating modes allow you to connect the ST9 to any external interface.

4.6.1.1 UART

The UART offers all the usual functions for asynchronous transfer. You can set it to handle
word lengths of 5 to 8 bits, with or without parity, even or odd. It offers also the possibility to ap-
pend a signalling bit (called Address bit or 9th bit -- regardless of the word length) at the end
of the transmitted data, just before the stop bit. This can be used to help design a multidrop
network. The UART can be set to interrupt the processor only when this bit is high, indicating
that the current character is an address or other identifier. This prevents the processor from
being disturbed by the traffic on the network unless an address byte is received, so that the
processor can check if it is concerned or not by the incoming data.

The UART is set to 8 bits, 1 stop bit and no parity, by writing the appropriate value in the
CHCR register.

A timer is part of the SCI block. It is used as a Baud Rate Generator (BRG). It allows you to di-
vide either the internal clock or the frequency available at the RXCLK input pin, by an arbitrary
value. This output can be fed to the receive and transmit sections, though each section can

92/146 172

ST9 USER GUIDE

have its own clock frequency supplied on pins RXCLK and TXCLK for receive and transmit,
respectively. Here, we use the BRG to clock both sections.

At the clock input of the transmit and receive shift registers, two other dividers can be inserted,
to further divide the frequency by 16. It must be used in Asynchronous mode to allow detection
of the start bit using a local clock. If an external clock is supplied, at the same frequency and
phase as the serial incoming data, the 16x divisor must not be used. Here, the predivisor is
used.

The UART is surrounded by logic that allows it to detect errors on reception, a break state on
the line, and also to recognize a match between the character received and a reference char-
acter stored in a register. This last feature is used here. The ACR register is loaded with the
value 10 representing the LF character, and the IMR interrupt mask register is set to enable an
interrupt on a character match. Since DMA is used to transfer the incoming characters to
memory, this technique is used to detect the end of message, if we state that all commands
must end with an LF character.

4.6.1.2 DMA Controller

The DMA is used for the automatic data transfer from memory or a register to the serial trans-
mitter or from the serial receiver to a register or memory, or both.

The working of the DMA in conjunction with the UART merits some detailed explanation, be-
cause it is subtle and you need to take some precautions to make it work properly. Once ini-
tialized, it is easy to use and it consumes very little computing power to initialise transmission
or re-enable reception.

The DMA transfers in each direction are controlled by two registers: the DMA transaction
counter and the DMA pointer. The transaction counter is used to stop the transaction when a
predefined number of characters is transferred. The DMA pointer points to the character to be
sent or to the location that will hold the next character to be received. To initialise a DMA
transfer, the transaction counter must be set to the number of characters to be transferred and
the DMA pointer must be set to the beginning of the storage area that contains the data to be
transmitted or that will hold the data string received.

Transfers can occur between the UART and either the memory or register file.

The transaction counter and the DMA pointer must be registers in the register file. If the reg-
ister file is involved in the transfer, both the transaction counter and the pointer must be single
bytes (the addressing range of the register file is 0 to 255). If the memory is involved, the
counter and the pointer must be each a pair of registers, since the addressing range in
memory is 0 to 65535 for one segment.

Once you have defined in which registers you will put the counter and the pointer, you must let
the SCI know. The SCI has two registers for this purpose called the DMA Address Pointer

I<72 93/146

ST9 USER GUIDE

Register (DAPR) and DMA Counter Pointer Register (DCPR). These registers are not the ac-
tual counter and the pointer, they point to where you want to locate them in the register file.
This double pointer mechanism is similar to that described for interrupts.

Here there can be two cases: the transfer involves the memory or the register file.

If the transfer involves the memory, it's standard procedure. The DCPR points to the 16-bit
Counter register, and the DAPR points to the 16-bit Address register. These two register pairs
may reside anywhere there is room for them in the register file. Since register pairs are used,
their addresses are even. The DCPR must be even. To reach the DMA segment the DMASR
(or ISR depending on DAPR bit 0) MMU register contains the segment number.

If the transfer involves the register file, things are a bit different. Both the transaction counter
and the address register are 8-bit values. They are supposed to be adjacent in the register file,
i.e. they occupy two successive registers: the first one, even numbered, is the address reg-
ister. The second one, odd numbered, is the transaction counter. To select this mode, the
least significant bit of the DCPR must be one. Its value is the address of the address register
(which is even) plus one. The DAPR is not used.

The whole mechanism described above applies for both the transmitter side and the receiver
side. Thus, there are twice as many registers as mentioned: the TDCPR and the TDAPR for
the transmitter side, the RDCPR and the RDAPR for the receiver side. The registers you have
located in the register file are also twice as many. So, the TDCPR points to the transmitter
transaction counter and the TDAPR points to the transmitter address register (with the excep-
tion mentioned above if the transaction involves the register file). The RDCPR points to the re-
ceiver transaction counter and the RDAPR points to the receiver address register.

When a DMA transfer is in progress, the processor is not even aware of it (except that it is
slightly slowed down by the stolen clock cycles). So nothing special has to be done as far as
the program is concerned. The question is: how to start and end a DMA transfer? Here, the
processor is involved, and some code is needed. Depending on which side is concerned, the
processes are different.

4.6.1.2.1 Transmitter Side

To start a DMA transmission, you need to do the following operations, in order:

— Set the DMA segment register DMASR (or ISR) to point to the selected segment of data
memory.

— Set the transmit address register to the address of the second word to be sent (not the
TDAPR, which is only set once at initialisation, and points permanently to the transmit ad-
dress register).

4

94/146

ST9 USER GUIDE

— Set the transmit transaction counter to the number of characters to be transmitted minus one
(not the TDCPR, which is also only set once at initialisation, and points permanently to the
transmit transaction counter).

— Set the TXD bit of the IDPR register. This bit enables the Transmitter holding register empty
flag (TXHEM bit of register ISR) to trigger a DMA transfer when the last character is sent.
When TXD is reset, the holding register empty flag would trigger an interrupt instead.

— Load the Transmit Buffer Register (TXBR) with the first character to be sent. This starts the
DMA process as soon as this character is transmitted.

— Clear the Transmitter holding register empty flag (TXHEM bit of register ISR) and the Trans-
mitter buffer register empty flag (TXSEM bit of register ISR) to prevent DMA transfer from
starting before the first character is fully transmitted.

— Enable the end of DMA interrupt by setting the Transmitter Data Interrupt Mask (TXDI bit of
register IMR).

The DMA is now started and will stop when the transaction counter reaches zero.

Note: The transmit address register is initialized with the address of the second word and the transmit
transaction counter is initialized to the number of characters to be transmitted minus one, be-
cause the DMA transfer begins when the first word is transmitted (a write in the Transmit Holding
Register), so the first word is transmitted “by hand”.

4.6.1.2.2 Receiver Side

The receiver side is a little more complicated as two kinds of events can occur during recep-
tion:

— There can be transmission errors that must be handled.

— A break is received or a character match event can occur.

The receiver is set in a ready for DMA condition by the initialisation code.

Reception normally finishes when the DMA transaction counter has reached zero. But this is
not necessarily the way one wants to use the serial input, since it implies that the number of
characters to be received must be known before the transfer starts. In most cases, character-
type messages have a variable length.

In this application, the transaction counter is not expected to reach zero, since the size of the
buffer assigned for reception exceeds the longest message defined in the specification. Thus,
if the transaction counter reaches zero this is in fact an overflow condition. In this case, the
contents of the buffer are discarded and a new reception is initiated. In both cases, the steps
to perform an End of Block are:

— Reset the Receiver End of Block (RXEOB bit of register IMR) to remove the interrupt request.

— Use the received characters, if required.

I<72 95/146

ST9 USER GUIDE

— Re-enable the end of block interrupts by setting the Receive DMA Bit (RXD bit of register
IDPR).

— Restore the DMA capability by setting the receive address pointer (not the RDAPR) to the
address of the beginning of the receive buffer.

— Set the receive transaction counter (not the RDCPR) to the number of characters to be re-
ceived. This will re-enable the DMA capability.

In a typical application, command messages could have variable length and be terminated by
an LF character. So, the character match event capability built in to the SCI should be used.

If the Address/Data Compare Register (ACR) contains the value 10 (ASCII code for LF), and
the Receive Address Mask (RXA bit of register IMR) is set, whenever an LF character is re-
ceived, an interrupt is generated. This interrupt is considered in the application as a good Mes-
sage Received signal. It is processed the following way:

— In this application, no other characters are expected until the previous message has been
answered by the program. However, it may be useful to inhibit further DMA cycles by clearing
the RXD bit in the IDPR register and also the RXDI bit in the IMR register.

— Read the Receive Buffer Register (RXBR) to remove the interrupt request (see note below).

— Make use of the received characters.

— Restore the DMA capability by setting the receive address pointer (not the RDAPR) to the

address of the beginning of the receive buffer.

— Set the receive transaction counter (not the RDCPR) to the number of characters to be re-

ceived. This will re-enable the DMA capability.

Note: When matching occurs between the incoming character and the ACR register contents, the
DMA request is not generated, neither is an interrupt request for “character received”. So, the
incoming character remains in the receive buffer and no other character can be received until it
has been removed. This is why it is not sufficient to clear the RXAP bit in the ISR register to
reinstate the DMA transfer. You must clear the RXBR register by reading it during the character
match interrupt service routine.

Finally, an error may occur during transmission. This can be a parity error (if parity checking is

enabled), a framing error or an overrun error. If one of these errors occurs, take the following

steps:

— Clear the bits that indicate an error condition in the ISR register.

— Restore the DMA capability by setting the receive address pointer (not the RDAPR) to the

address of the beginning of the receive buffer.

— Set the receive transaction counter (not the RDCPR) to the number of characters to be re-

ceived. This will re-enable the DMA capability.

4

96/146

ST9 USER GUIDE

4.6.1.2.3 Interrupt Vectors

The interrupt vector scheme has been explained in Section 3.4.1 using the example of the
MFT to illustrate the mechanism. Here is the equivalent table for the SCI giving the position of
the four vectors dedicated to the four interrupt causes.

| Value in IVR | 50 |
Address in ROM of the | Value of the Pointer to interrupt
Interrupt cause . .
selected pointer routine
Receiver error 50 Address of error processing routine
Break detect or address match 50+2 Addresg of Address match process-
ing routine
Receiver data ready or DMA end of 50+4 Address of receive DMA end of block
block processing routine
Transmitter buffer empty of DMA end 5046 Address of transmit DMA end of block
of block processing routine

4.6.2 SCI Application 1: Sending Bytes using Interrupts

This application sends 10 bytes to the USART. An interrupt is generated at the end of every
single byte transmission. During this interrupt routine, the TXBR register is loaded with the
next byte to be transmitted. This application is found in the SCl/appli directory.

The character format is: 2400 bauds, 8 data bits, 1 stop bit and odd parity. Sent bytes can be
received on a PC loaded with a serial communication management software program such as
Hyperteminal.

4.6.3 SCI Application 2: Sending Bytes using DMA

This application sends bytes from the memory to the SCI peripheral using a DMA channel.
The transfer is re-initialized twice in the DMA End of Block interrupt routine so that data is
transmitted three times. This application is found in the SCl/appli2 directory.

4.6.4 SCI Application 3: Sending and Receiving Bytes using DMA

This application sends bytes from the memory to SCI and receives bytes from SCI to the reg-
ister file using two DMA channels. The SCI cell is configured in loopback so that each byte
sent is immediately received by the SCI. This application is found in the SCl/appli3 directory.

4.6.5 SCI Application 4: Matching Input Bytes

This application receives bytes from the USART and reacts only if an “F” (upper case) is re-
ceived: on a character match, a “0” is displayed on the 7-segment LED display on port 4. This
application is found in the SCl/appli4 directory.

4

97/146

ST9 USER GUIDE

4.7 ANALOG TO DIGITAL CONVERTER

4.7.1 Description

The analog to digital converter is one of the simplest peripherals of the ST9 family to use. It
converts the voltage applied to one of sixteen inputs using an 10-bit successive approximation
analog to digital converter. According to the value of bits SC3, SC2, SC1 and SCO0 of the Con-
trol Logic Register (CLR1, R252, P63), one to sixteen inputs are converted at each conversion
cycle, starting at the channel number specified by these bits and ending with channel 15.

The simplified block diagram is the following:

4

98/146

ST9 USER GUIDE

Figure 46. A/D Converter Block Diagram

A/D End of conversion or
AWD interrupt to the core

T

3 bits of Priority 3 bits of
AD_ICR Mechanism CICR
1 bit of | A/D or AWD
AD_IVR Interrupt Vector

selection

4 bits Of—»Pending & Mask bits

AD_ICR

4 bits of

AD_CRR — Compare Result

Threshold
registers 16-bit H/L(Ch.A)

Analog Watchdog

Threshold
y registers 16-bit H/L(Ch.B)
/
2
Data ;
- / A/D Converter / AIN pins
Register 710 /16 ™ channels 0 to 16
4 bits of | Autoscan Logic See fully detailed
CLR1 : diagram of the :
. A/D converter in Section 6 :
EXTRG pi Synchronisation to .
I Start/Stop the [4 bits of
A/D Converter CLR1

The conversion cycle can either be started in Single mode, by a trigger (software or hardware,
the later being internal or external) or in Continuous mode, restarted as soon as the previous
cycle is finished.

Each channel uses one bit of a port (the port depends on the variant of the ST9), and the con-
version result is stored in a 16-bit register. Sixteen such registers are available, named
AD_DOR to AD_D15R. These 16 bit registers are data registers are made up of two 8-bit reg-

I<72 99/146

ST9 USER GUIDE

isters e.g AD_DOR is made up of AD_DOLR (For lower 2 bits of 10 bits result) and AD_DOHR
(For upper 8 bits of 10 bits result).

The end of conversion sets the ECV bitin the AD_ICR register, and can trigger an interrupt re-
guest, if the ECI bit (mask of the end of conversion interrupt request) of the Interrupt Control
Register (AD_ICR) is set.

Notes The internal interrupt controller does not automatically reset the ECV bit. It must be reset by the

interrupt service routine prior to returning from interrupt. Failure to do this would cause the in-
terrupt to loop endlessly.

As mentioned in Section 4.2 on parallel ports, you must configure the corresponding pins to
alternate function both to reduce loading on the analog source and to avoid excessive dissipa-
tion in the pin's input buffer. For the same reason, it is advised to keep this I/O configuration if
an analog voltage is present on the pin, even if it is not being converted at this time.

4.7.2 Analog Watchdog

A special feature of this peripheral is the so-called Analog Watchdog. If enabled, the values of
Channel A or both Channel A and Channel B are each compared after each conversion with
a pair of upper and lower thresholds stored in registers AD_LTAR (AD_LTAHR,AD_LTALR),
AD_UTAR(AD_UTAHR,AD_UTALR) for Channel A, and AD_LTBR(AD_LTBHR,AD_LTBLR),
AD_UTBR(AD_UTBHR,AD_UTBLR) for Channel B. Channel A and Channel B are selected
by CC[3:0] bits in control register AD_CLR1.

If the value is outside the threshold values, the AWD bit of the AD_ICR register is set. This can
trigger an interrupt request if the AWDI bit of the same register is set. To know which of the
four thresholds has been exceeded, the Compare Result Register (CRR) has four bits with
one each corresponding to one of these thresholds. The appropriate bit is set when the
threshold has been exceeded.

Notes: The AWD bhit, like the ECV bit, is not automatically reset by the internal interrupt controller. Thus
it must be reset by the interrupt service routine prior to returning from interrupt. Failure to do this
would cause the interrupt to loop endlessly.

To permit power saving in applications where energy conservation is important, you can power
the ADC on and off so that it only consumes power when used. However when you switch it on,
after a delay of 10 ps first conversion starts. The reset condition is off.

4.7.3 Interrupt Vectoring

Two vectors are dedicated to the ADC: the end of conversion vector and the analog watchdog
vector. This allows these two events to be serviced by two different routines. The vectors used
depends on the state of the W1 bit in the AD_IVR register. This bit is set or reset according to
the source of the interrupt.

However, it may occur that both interrupts are generated simultaneously. In that case, analog
watchdog has Priority over End of Conversion request.

100/146 172

ST9 USER GUIDE

4.7.4 ADC Application: A/D Conversions and Analog Watchdog using Interrupts

This application converts the analog value presented on P7.7 and enters the conversion re-
sults in a chart as long as the converted value resides within the user-defined threshold. The
end of conversion interrupt is used to transfer the result of the conversion to the chart. The an-
alog watchdog interrupt, when triggered, stops the A/D converter. This application is located in
the ADC/appli directory.

4

101/146

ST9 USER GUIDE

4.8 PERIPHERAL INITIALIZATION

All the ST9 peripherals have a large number of configuration options. This makes them highly
adaptable, but has a complex initialization procedure.

To help you to use the peripherals easily, you can find all the initialization programs on the
<http://www.stmcu.com> internet site.

The purpose of these programs is to give you C language programs to get started with pro-
gramming each peripheral. This program package consists of a Header file, a peripheral func-
tion, a startup and a main program for each peripheral.

The startup (crtbegin.spp) and the main (main.c) files are not explained here. Have a look at
these files for more details. All you now have to know is that whenever an interrupt subroutine
is used, the startup program is initialized with the interrupt subroutine address.

For example the INTADC_EndConv() ADC interrupt subroutine address declared in the file
<adc.c> is loaded in the startup routine <crtbegin.spp> at the Interrupt Vector Register loca-
tion.

4.8.1 initialization Header File

The initialization header file defines all the constants, the file to be included, the function pro-
totypes and the peripheral mode.

The initialization header file has to be included any time the peripheral is referenced. The next
section uses the Analog to Digital Converter peripheral file as an example. The ADC initializa-
tion header file is <adc.h>.

4.8.1.1 Constants already Initialized and to be Initialized

The <adc.h> file is complementary to the <ad_c_16.h> header file located in the toolchain
header files directory, with the other peripheral header files.

The 16 initialized constants, CHANNELO to CHANNEL15, give you the 16 possibilities of ini-
tializing the non-initialized constant AD_CHANNEL. This constant will initialize the AD_CLR1
ADC Control Logic Registerl in the <adc.c> file.

4.8.1.2 Files to be Included

The files to be included contain other initialized constants like in the previous <adc.h> file.

4

102/146

ST9 USER GUIDE

4.8.1.3 Function Prototype Declarations

Each of these functions can be called by the main program <mainc.c> or other functions for
managing the ADC. They are defined in the <adc.c> file.

The <adc.h> file function prototypes are:
void I NI T_ADC(voi d);

voi d START_ADC(voi d);

voi d STOP_ADC(voi d);

void INIT_ADC | T(voi d);

voi d Enabl e_ ADC | T(voi d);

4.8.1.4 Defining the Functional Mode

To initialize the peripheral mode, you can activate the define directive by removing the <</* */
>>,

e.g.: In the <adc.h> file, you can select Continuous mode with:
#def i ne conti nuous

[*#def i ne si ngl e*/

4.8.2 Peripheral Function File

These files contain the peripheral management functions. The function prototypes are placed
in the header file as explained before.

The functional mode and the constants initialized in the header file modify the functions so that
they can be used directly by the application program.

Presentation of Peripheral Function Files:-

4.8.2.1 ADC File

The ADC function file is <adc.c> and contains 6 functions initialized for using channel 15 of the
ADC corresponding to 1/O port P7.7. It performs 15 conversions and stores the converted
values in chart.. Moreover, the analog watchdog is enabled on this channel and stops the se-
ries of conversions if the value is not within the prescribed thresholds.

Table 4. ADC.C Functions

Function Description and Comments

Choice between Continuous and Single-shot modes. Possibility of initializ-
ing the analog watchdog on channel A or/and B.

Choice between three triggers to start the conversions: internal, external
or software.

This routine stops the ADC after a series of conversions. Afterwards, all
power consuming logic is disabled (low power idle mode).

void INIT_ADC(void);

void START_ADC(void);

void STOP_ADC(void);

I<72 103/146

ST9 USER GUIDE

Function Description and Comments

The pointer to the array of two IT vectors dedicated to the AD is initialized.
The priority of these interrupts is initialized. This routine initializes both end
of count and analog watchdog. Don't forget to initialize your start-up file

void INIT_ADC_IT(void);

correctly.
void Enable_ADC_[T(void): 2;25 routine enables interrupts: End of Conversion or/and Analog Watch-
void Interrupt subroutine dedicated to Analog Watchdo
INTADC_Anawd(void): P 9 9
void

Interrupt subroutine which occurs after an end of conversion event.

INTADC_EndConv(void);

4.8.2.2 MFT File

4.8.2.2.1 MFT Files without DMA

The MFT function file is <mft\applil\mft.c> and contains 6 functions that are initialized for gen-
erating two PWM signals using the two output pins of the MFTO.

Compare0 and Comparel events are managed by interrupts.

Input A is used as a gate: as long as a +5V level is applied on it, the counter stops down-
counting and the PWM signals are thus not generated.

The following ports are used for this:

- TOOUTB

— TOOUTA

— TOINA

Table 5. APPLI1I\MFT.C Functions

Function Description and Comments
MFT initialization.
It initializes the value loaded into the prescaler and into the counter.

void INIT_MFT(void);

void START_MFT(void); Start the MFT.
void STOP_MFT (void); Stop the MFT.
void INIT_MFT_IT(void); This function configures the IT for the MFT.

void Enable_ MFTCM_IT(void); | Enables Compare0 and Comparel IT.
Interrupt subroutine which occurs after:
- Compare 0

- Compare 1

Only one IT vector.

void INTMFT_Compare(void);

4.8.2.2.2 MFT files with DMA

The MFT function file is <mft\appli2\mft.c> and contains 7 functions that are initialized for gen-
erating a PWM signal using the MFT and a DMA channel.

104/146 172

ST9 USER GUIDE

The port used for this application is:

— TOOUTA

Table 6. APPLI2\MFT.C Functions

Function

Description and Comments

void INIT_MFT(void);

MFT initialization.
It initializes the value loaded into the prescaler and into the counter.

void START_MFT(void);

Start the MFT.

void STOP_MFT (void);

Stop the MFT.

void
INIT_MFT_ITDMA(void);

This function configures the IT and the DMA for the MFT.

void Enable_ MFTCPO_DMA
(unsigned int * CompBuffer,
unsigned int Count);

Enable Compare0 DMA.

void
INTMFT_CompEOB(void);

Interrupt subroutine which occurs after a compare0 DMA end of block.
The DMA is not re-initialized so only one block is transferred.
Same vector as compare0 interrupt.

void INTMFT_OUF(void);

Interrupt subroutine which occurs after an underflow.
It stops the timer when the whole PWM signal has been generated.

4.8.2.2.3 MFT files with DMA in Swap Mode

The MFT function file is <mft\appli3\mft.c> and contains 6 functions that are initialized for gen-
erating a PWM signal using the MFT and a DMA channel working in Swap mode.

The port used for this application is:

— TOOUTA

4

105/146

ST9 USER GUIDE

Table 7. APPLI3\MFT.C Functions

Function

Description and Comments

void INIT_MFT(void);

MFT initialization.
It initializes the value loaded into the prescaler and into the counter.

void START_MFT(void);

Start the MFT in the swap mode.

void STOP_MFT (void);

Stop the MFT.

void
INIT_MFT_ITDMA(void);

This function configures the IT and the DMA for the MFT.

void

Enable_ MFTCPO_DMA(un-
signed int * CompBuffer, un-
signed int Count)

Enable Compare0 DMA.

void
INTMFT_CompEOB(void);

Interrupt subroutine which occurs after a compare0 DMA end of block.
The DMA is swapped.

4.8.2.3 RCCU File

The RCCU file is <rrcu\rccu.c> and contains 5 functions for controlling the RCCU in your ap-
plication. The header file has no uninitialized constants since the functions are dedicated.

Table 8. RCCU.C Functions

FUNCTION

DESCRIPTION AND COMMENTS

void INIT_PLL(void);

Initialize the PLL, Mul. by 6, div. by 1.
Wait 500us to stabilize the PLL.

void INIT_clock2(void);

INTCLK = CLOCK2 = EXT OSCILLATOR/ 2.

void INIT_clock2_16(void);

INTCLK = CLOCK2/16 = EXT OSCILLATOR / 32.

void
SWITCH_TO_EXTCLK(void
):

Stop the Xtal oscillator and select the external clock (if present).

void BACK_TO_XTAL(void);

Restart the Xtal oscillator and select it as the clock source.

4.8.2.4 SCI File

4.8.2.4.1 Simple SCI Files (SCI-M)

The SCI function file is <sci\applil\sci.c> and contains 4 functions that are initialized for
sending ten bytes from the ST9 to the serial link (RS232).

It uses End of Transmission interrupts.

Port used:
— Tx (SO0OUT)

106/146

4

ST9 USER GUIDE

Table 9. SCI.C Functions

FUNCTION

DESCRIPTION AND COMMENTS

void INIT_SCl(void);

Initialization of general parameters dedicated to the SCI:
- Baud Rate Generator: 9600 bauds.

- Characters: Eight data bits, one stop bit, odd parity.

- Pins...

The baud rate generator must be initialized following this structure
(BRGHR first and BRGLR at the end).

void INIT_SCI_IT(void);

Initialization of the IT: vector, priority.

void SCI_SendByte(un-
signed char ToSend);

It sends byte ToSend to serial link.
This routine also enables end of transmission IT.

void
INTSCI_TransmitReady(voi
d);

Interrupt subroutine which occurs after the transmission of one charac-
ter.

If 10 bytes have been transferred, it disables the IT and so stops the trans-
mission.

4.8.2.4.2 SCI Files using DMA

The SCI function file is <sci\appli2\sci.c> and contains 4 functions that are initialized for
sending 26 bytes from the ST9 to the serial link (RS232) by using the DMA.

It uses DMA channel (from memory).

Port used:

— Tx (SO00UT) (Uses End of Transmission interrupts)

4

107/146

ST9 USER GUIDE

Table 10. SCI.C Functions

FUNCTION DESCRIPTION AND COMMENTS
Initialization of general parameters dedicated to the SCI:
- Baud Rate Generator: 9600 bauds.

- Characters: Eight data bits, one stop bit, odd parity.

- Pins...

The baud rate generator must be initialized following this structure
(BRGHR first and BRGLR at the end).

Initialization of the IT: vector, priority.
Initialization of DMA in transmission

void INIT_SCI_DMA(void);

void START_SendDMA(un-
signed char * TransmitBuff- | After a few extra initialization, the transmission starts by loading data reg-

erMem, unsigned int ister(TXBR) with the first value to send.
SCI_count);
void Interrupt subroutine which occurs when a whole block of data has been

INTSCI_TransmitEOB(void) | transferred using DMA.
; In fact, the buffer “table” is sent three times and then DMA is disabled.

4.8.2.4.3 SCI Files using DMA in the Loopback Mode

The SCI function file is <sci\appli3\sci.c> and contains 5 functions that are initialized for
sending 26 bytes from memory to the serial link.

The SCl is in Loopback mode, so that the bytes sent are then received by the SCI and stored
in the register file (from R16).

It uses DMA channels:
— From memory to peripheral for the transmission
— From the peripheral to the register file to receive the bytes.

No ports are used.

4.8.2.4.4 SCI Files using Character Matching

The SCI function file is <sci\appli4\sci.c> and contains 5 functions that are initialized for re-
ceiving data on the input pin of the SCI and it only reacts when it receives character
SCI_MATCH (defined in sci.h).

Port used: Rx (SOIN)

4

108/146

ST9 USER GUIDE

Table 11. SCI.C Functions

FUNCTION

DESCRIPTION AND COMMENTS

void INIT_SCl(void);

Initialization of general parameters dedicated to the SCI:
- Baud Rate Generator: 9600 bauds.

- Characters: Eight data bits, one stop bit, odd parity.

- Pins...

The baud rate generator must be initialized following this structure
(BRGHR first and BRGLR at the end).

void INIT_SCI_IT(void);

Initialization of the IT: vector, priority.
The only interrupt which is enabled is “character match”.

void
INTSCI_ReceiveMatch(void);

This interrupt subroutine occurs when the SCI cell has received the
matching character.

In this example, it displays 0 on a 7-segment LED connected to port 4.

4.8.2.5 TIMER File

Standard Timer function file is <st\timer.c> and contains 6 functions that are initialized for gen-
erating a simple PWM signal using the Standard Timer (programmable duty cycle).

Port used:
— STDOUT

Table 12. TIMER.C Functions

FUNCTION

DESCRIPTION AND COMMENTS

void INIT_ST(void);

Standard Timer initialization.
It must be used before any use of the ST.
It initializes the value loaded into the prescaler and into the counter.

To use the ST in output mode, you must initialize the output pin in push-
pull, alternate function. This means (PXCOR,PXC1R,PXC2R) = (1,1,0).

void START_ST(void);

Starts the Standard Timer.

void STOP_ST (void);

Stops the timer counter.

void INIT_ST_IT(void);

This routine configures the interrupts after each End of Count.
Don't forget to initialize your start-up file correctly.

void Enable_ST_IT(void);

Enables the Standard Timer Interrupt.

void
INTST_EndCount(void);

Interrupt subroutine which occurs after an end of count.

4

109/146

ST9 USER GUIDE

4.8.2.6 WDT File

4.8.2.6.1 WDT Files for PWM Generation

The WDT function file is <wdt\applil\wdt.c> and contains 7 functions that are initialized for
generating a simple PWM signal using the WDT (programmable duty cycle).

Port used:
—WDOUT

Table 13. WDT.C Functions

FUNCTION

DESCRIPTION AND COMMENTS

void INIT_WDT (void);

WDT initialization.
It must be used before any use of the WDT.
It initializes the value loaded into the prescaler and into the counter.

To use the WDT in output mode, you must initialize the output pin in push
pull, alternate function. This means (PXCOR,PXC1R,PXC2R) = (1,1,0)

void START_WDT(void);

Start the Watchdog Timer.

void STOP_WDT (void);

It stops the counting of the timer (useless in watchdog mode).

void
Restart_Watchdog(void);

This routine refreshes the Watchdog counter: At each End of Count, if this
function has not been used before, a reset is generated internally.

The periodic use of this function is the only way to avoid a reset.

void INIT_WDT_IT(void);

This routine configure the interrupts after each End of Count using inter-
ruptchannel INTAO. NMl is thus configured as the Top Level Interrupt.

Don't forget to initialize your start-up file correctly.

void Enable_ WDT _IT(void)

Enable the WDT interrupt.

void
INTWDT_EndCount(void);

Interrupt subroutine which occurs after an end of count.

The code written in the user part allow the generation of a simple PWM
signal (programmable duty cycle).

4.8.2.6.2 WDT Files in Watchdog Mode

The WDT function file is <wdt\appli2\wdt.c> and contains 4 functions that are initialized for en-
abling the WDT in Watchdog mode and refreshes it regularly.

No port is used.

Table 14. WDT.C Functions

FUNCTION

DESCRIPTION AND COMMENTS

void INIT_WDT(void);

WDT initialization.
It must be used before any use of the WDT.
It initializes the value loaded into the prescaler and into the counter.

void START_WDT(void);

Start the Watchdog Timer.

110/146

4

ST9 USER GUIDE

FUNCTION

DESCRIPTION AND COMMENTS

void STOP_WDT (void);

It stops the counting of the timer (useless in watchdog mode).

void

Restart_Watchdog(void);

This routine refreshes the Watchdog counter: At each End of Count, if this

function has not been used before, a reset is generated internally.
The periodic use of this function is the only way to avoid a reset.

4

111/146

ST9 USER GUIDE

5 USING THE DEVELOPMENT TOOLS

5.1 DEVELOPING IN C LANGUAGE

Although the ST9 C Compiler is an optional product, you are strongly advised to write your
software using a High Level Language. Naturally for the sake of optimization, especially to ob-
tain the best execution times from certain frequently-used pieces of code, assembly language
will still remain the right choice. This will be true at least for the initialisation file. But writing a
complete program in assembler has few advantages and many drawbacks, so there can be no
economic justification for using only assembiler.

This is why some of the examples in this guide are written in assembler and some in C. The
development tools allow you to mix both languages easily.

A useful book, if you have some experience of C language is “The C language”, by Kernighan
and Ritchie, second edition.

5.2 AVAILABLE TOOLS

The following tools are available for the ST9 family:

— A Software development package, named GNU9P, that includes a C-compiler and a Make
utility.
— A range of emulators for the various sub-families.

You have two options in terms of development tool products. A software development
package is delivered with each emulator. This does not include the C-compiler. You must pur-
chase it separately. So with the emulator package alone you can only do assembler program-
ming.

As previously mentioned, you are strongly advised to use C programming as much as pos-
sible, for the obvious reasons of structuring the source code, of code portability and reus-
ability. In addition, developing the program is much easier and more reliable due to the con-
trols and checks performed by the C-compiler.

However, in the event that a program requires very fast processing, the C language is imprac-
tical so the program must be carefully written in assembly language

Another point worth mentioning is the development environment, which is the part of the soft-
ware that deals with the production and the modification of the source files.

4

112/146

ST9 USER GUIDE

5.3 INTRODUCING THE DEVELOPMENT TOOLS

The ST9 Software Toolchain V6 allows complex applications to be developed easily and effi-
ciently for the ST9 family of microcontrollers. It is designed to provide the user with a powerful
development environment which can be used to design, debug, maintain and develop appli-
cations in the C and assembly languages. In addition to the C compiler, assembler and linker,
the ST9 Software Toolchain V6 provides an Integrated Development Environment (IDE) that
is used to edit, build and debug an application in a single environment.

Using the ST9 Software Toolchain V6, it is possible to develop applications in the C language
without being hindered by the segmented architecture of the ST9 microcontroller. Applications
can be as large as 4 MB of code and data, and can be completely written in C language as if
developing standard C programs. This code is linked with the standard start-up code that ini-
tializes the ST9 microcontroller. Depending on the application board, the startup files may
need to be customized to ensure initialization.

With this software toolchain, variables can be handled in the ST9 register file as if they were
in memory, handling variables in this manner dramatically reduces the size of code. Objects in
memory can be controlled either at a modular level or on an object by object basis. Thanks to
the powerful features of the debugger, such as advanced breakpoints, break on registers,
trace with 64K records and performance analysis, the debugging and tuning of an application
is made easier and quicker.

The ST9 Software Toolchain V6 is designed for use with the ST9 HDS2V2 emulators.

To obtain further information about the toolchain, please refer to the toolchain docu-
mentation.

5.4 PROGRAM CONFIGURATION AND INITIALISATION

Most programs are divided into several source files. This makes modifications easier and re-
compilation quicker, using the make utility that recompiles only the files that have changed
since the last compilation.

How you split the source text into files is a matter of taste. However, a few rules are worth fol-
lowing for keeping things well organized. They are:

— For sake of portability, assembler source text must not be mixed with C source text in the
same file. In actual practice, assembly statements may be written in C, but reduce these to
a minimum.

— Code that is very low-level is very machine-dependent. This code should be in one or more
specific files.

One or several higher levels of code can be defined according to the application. This is up to
you, but in all cases, machine-specific code, even written in C, should not reside in the same

I<72 113/146

ST9 USER GUIDE

file as a higher-level code. This is used to change the hardware configuration (assignments of
the port pins, etc.) by changing only those files that are involved with low-level routines.

Once this layout is established, you can then write the files mentioned below. These files are
used to configure the tools. Since they know the program structure, it can be maintained by
compiling the right portions whenever they change. So you absolutely have to go through the
following steps even though they are not directly related to writing code:

— Writing the makefile

— Writing the linker command file

— Writing the start-up file

These files are specific to each project and must be added to the list of source files. Examples
are given in the applications described in this book and are available in the Companion soft-
ware.

5.4.1 Writing the Makefile

The makefile is the template that puts all the program pieces together. It describes the module
interdependencies that enable the gmake utility to build the program efficiently by processing
only those source files that have been modified since the last invocation of gmake(e).

The Make language is very powerful, for a Make utility can be applied to almost any kind of
processing where several files provide a single result. It is a generic machine that manages
updates smartly. When developing programs for the ST9, the makefile description is similar
from one project to another. Most of the changes relate to the name and the number of the
files involved. Thus, we propose here a skeleton makefile and we explain how you can tailor
it for a specific application, without going into the advanced features gmake offers.

A skeleton makefile is given on the companion software, and a variant is included in the direc-
tory of each application. This will help you understand typical makefile usage, which is not dif-
ficult to learn.

The skeleton makefile reads as follows:

#/*******************************/

#l* MAKEFI LE SKELETON */

#/*******************************/

DEFI NES

#*******

6) see GNU9P Make Utility Manual.

4

114/146

ST9 USER GUIDE

Her e you decl are your conpi |l ati on opti ons
CFLAGS =-nmp(MODEL) -1 $(INCDIR) -c-g-Wa, -al hd=$*.1is

Her e you decl are your | i nki ng opti ons
LDFLAGS =-nostdlib-T$(SCRI PTFI LE) - W, - Map, $(APPLI) . map

Def i ne her et he nane of your applicati onwi t hout any ext ensi on
APPLI =

Her e you speci fy t he menory nodel used by your application (conpact/
specned/ medi um

MODEL =

Her e you gi ve t he name of the script fil eused by your application
SCRI PTFILE =

G ve here the name of the ¢/ SPP/ ASMsource files usedinthe application
C_SRC =

SPP_SRC
ASM_SRC

G ve herethenanme of thestartupfilesusedintheapplication
STARTUP_SRC=

Li st of directoriesto be searched
VPATH =

Locationof includefiles. Donot | eavethis variableenpty.
#1f youdonot needit, renove or coment it.

I NCDI R =

COMVON DEFI NES

#**************

Nane of fil e containi ng dependenci es.

I<72 115/146

ST9 USER GUIDE

#Thisfileisautomatically generatedbythis Makefile
DEP = $(APPLI) . dep

The gcc9 driver i susedfor runningthe conpiler, assenbl er, |inker
GCC =gccH9

Li st of object files

oBJS = $(pat subst % spp, % o, $(filter % spp, $(STARTUP_SRC))) \
$(pat subst % asm % o, $(filter % asm $(ASM SRC))) \
$(pat subst % spp, % o, $(filter % spp, $(SPP_SRC))) \
$(pat subst % c, % o, $(filter % c, $(C_SRQO)))

Rul e for buildingthetarget
$(APPLI) . u: $(0OBIS) $(LIBS) $(SCRI PTFI LE)
$(CCC) $(LDFLAGS) $(0BJIS) $(LIBS) -0 $@

Rul es
% 0: % C

$(GCC) $(CFLAGS) $<-0 %@

% 0: % asm
$(GCC) $(CFLAGS) $<-0 %@

% 0: % spp
$(GCC) $(CFLAGS) $<-0 %@

i ncl ude $(APPLI) . dep
Rulefor forcingthe buildw thout takingintoaccount dependenci es
rebuil d:

gmake -f $(APPLI) . mak cl ean

gmake -f $(APPLI) . mak $(APPLI) . u

Rul e f or maki ng dependencies file

116/146

4

ST9 USER GUIDE

$(DEP) : $(C_SRC) $(SPP_SRC)
@cho Gener ati ng dependenci es . ..
$(CCC) -MM-1$(INCDIR) $" >$@

Rul e for cl eaningthe application
. PHONY : cl ean
clean:

@cho of f

i f exist *.odel *.

o

i f exist *.udel *.

c

ifexist*.lisdel *.lis
i f exist *.map del *. map
i f exist *.depdel *.dep
i f exi st *. hex del *. hex

The syntax of this file looks complicated. In fact, you typically only have to change the DE-
FINES section. The various items of the file are detailed below.

5.4.1.1 CFLAGS = -m$(MODEL) -I$(INCDIR) -c -g -Wa,-alhd=$* lis

CFLAGS is a variable that contains the options that govern the working of the C-compiler. Re-
ferring to the option table of the compiler, it means:

Option Meaning
-m$(MODEL) Defines the memory model to use.
-I$(INCDIR) Defines user header files path.

-C Output an object file for later linking.

Include in the object file all necessary information for the debugger to allow it to use
symbolic names.

Tells the gcc9 to transmit the option string -alhd=$*.lis to the assembler. These op-
-Wa,-alhd=$*.lis tions makes the assemble generate the most complete assembly listing file to help
finding problems more easily.

-9

5.4.1.2 LDFLAGS = -nostdlib -T$(SCRIPTFILE) -WI,-Map,$(APPLI).map

LDFLAGS is a variable that contains the options that govern the working of the linker. The op-
tions are:

Option Meaning
-nostdlib Inhibits the use of standard startup files or libraries.
-T$(SCRIPTFILE) Tells the linker to use the specified script file.

Tells gcc9 to transmit the -Map $(APPLI).map option string to the linker. This

“WI,-Map,$(APPLI).map option will make the linker print a link map in the map file.

I<72 117/146

ST9 USER GUIDE

5.4.1.3 APPLI = ...

This variable must contain the name of the main object file and related files, which are:

File name Type of file
Object file ready for loading into the emulator. This is defined in conjunction with
the LD9 script file.

<main file name>.map | The memory map file name.

<main file name>.u

Example:

APPL| = SMCB

generates SMCB.U and SMCB.MAP using the script file to define the linker behavior.
5.4.1.4 SCRIPTFILE = ...

This variable must contain the name of the script file to be used during the linking process.

5415C_SRC=...

This variable must contain the complete list of the C source files involved in the program to be
built. Example:

C SRC=min.cconfig.cserial.ccalcul.cencoder.c
5.4.1.6 SPP_SRC = ...

This variable must contain the complete list of SPP source files involved in the program to be
built. SPP are assembler source files needing preprocessing. Example:

SPP_SRC=regi ster.spp decoder. spp
5.4.1.7 ASM_SRC = ...

This variable must contain the complete list of the assembler source files involved in the pro-
gram to build. Example:

ASM SRC=startup.asminterrup. asm
5.4.1.8 STARTUP_SRC = ...

This variable must contain the complete list of the startup files involved in the program to be
built. Example:

STARTUP_SRC=crtbegi n. spp crtend. spp
5.4.1.9 VPATH = ...

This variable must contain the list of directories that the Make function should search. Ex-
ample:

VPATH=..\src..\startup

4

118/146

ST9 USER GUIDE

5.4.1.10 INCDIR = ...

This variable must contain the list of directories that contains header files needed by the pro-
gram. Example:

I NCDI R=..\| NCLUDE . .\ HEADER
5.4.1.11 Make Rules

A Make rule is a statement that both tells which file is dependent on which other file, and the
processing needed in order to update the result file when the source file has changed.

All files written under MS-DOS are marked in the directory with a date/time stamp. This allows
the Make utility to compare dates between files. If a file declared in a rule as being the result
of a source file, and the source file has a later date than that of the result, the result must be
regenerated. For example, in the following rule:

% 0:%cC

$(GCC) $(CFLAGS) $<-0 %@
The first line says that any file with extension .c is the source for the corresponding .o file, so
that if the .c file is younger than the .o file, the source file must be recompiled.

The second line says that the compilation is done using GCC9, with the options stored in the
CFLAGS variable, that the input file "$<" is the .c file (source file), and the output file "$@",
specified by option -0, is the target file.

5.4.2 Writing the Linker Command File using a Script File

The linker uses the linker command file(7)(or Script File) to correctly position the code and vari-
ables in the memory spaces. It defines the start and end of the ROM and RAM area(s), and
gives the list of the object files to be linked. It also generates the appropriate labels to allow C
variables to receive their initial values before the program starts.

Once the Script File is written, the only thing you have to do is to add new file names or change
the mapping.

Below is an example of a generic script file for an ST92F150:

MEMORY
{
FLASHO : ORI G N=0x000000, LENGTH= 8K
FLASH1 : ORI G N=0x002000, LENGTH= 8K
FLASH2 : ORI G N=0x004000, LENGTH= 48K
FLASH3 : ORI G N=0x010000, LENGTH= 64K, MVU =1 DPRO | DPR1

™ sT9 Family GNU Software tools, Second Part: LD9.

I<72 119/146

ST9 USER GUIDE

EEPROM : ORI G N=0x220000, LENGTH= 1K, MW =1 DPR2
RAM : ORI G N=0x200000, LENGTH= 4K, MMJ=1 DPR3
REGFI LE (t) : ORIG N= 0x00, LENGTH=208/* G oups 0 to 0x0C*/

}

SECTI ONS

{
_stack_si ze = DEFI NED(_st ack_si ze) ? stack_size: 0x100;

Linit

{*(.init) } > FLASHO
. text

{ *(.text) } > FLASHO
Cfini

{*(.fini) } > FLASHO
.secinfo

{ CREATE_SECI NFO TABLE} > FLASHO

.rodata
{ *(.rodata) } > FLASHO

.data : AT (LOADADDR(.rodata) + SI ZEOF (. rodat a))
{ *(.data) } > RAM

. bss

{ *(.bss) *(COWON) } > RAM

. stack

{ stack start = DEFI NED(stack start) ? stack start : . ;
. =. + _stack_size;

_stack _end = _stack _start + _stack_si ze; }>RAM

120/146

4

ST9 USER GUIDE

.fardata: AT (LOADADDR(. data) + SI ZEOF (. data))
{ *(.fardata) } > RAM

.regl6_data: AT (LOADADDR(.fardata) + SI ZEOF (. fardata))

{ *(.regl6 _data)} > REGFI| LE
.regl6 _bss:
{ *(.regl6_bss)} > REGFI| LE

.reg8 data: AT (LOADADDR(.regl6 data) + SI ZEOF (.regl6_data))

{ *(.reg8 data) } > REGFI LE
.reg8 bss:
{ *(.reg8 bss)} > REGFI| LE

For more details on the Command File, refer to the Command Language section in the GNU
Software Tools User Manual.

5.4.3 Writing the Start-Up File

This file is the very first file executed at power on. It performs the initialisation procedure re-
quired for the processor to start. It differs according to whether the program includes modules
written in C or not.

In all cases, it includes two main parts:

— The reset, exception and interrupt vectors.

— The initialisation code that is required for the program to start.

5.4.3.1 Vector Table

The vectors consist of the Reset vector, the Divide by zero vector and the other interrupt vec-
tors. They are placed at defined addresses:

— The Reset vector must be located in the first word of the first segment.

— The Divide by zero trap must be placed at address 2 in each segment where a program uses
division. Each segment containing programs using division must have its own Address trap
branched to a local routine making only a “CALLS DIVIDE_BY_ZERO?" far call to the Divide
by zero service routine located in a single segment.

I<72 121/146

ST9 USER GUIDE

— All the other interrupt addresses must be placed in the Interrupt Segment. In “ST9” mode,
Interrupt Service Routines can make far calls to other segments.

They are organized as follows:

Table 15. Segment 0

Address Cause Point to
Reset (action on the reset pin, The start of the initialisation code. The reset address is the
0 Watchdog reset or Software
start-up address.
reset).
- Address of the routine in segment 0 that handles the case
2 Divide by zero L
where a division by zero has occurred.

Table 16. Segment n (not Interrupt Segment)

Address Cause Point to
- Address of the routine in segment n that handles the case
2 Divide by zero L
where a division by zero has occurred.

Table 17. Interrupt Segment

Address Cause Point to
- Address of the routine in segment ISR that handles the
2 Divide by zero L
case where a division by zero has occurred.
4 Top level interrupt The interrupt service routine for the top level interrupt.

Interrupt

Interrupt Service Routine addresses.

The vectors above are placed at these addresses by hardware. You can place the following
ones at will, except that for each peripheral they must obey some rules like being a multiple of
a given number, e.g. 8 for the SCI.

Address Cause Point to
N First cause for the peripheral | The routine that handles the first interrupt cause for that pe-
whose IVR is setto n ripheral.
142 Second cause fgr the periph- Thg routine that handles the second interrupt cause for that
eral whose IVR is set to n peripheral.
etc.

To force the linker to effectively position these vectors from address zero, the start-up module
must first be included in the module list in the linker command file.

122/146

4

ST9 USER GUIDE

5.4.3.2 Initialisation Code

The initialisation code mainly has to initialise the core. The core contains certain control regis-
ters that must be set to correct values or the program will fail to start. They are listed in the
table below. They are in the order they are initialized in a typical start-up file, though this order

is somewhat arbitrary.

Register

Register

Number Name Function®) Comments
Selects the space If power and electromagnetic interference are not a
where the stacks re- | concern, the prescaler can be set to zero so that the
side (register file or | processor runs at full speed. Otherwise, the speed/
235 MODER memory), main clock | consumption trade-off can be handled at will accord-
divider on/off, clock | ing to the needs of the program.
prescaler division
rate.
In the “ST9"” mode the DP bit of this register selects
program memory when cleared, or data memory
when set. It must be changed using the sdm and spm
instructions. Typically, one of these is used at the be-
ginning of the program and remains unchanged after-
. wards. On some occasions, it may be changed, for
Selects the.smgle example to access tables of constants in ROM if two
231 FLAGR space of twin-space spaces are used.
mode for the memory.] .
Therefore in “ST9” mode, DP must be set with the
sdm instruction (used only once in the start-up pro-
gram) to set the use of DPR register to address data
memory. The spm instruction must not be used. To
access data through the CSR register, use the Idpd,
Iddp or Idpp instruction.
No subroutine or function call may be performed be-
. fore the initialisation of SSP and MODER. Note that
Position of the top of | . . .
the system stack in since a call flrst decrements the sta(?k pointer by two
238-239 SSP . and then writes the return address, if the stack is po-
memory or register . . . L L
file S|t|qned in the register file, it may be initialised to the
register number of the top of stack + 1 to save stack
space.
Position of the top of
the user stack in
236-237 USP memory or register
file. Unused if only
one stack is used.
Selects the mode for
the working registers | These registers are set using the srp, srp0 and srpl
232-233 RPO-RP1 as well as the abso- | instructions. See the description of working registers

lute register numbers
for rO and r8.

in Section 3.1.4.

4

123/146

ST9 USER GUIDE

Register

Register

independently for up-
per and lower memo-
ries.

Number Name Function®) Comments
The GCEN bit of this register enables all the MFTs at
once. It may also be set once the MFTs are all initial-
ised, if it is desired that they be synchronised or that
they do not start before the remainder of the program
Enables the MFTs, is ready.
enables the inter- The IEN bit enables all the interrupts at once. Again,
“%ptsz selects the ar- it may be set now, or only when the remainder of the
230 CICR hitration mode program is ready to process them.
(concurrent mode or))
nested mode), and The IAM plt selects elthgr Concurrent Mode or Nested
the priority level of the Mode. It is better to do it now.
main program. The three bits, CPL2 to CPLO, set the level of the
main program. Its value depends on the structure of
the program. Typically, it is set to 7, since the main
program is likely to be the low-priority process. See
the paragraph on interrupts in Section 3.4.
ﬁjﬁ;gig?g}i paged This register will probably be changed several times
234 PPR register group; set to Fiuring the execution ofthg prqgram. Itis first set now,
J6r0. ' if the WCR needs to be initialised.
If the WDT is used as a watchdog'", it should be ini-
250 WDTPR Prescaler register of | tialised before the WDGEN bit is cleared in the WCR
page O the WatchDog Timer. | register below. In this case, it is advisable to initialise
it right now. See note for values.
248-249 WDTHR+W | Reload register of the Same note as above
page 0 DTLR WDT. '
52;6 0 WDTCR Zlcotﬁg Ssgt_lr_?l register Same note as above.
If you use the Watchdog function, first initialise the
Starts (or not) the Watchdog Timer. You can start it later using the
watchdog function of | \\pGEN bit of this register, but no protection is on be-
the.WDT, selects the fore this time.
252 WCR wait states for exter- The external memo)
page 0 nal memory access ry access is set by default to the

maximum number of wait states to allow the program
to start. You should reduce it to the exact number re-
quired by the type of memory to achieve maximum
performance.

® some register functions may not be mentioned if not relevant for the initialisation.
(") Device Datasheet: §9

124/146

4

ST9 USER GUIDE

Once you have set these registers, the core is in good shape to start work. The next task is to
initialise the data memory and/or register file by entering a loop that writes zeroes into all lo-
cations used for data storage. This may seem superfluous, but there are two reasons for this:

—In C language, any non-initialized variable is supposed to contain zero at as an initial value.

— In any case, this makes the program behavior reproducible, even if not all variables are ini-
tialized explicitly.

Then, the table of initial values for the initialized variable (in the C language sense) is copied

to the location in RAM where the variables are positioned. The linker puts the initial values in
the same order as the variables in RAM, so a mere block copy is sufficient for this initialisation.

Eventually, the entry point of the main program written in C or assembler can be called. The
main program should be a closed loop and should not return. Typically in the start-up code,
the call to the main routine is followed by a halt instruction.

5.4.3.3 Start-up File Customization

A generic start-up file is included with the Toolchain: crtbegin.spp. This file has to be modified
in order to fit the needs of your application.

In most cases, only two parts should be modified: part 2 (interrupt vectors declaration) and
part 6 (MMU setup).

Note: The start-up file initializes the “ST9” mode (ENCSR bit of EMR2 to 0) to be compatible with the
previous ST9 version. In the main program you have to initialise this bit to 1 for “ST9” mode if
you want the MMU working with segments during interrupts.

4

125/146

ST9 USER GUIDE

5.4.3.3.1 Part 2: Interrupt Vector Declaration

T +
| PART 2: | NTERRUPT VECTOR DECLARATI ON |
g + */
: I nterrupt vector definition
; Absol ut e address 0i s assunmed (. == 0x0000)
.word __ Reset ; address of reset routine

.word DI VIDE BY ZERO TRAP_LABEL ; address of the divide by zero

; traproutine

.org 0x06

.word Oxffff

; no ext ernal wat chdog used

.rept 126

.word _ Default _Interrupt_Handl er; default interrupt handl er

. endr

: routine
: end of macro definition

The start-up file defines the reset vector and the divide by zero trap vector. All other vectors
are directed to a default interrupt handler.

A new vector must be defined for each interrupt routine of the user program. The vector loca-

tion m

ust match the corresponding IVR register. Example:

word _ Reset ; address of reset routine

.word DI VI DE BY ZERO TRAP_LABEL ; address of the di vide by zero

; traproutine

. org 0x06
.word Oxffff ; no ext ernal wat chdog used

.org 0x56

.word | NTSClI _Transnit Ready

.org 0x100

126/146

4

ST9 USER GUIDE

5.4.3.3.2 Part6: MMU setup

#i f defi ned(MEDI UM

Initialisationof registerscontrollingexternal nmenoryinterface
EMRL r eset val ue i s x000- 000M

MC, DS2EN, ASAF, NVB, ETO, BSZ shoul d be checked agai nst user
menory configurationand EVMRL set accordi ngly

EMR2 reset val uei s MD00O-1111

ENCSRi s 0, which sel ects ST9 conpatibility nodefor interrupt
handl i ng.

DVEMSEL, PAS1, PASO, DAS1 and DASO shoul d be checked agai nst user

menory

configurationandset conpl enentary t o WCRi n page #0 (see bel ow)

DPRREMi s forcedt o one t o have DPRi regi sters accessibleingroupE

or

EMR2,

#EMR2 _dprrem ; remap dat a page regi sters

Initializationof DPRregisterswithinitial val ue

I d
I d
I d
I d

#el se

4

DPRO, # idprO

DPR1, # idprl

DPR2, # idpr2

DPR3, # idpr3
/ * MEDI UM*/

127/146

ST9 USER GUIDE

: Initializationof DPRregisterswithinitial val ue

Id DPRO_P, #_idprO
Id DPRL_P, #_ idpr1l
Id DPR2_P, #_idpr2
Id DPR3_P, #_idpr3
#endi f /* MEDI UM*/
#i f defined(MEDI UM || defined (SPECMED)
; ENCSRi s 1, use CSRfor interrupt handling.
or EMR2, #EMR2 _encsr ; enabl ecsr duringinterrupts
#endi f /* MEDI UM*/

#i f defi ned(COVPACT)

; i n conpact programm ng nodel , thestartupfile
: wi || assunesthat CSR=1SR, set by the bootrom

#endi f /* COWPACT */

. endpr oc

In this part, the user only needs to comment DPR register initialization lines if one or more

DPRs does not map a memaory region.

128/146

4

ST9 USER GUIDE

5.5 GLOBAL INITIALISATION: CORE AND PERIPHERALS

5.5.1 Core Initialisation

Set the lower program memory addresses to the addresses of the interrupt service routines
that the peripherals will use.

Initialise the core, as shown above.
Initialise the PLL.

If the Multifunction Timers are to work synchronously, you must start them at the same time.
To do this,

Reset the Global Counter ENable bit (GCEN, bit 7 of register CICR) before the MFTs are ini-
tialised.

Then set it just before the main program starts.

Initialise the memory. This may include:

Resetting the register file and/or the data memory to zero, and
Preloading the variables with the initial values.

The procedure to follow when programming in C is described above.

5.5.2 Peripheral Initialisation
It is now time to configure the peripherals. For each one, you must take the following steps:

Set the Page Pointer Register to the page that contains the peripheral's registers. On some
peripherals, several pages are involved so set the Page Pointer Register accordingly.

Set the various registers that define the behavior of the peripherals. In some cases, you have
to set them in a certain order. Refer to the appropriate Data Sheet. Do not yet set the bits that
start the peripheral working.

Set the Interrupt Vector Register of each peripheral to point to the corresponding group of
pointers to the interrupt service routines in program memory.

You can now set the Interrupt Mask Register, since the global Interrupt ENable bit is reset.

If you are using DMA, set the DAPR and DCPR registers to point to two registers in the reg-
ister file. Then:

— Initialise the address register to the address of the buffer in which the data is to be stored.
— Set the counter register to zero to inhibit DMA transfers.

You can now set the peripheral Enable bit or Start bit, unless you only want it to start later (as
can be the case with the Watchdog Timer).

I<72 129/146

ST9 USER GUIDE

5.5.3 Port Initialisation

When you have configured all the peripherals as described above, you should initialise the
ports to your requirements: input or output, open drain or push-pull, TTL or CMOS levels, etc.
for the parallel 1/O ports.

You must set the port pins that serve as inputs or outputs for peripherals as either:
— Alternate Function for peripheral outputs, or
— Regular Input for peripheral inputs

The exception is the A/D converter, where you must set the input pin as Alternate Function.

5.5.4 Final Initialisation
Install the Working Registers in the group defined for the main program.
Set the Page Pointer Register to a default value.

Set the Global Counter Enable, the global Interrupt ENable and, if required the Watchdog
function.

The main program is now ready to run.

5.6 INTERRUPT CONSIDERATIONS

The ST9 has two main paging registers:
— The RPP register pair that selects the working register group
— The PPR register that selects one of 256 pages within register group 15

These registers are essential to the correct working of the program.

When an interrupt occurs, it is likely you will have to change either or both of these registers.
This is why you must push them to the stack on entry, and pop them back on exit.

An interrupt is requested by a bit in a register of a peripheral. This bit is not reset automatically
by the fact that the interrupt is serviced. You must reset it in the code of your interrupt service
routine.

If you write an interrupt service routine in C, by default PPR and all registers used by the rou-
tine are pushed on the stack. This can be time-consuming. If your program is entirely written
in C, and you use none or few registers explicitly, the register file has enough room to allocate
a private working register group for each interrupt service routine. You specify this by a
#pragma pseudo-instruction. This method provides the fastest response times.

4

130/146

ST9 USER GUIDE

6 DETAILED BLOCK DIAGRAMS

Here are the detailed block diagrams to supplement to the simplified ones used at various
points throughout this book.

6.7 EXTERNAL INTERRUPT CONTROLLER

Figure 47. External Interrupt Block Diagram

INT O Pin
End of Count WDR
see Timer Watchdo EITR (R242 page 0) .
and reset circuitryg 7 External Interrupt Trigger Event Register
[TED1|TEDO|TEC1|TECO|TEB1|TEBO| TEALTEAO|
ising (set) or falling (reset) edge trigger event
%qﬁo Rising (set) or falling () ed i
—= EIVR (R246\})age (2 .
7 External Interrupt Vector Register 0
[v7 | v6 | v5 | v4 [TLTENTLIS [IAOS|EWEN
6]
Watchdog or INTOpin L.,
: These bits are the MSB of the pointers in the :
. vector table, for the 8 external interrupts.
EIPR (R243 page 0) . : (See vector table organisation) :
7 EXternal Interrupt Pen Ing Reglster 0 ---
| IPD1| IPDO| IPC1| IPCO| IPBl| IPBO| IPA1| IPAO| Interrupt pending bit: channel A0
EIMR (R244 page.O?Q .
7 External Interrupt Mask-bit Register 0
[IMD1] IMDO| IMC1] IMCO] IMB1] IMBO[IMA1[IMAO| Interrupt mask bit channel A0
EIPLR (R245 page 0) .
7 External Interrupt Priority Level Register 0
[PL2D| PL1D| PL2g PL1C| PL2B|PL1B|PL2A[PL1A|
CICR (R230) S\ T
7 Central Interrupt Control Register 0 ! (See the priority level arbitration)
|GCEM TLIP|TLI |IEN | XY |CPL2|CPL1|CPLO|
IENis common Comparison between/
for the 8 external CPL and priority /
maskable interrupts level of INT AO /f———— Q' for INTAQ"

TEAO: Trigger event of Interrupt Channel AO

From another interrupt source; IAOS: Interrupt AO Selection bit

Hardware interrupt daisy chain IPAO: Interrupt Pending bit Channel AO (set and reset by
hardware, except if one wishes a software interrupt)

IMAQO: Interrupt Mask Bit Channel AO

CPL(0,1,2):Current priority level of main

INT AO interrugt PL(1A,2A):Priority level of group INTAO, INTA1

" to the core IEN: Interrupt Enable

4

131/146

ST9 USER GUIDE

6.8 TOP-LEVEL INTERRUPT INPUT

Figure 48. Top-Level Interrupt Block Diagram

NMI pin
L
End of Count WDR
; EIVR (R246 page 0
see Timer Watchdog 7 External Interrupt \})ector F%egister 0
and Reset circuitry

[vz |ve|vs | va[TLTEV [TLIS [IAOS J[EWEN |

Rising (set) or falling
1} 7{0 I (reset) edge trigger
event on NMI pin

0 1 Watchdog or NMI pin
I Top level interrupt
CICR (R230) . Choosing between
7 Central Interrupt Control Register 0
A pseudo NMI
|GCEN| TLIP| TLI [IEN [IAM [cPL2]|CPL1[CPLO| Event Interrupt

or
NICR (R247 page 0) —

7 Nested Interrupt Control Register o Areal

NMI
[TLNM| HLe | HL5 [HL4 |HL3 [HL2 |HL1 [HLO | [Event

Interrupt

:TLTEV:Top level trigger event bit
:TLIS:Top level interrupt selection bit

: TLIP:Top level interrupt pending bit
& 7 : (set and reset by hardware only)

:TLI:Top level interrupt bit
' IEN:Interrupt enable
l : TLNMTop level not maskable

/ :

Top level interrupt to the core

TLI routine has no interrupt vector register.
ISR routine in vector table:

byte4 (high), byte 5 (low) by hardware.

132/146

4

ST9 USER GUIDE

6.9 WATCHDOG TIMER

Figure 49. Watchdog Timer Block Diagram

WDTIN pin

WDTCR (R251 page 0)
Timer/Watchdog Control Register

Input Modes and

INTCLK /4 Clock Control Logic

—_——

|sT_sP |s_c [NMD1 [INMD2 NEN [OUTMD [WROUT |OUTEN

] ‘_l
WDT CLK

Prescaler and Counter
Registers Control Logic

WDTPR (R250 page 0)

WDTR (RR248 page 0)

Timer / Watchdog

Prescaler Register
7 gstery

Timer / Watchdog 16-bit Down Counter

15

0

PRS Current Value

]
|
R15|Current value (RR248 read only) | RO
1

{}

ﬁ

PRS Latch
F’RS7||(read/write), PRS0
|

Counter Latch (RR248 write only)

End of Count

WDﬁUT Output M
P Control Logic |e
T WCR (R252, Page 0)
Wait Control Register 0
[X |WDGEN [wDM2|wDM1| wDMO|wPM2 |WPM1|WPMO|
|| Reset to
the core
EIVR (R246, Page 0)
0 7 External Interrupt Vector RegisterQ
L INTAO [V7| V6| V5[v4[TLTEV|TLIS[IOAS |[EWEN |
INTO [11 request
pin
¥ |
—10 Top level ST_SP: Start/Stop bit
NMI — interrupt S C: Single-shot/Continuous
in n 1 request INMDZ1,2: Input mode selection bit
T INEN: Input enable

OUTMD: Output mode

WROUT: Write Out

OUTEN: Output Enable bit

WDGEN: Watchdog Enable bit (active low)
TLIS: Top level input selection bit
IAOS: Interrupt channel AO selection bit

4

133/146

ST9 USER GUIDE

6.10 MULTIFUNCTION TIMER

Figure 50. Multifunction Timer Block Diagram

TXINA pin TXINB pin

ICR (R250%)

External Input Control Register

[IN3[IN2 [INL[INO | A0 [A1 [BO | B1]
I I I I I |

* MFTO Registers, page 10
TXINA .
|X t TxINB MFT1 Registers, page 8
Y . ”pf. Input v oy (ST 9030 / 9040)
Tooooanetion . Function 0 0T hop | TXINA/TXINB
0000 : Notused : Notused 10 1: 1 : Configuration
88% : (Nsog used -I(ln gerOl i1 0+ [¢
. Gate i Not use : : :
0011 : Gate + Trigger 111andj .
0100 : Notused : Ext.clock (Inputs in alternate function)
0101 : Trigger : Not used
0110 : Gate . Ext. clock
0111 : Trigger : Trigger
1500 ek, | Eeckgaun
: own Ext. cloc
1010 : TrriJg/ger up : Trigger down CE:i(t EIOCkT INA
1011 ' Up/down : Notused ‘—Clock gp(X IKIB
1100 ' Autodiscrim.: Autodiscrim. |[* ock down (TXINB) —————
1101 : Trigger ! Ext. clock ~<—— Autodiscrimination ———
1110 : Ext.clock : Trigger Up / down (TXINA) ———
1111 : Trigger : Gate Trigger up (TxINAKIB)—

External clock either
TXINA or TxINB or
both of these inputs

Internal
Clock

OACR (R252)
Output A Control Register

Gate

PRSR (R251%)
7 Prescaler Register 0

P7], “[PO]

8-bit Prescaler l

OBCR (R253)
Output B Control Register

Trigger down (TxI

YYVY VY

UP/Down
Logic

Yoy
See operatin?(modes of
the MFT block diagram

0

| <COMP0><COMP1><OVF> | " <COMP0><COMP1><OVF>
: On-chip ' Preset Value or | On-chip ' Preset Value or |
: Event Signal t Current Level Event Signal ! Current Leve! !
l on CMPOR ' on TXOUTA Pin | on OVF , on TXOUTB Pin ,
Y LR EEC T, TMR (R253)
__________________ ' ction on +BO ! Bl' Timer Mode Register
| Stccessiul Event on MET :—= TxQUTA or TXOUTB; Bits 6 and 7
' Set "0 0 76
TXOUTA pin TxOUTB pin Toggle v 01, OE1[OEQ]
= - ' Reset 1 . 0
: Nop R R TxOUT A Enable
: L TXOUT B Enable

.....................

134/146

(574

ST9 USER GUIDE

Figure 51. MFT Operating Modes Block Diagram

TMR (R249%)

Timer Mode Register

FLAGR (R254%)
Flags Register

loE1[OE0] BM [RM1]RMO [ECK | REN]CO |cpPolcP1 [cMo|CcM1 |OUF|OCPOjOCMO|AQ|
_ - _l | <Capture><Compare> # — =
[(See 1/ 0 modes of | LA Capture
(the MFT bloc diagram) i | Interrupt |
______ CPO CMO| Function
- Y
r - L 1 AND
1x0 Biload 0 Continuous Mode'!
| i (OOR
1x1 Bicapture .1 One-Shot Mode | =
load [monitor - -0 - T
| 823 l_lg:d cal —‘ "0 Parallel Mode not selected
pture Yy
| 001 | capture | monitor L1 Parallel Mode selected
011 ' capture ! capture 0 Retrigger mode Load / Capture / Monitor
N ey - 7 (1 Trigger mode Logic

| REGOR | REGIR |

DMA Controller |

REGOHR, REGOLR (R240, R241%) REG1HR, REG1LR (R242, R243%)
Capture Load Register 0 Capture Load Register 1
15 W0 15 f 0
[R1s] |Ro| [R1s] |RO|
TCR (R248%) T Capture 0 Capture 1 T
7 Timer Control Register LoadOO Load 1
[CEN[CCPO [CCMPO [CCL [UDC[UDCS[OFO]CS|H-», Counter Status |
— I I
Clear A
Logic
F .7 }
Counter enable
Lr—="== Clear o
o 16-bit Counter
Up/Down [with Comparator OVF / UNF
Logic U/D I
Clock

r(See | / O modes of
Lthe MFT bloc diagram)

_ —_— — — — —

)—1 Compare 0 | Compare 1
| |

CMPOHR, CMPOLR (R244, R245%) CMP1HR, CMP1LR (R246, R247%)
Compare 0 Register o Compare 1 Register
15 " 0 |= » 15 " 0
[R1s] |Ro| [R15] |Ro|
DMA Controller |
Compare
Logic
* MFTO registers page 10
MFT1 re%|sters page 8
(ST 9030 / 9040)
Ky[135/146

ST9 USER GUIDE

6.11 ADC
Figure 52. Analog to Digital Converter Block Diagram
INT. VECTOR POINTER
] INTERRUPT UNIT INT. CONTROL REGISTER
A A
COMPARE RESULT REGISTER
THRESHOLD H/L REGISTER BU
. COMPARE LOGIC THRESHOLD H/L REGISTER BL
INTERNAL THRESHOLD H/L REGISTER AH
TRIGGER THRESHOLD H/L REGISTER AL
(from MFTO) f A
rn—--———-—- —= n
DATA REGISTER H/L15 CONVERSION AIN 15
EXTERNAL DATA REGISTER H/L14 | | RESULT AIN 14
TRIGGER DATA REGISTER H/L13 AIN 13
(EXTRG) DATA REGISTER H/L12 | | AIN 12
DATA REGISTER H/L11 | AIN 11
DATA REGISTER H/L10 AIN 10
CONTROL DATAREGISTERHIL9 | | SUCCESSIVE AALOG AIN9
Loaic DATAREGISTERHIL8 | | | | AppROXIMATION | AIN 8
DATA REGISTER H/L 7 | 10 bit ANALOG TO DIGITAL MUX AIN 7
DATA REGISTER H/L 6 CONVERTER AIN 6
DATA REGISTER H/L 5 | AIN 5
DATA REGISTER H/L 4 | AN 4
DATA REGISTER HIL 3 AIN 3
DATA REGISTER H/L 2 | /'y AIN 2
DATA REGISTER H/L 1 CKAD AN 1
DATAREGISTERH/ILO | | AIN O
A \ L 7y 4
CK PRESCALER \
1 ANALOG
CONTROL REG.2 | SECTION
(CLR2)
CONTROL REG.1 > AUTOSCAN LOGIC
(CLR1) INTCLK
136/146 [71

ST9 USER GUIDE

7 GLOSSARY

A

A/D Analog to Digital

AC Alternating Current

ACR Address Compare Register

ADC Analog to digital converter
ADTR A/D Trigger

AIN Analog input

AWD Analog watchdog

B

BRG Bit Rate Generator

C

CCuU Clock Control Unit

CHCR Character Configuration Register
CICR Central Interrupt Control Register
CLK Clock

CLR Control Logic Register

CMOS Complementary Metal Oxide Silicon
CMP Compare Register

CPL Current Priority Level

CR Carriage Return

CRR Compare Results Register

Cs Chip Select

D

DAPR DMA Address Pointer Register
DC Direct Current

DCPR DMA Counter Pointer Register

I<72 137/146

ST9 USER GUIDE

DI
DIL
DMA
DO
DP

E

ECV
EEPROM
EIMR
EIPLR
EIPR
EITR
EIVR
EWDS
EWEN

FLAGR

GCC9

I/O
IAM
ICR
IDCR
IDMR
IDPR

138/146

Data In

Dual In line

Direct Memory Access
Data Out

Data Page

End of conversion

Electrically-Erasable PROM

External Interrupt Mask-Bit Register
External Interrupt Priority Level Register
External Interrupt Pending Register
External Interrupt Trigger Register
External Interrupt Vector Register

Erase or Write Disable

Erase or Write Enable

Flag Register

GNU C Compiler for ST9

Input/Output

Interrupt Arbitration Mode
External Input Control Register
Interrupt/ DMA Control Register
Interrupt/ DMA Mask Register
Interrupt/DMA Priority Register

4

ST9 USER GUIDE

IEN
INMD
INT
IOCR
ISR
IVR

LCD
LED
LF

LSB

MFT
MMU
MODER
MSB

NICR
NMI

OACR
OBCR
OVF

PC
PFE
PPR

4

Interrupt Enable

Interrupt Mode

Interrupt

I/O Connection Register

Interrupt Segment Register or Interrupt Service Routine

Interrupt Vector Register

Liquid Crystal Display
Light Emitting Diode
Line Feed

Least Significant Bit

Multifunction Timer
Memory Management Unit
Mode Register

Most Significant Bit

Nested Interrupt Control Register

Non-Maskable Interrupt

Output A Control Register
Output A Control Register

Overflow

Program Counter or Personal Computer
Programmer’s File Editor

Page Pointer Register

139/146

ST9 USER GUIDE

PRL
PROM
PWM
PXC
PXDR

R

RAM
RCCU
ROM
RPP
RXCLK
RXDATA

SEG
SClI
SCK
SOF
SPI
SPICR
SPIDR
SRP
SSPR

TCR
TLNM
TMR
TTL

140/146

Priority Level
Programmable ROM
Pulse Width Modulator
Port Control Register

Port Data Register

Random Access Memory
Reset and Clock Control Unit
Read-Only Memory

Working Register Pointer
Receiver Clock Input

Receiver Data

Extract the 6 bits segment of a label
Serial Communications Interface
Serial Clock

Extract the 16 bits offset of a label
Serial Peripheral Interface

SPI Control Register

SPI Data Register

Set Register Pointer

System Stack Pointer Register

Timer Control Register
Top Level Not Maskable
Timer Mode Register

Transistor to Transistor Logic

4

ST9 USER GUIDE

TXCLK
TXD

u/D
UART
UNF
USPR
uv

wDT

WDTCR
WDTLR
WDTPR

4

Transmitter Clock Input

Transmitter Data

Up/Down

Universal Asynchronous Receiver/Transmitter
Underflow

User Stack Pointer Register

Ultraviolet

Watchdog Timer
Watchdog Timer Control Register
Watchdog Timer Low Register

Watchdog Timer Prescaler Register

141/146

Index

Control registers

INDEX
A
ADC
configuring the input pin................. 67
detailed block diagram 136
interrupt vectoring...........ccccceeeeeaen. 100
Address spaces
OVEIVIEW ... 14
Addressing modes..........ccccooeeeveeieeeecenennen. 41
Analog watchdog
OVEIVIEW ...t 100
Arguments
passing arguments in C 40
Arrays
ACCESSING ...ooviveeciece e 41
AWD Dit .o 100
B
Bit rate generator............ccoccoeeeeeiieecenennen. 92
BIOCK COPY v 41
C
Causes
interrupt Causescccvveveevveeeeennne. 44
C-compiler ..o 112
CCu
Clock Control Unitc.cccoeverienee. 60
Character matching
SCloiii e 93
CICR
OVEIVIEW ... 47
Clock selection
MET e 75
Compare Result Register..............c........ 100
Concurrent MOde.........cooeeveeviieieie e 48
INLEITUPES ..o 47
Context switchingc.cccoeeevenee. 17,130
Continuous mode
WDT .ot 71
WDT examplec.coevveeveciececiee, 73
142/146

example of programming................. 65
Copy

block COPY...ocoviiiiiiiccc 41
Core

OVEIVIEW ..ottt 7,14
CPL

OVEIVIEW ..ot 47
CPUCLK

CPU cloCK...cooiiiiiiciicccicec 60
CSR

Code Segment Register.................. 24

D

DCPR oottt 58
Development tools ... 112

OVEIVIEW ..ottt 113
Divide instructions..........ccccooveeevevieiiecieene 37
DMA

using in conjunction with the UART 93
DMA controller

application.........cccoceeeveeveciiieecieee 92

OVEIVIEW ... 56
DMASR

DMA Segment Register 27
Driver

O oo 66

E

ECV DIt 100
Emulator........ccccooovvviiiiece e 112
Enable

interrupt enable flagc..c.co...... 48
Event counter mode

WDT .o 69
Examples

context switchingccccceeveevveen 17

divide instructions............cccccoevevveneee. 37

DMA applicationc.ccccoevrenenns 92

interrupt initialisation......................... 73

interrupt routine...........cocoeeeeeeciene 56

IVR Lo 44

LCD interfacec..ccoceevveeiveeiiiennens 88

makefile........cccovvviii e 114
MFT initialisation.............cccccceveinnens 85
MFT interrupt vector..............cc.cc....... 45
nested interruptS......ccooceeeeevieeeccnenen. 49
parameter passing in C................... 40

periodic interrupt timer application . 72

programming peripheral control regis-

Index

(=] £ J SR 65
programming peripheral registers .. 65
PWM application............cccecccoeennne. 82
PWM output..........ccooovviiiiecieee s 79
selecting a register page................. 22
testand jump.......ccooeeieiecec 38
test under masK.........ccccooeiiieiennn 35

Extract the page number of a data......... 29
F
FLAGR register.......ccocooeeveiiieiieiecnn, 123
G
Gated input mode
WDT oot 69
GNU ..o 112
Groups
register groups........cceeveeeeveeeeevenne.. 16
|
O PINS ..o 66
I/O port
configuration registers....................... 67
IEN DIt ..o 48, 53
Include files
peripheral register definition............ 66
Initialisation
global ..o 129
MFT examplecccooeeviivieeeiieiece 85
StACKS .o 31
WDT oot 73
Initialisation code.........cccccoviiciiiiens 123
Instruction set
OVEIVIEW ... 33
INTCLK

(574

Peripheral clocK..........ccccccovviiiin 60
Interrupts
ADC ..o 100
analog watchdogcccoeeeenenns 100
CAUSES ..ottt 44
concurrent modeccoceeennens 47, 48
context switchingc.ccccoeeeves 130
CPL it 47
enable flag (IEN)c.ccoevviieiienen 48
external interrupt vectors 55

external interrupts block diagram ... 52
external, detailed block diagram... 131

initialisation example..........c.co........ 73
interrupt routine
example ..., 56
nested modeccoceecvveieennns 47, 48
PINS oottt 51
PriOMtIES.....coiiiiieceeee e 47
SCl interrupt vectors..........ccccccuee... 97
SyStem OVervieW..........ccccoeeeeveevvennane. 41
top-level interrupt........cccocoeveieeeennenn. 52
VECLOIS ..ot 43
ISR
lunterrupt Segment Register 27
IVR
eXample. ... 44
J
Jump
testand jJump.......ccoeevinii e, 38
L
Latency
interrupt latencyc.ccoceeeeeeeiecnenes 47
LCD interface example.........cccccccoeenenenn. 88
Load instructionsccccoevvveeviciiiennens 33
Look-up tables
implementing.......cccceeoviviieicciee 38
M
Make file examplecccocoeviiiiiiinennn., 114
Make utility.........ccooeevieeiiiiiiie 112,114
143/146

Mask register
interrupt and DMA mask register.... 78

Index

Masking

external interrupts..........ccocceeevvenee. 51
Memory spaces

OVEIVIEW ... 14
MODER registercccoccvvevvieeennnnnn. 31,123
Moving data blocksccccooveiiiiinnn. 33
Multifunction timer

detailed block diagram 134

initialisation example..........cc.cccco...... 85

interrupt and DMA mask register.... 78

interrupt vector example................... 45

operating modes detailed block diagram

135

PWM example.........cccocoovvviieincnnnns 79

SWapP MOdec.ccoveevvevieiece e, 58
Multiplexing

PINS. it 54

N

Nested modecocevvvvveiiiiececn 47,48

eXample. ... 49
NMI e 47,51, 52

P

PAG ..o 29
Parallel 1/O ..., 66
Parameter passing

C language example...........ccc.c....... 40
Periodic interrupt application.................... 72
Peripheral register pages..........ccccocu..... 16
Peripherals

control registers programming example

65

listof main.......cccoovvieiiiieieece, 8

OVEIVIEW ... 65

programming control registers......... 65

register definition include files......... 66
Pins

external interrupts..........ccococeeevvenee. 51

O PINS ..o 66

MUltiplexing..........cccoceveieiiececee 54
144/146

WDT output PiN......ccccooeeieeeceee e, 71
POF

extract the offset of the data address.29
Pointers

register pointers........ccocoeeeveeecieenes 16

stack PoINter.......c.ccocovvevecvieeecciiee, 31
Port

initialisationccccoceeiie i, 130
Prescaler register

MET o 75
Priority

assigning to interrupt source............ 47

external interruptsccocceeveevveene. 51

interrupt priorities.........cccccevveeveenenes 47

interrupt priority mechanism............ 41

top-level interrupt.......ccccocoeveeeeenenn, 52
Processor Core........ooeeiiieniciieniee 7,14
PWM

application examplec..ccccovene.. 79
PWM application example....................... 82

R

RCCU

Reset and Clock Control Unit.......... 60
Realtime programming.............ccccccceeee.. 47
Register

peripheral pages.........ccccoceeoveeeeienes 16
Register file

OVEIVIEW ...t 15
Register numbers table 19
Register page number table................... 21
Register-oriented machine

definition of ..o 7
Register-oriented programming model

OVEIVIEW ...t 14
Registers

definition include filesc............ 66

OFOUPS ittt 16

page selection example 22

POINLEIS ...oviieciiececeeee e 16

WOIKING ..o, 15, 16
Retriggerable input mode

WDT oo 70

Index

SCI

theory of operationcccoue....... 92
SEG

Extract the 6 bits segment of a label24
Serial communication interface

OVEIVIEW ... 92
Serial peripheral interface

interrupt Vectors.......ocooeeveeveeeeccnennen. 97

OVEIVIEW ... 88
Single mode

WDT ..ot 71

SOF
Extract the 16 bits offset of a label. 24
Sources

iNterrupt SOUrCeS.......ccocoecvveveveeeninns 44
Srp INSLrUCtion ..., 17
SSP s 123
ST9040 block diagram................ccccuvenneee. 10
ST90R540 block diagram. 12,13
Stack

OVEIVIEW ... 31
Stacks

initialisationcccccooevviie e, 31

locating stack pointer in register..... 31

location options..........cccccccveeeciienne 32
Start-up file ..o 121
Structures

ACCESSING ...ooviveeciece e 41
Swap mode

multifunction timer..........c..ccccooceene. 58
Switching

working registerscocoeeeieeeennn, 17

T

Testand jump ..o, 38
Test under maskK........cccooveveviievevciiiee. 34
Timer

block diagram..........ccccocevveiieiinnn. 68

event counter mode...........cccoeueneee. 69

(574

gated input mode..........cccooeeevereennnn. 69
OULPUL PIN .o, 71
retriggerable input mode................... 70
single/continuous mode 71
triggerable input mode..................... 70
TLNM DIt 52
TOOIS ..o 112
Top-Level interrupt.........ccccoeveeviiviienieen. 52
block diagram............c.ccccovveevienenn 53
detailed block diagram 132
Triggerable input mode
WDT ..ot 70
U
UART applicationccccoeveiiiieencnnen, 92
USP o 123
V
Vector table ..o 121
Vectors
example with MFT ..o 45
external interruptsccocceeveevveeeee. 55
interrupt vectors overview................ 42
W
Watchdog
ANAIOG.....cocviiiicece e 100
Watchdog timer.........cccocoevveeiineennnnn. 51, 52
detailed block diagram 133
OULPUL PIN .o, 71
OVEIVIEW ... 68
WDT
initialisation example..........c.cooc....... 73
periodic interrupt application 72
Working registers
eXample. ..o 17
OVEIVIEW ... 15, 16
register pointers........cocoeeeveeecneenes 16
SWItChingcooooviiiiiicccecc 17
145/146

ST9 USER GUIDE

NOTES:

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics GROUP OF COMPANIES
Australia — Belgium - Brazil - Canada - China — Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -

Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States
www.st.com

4

146/146

