AsahiKASEI

AKD4705A-A

AK4705A Evaluation Board Rev. 0

GENERAL DESCRIPTION

AKD4705A-A is an evaluation board for quickly evaluating the AK4705A, 2ch DAC with AV SCART switch. Evaluation requires audio/video analog analyzers/generators, a digital audio signal source, and a power supply. AKM's ADC evaluation board can be also used for the audio source. Also included is a AK4112B digital audio interface receiver which receives S/PDIF compatible audio data. The digital audio data is available via optical connector or BNC.

AKD4705A-A --- AK4705A Evaluation Board
(Cable for connecting with printer port of IBM-AT compatible PC
and a control software are enclosed with board. This control software dose not support Windows NT.)

FUNCTION

- BNC connectors for analog audio input/output

■ BNC connectors for analog video input/output
■ On-board clock generator

- BNC connector for an external clock input
- Compatible with 2 types of digital interface

1. Serial interface: Direct interface with evaluation boards for AKM's A/D converter evaluation boards.
2. S/PDIF: On-board AK4112BVF as DIR that accepts optical input or BNC input

■ 10pin header for serial control interface

Figure 1. AKD4705A-A Block Diagram
Note 1. Circuit diagram and PCB layout are attached at the end of this manual.

■ Operation sequence

1) Set up the power supply lines.

Name Co	or	Voltage	Comments	
+12 V	Orange	$+11.4[\mathrm{~V}] \sim+12.6[\mathrm{~V}]$	Regulator, VP	This jack should be always connected.
+5 V	Red	$+4.75[\mathrm{~V}] \sim+5.25[\mathrm{~V}]$	VD	This jack is open when JP9 (REG) is short.
D5V	Red	$+4.75[\mathrm{~V}] \sim+5.25[\mathrm{~V}]$	Logic	This jack is open when JP8 (D-A) is short.
VVD1	Red	$+4.75[\mathrm{~V}] \sim$ VVD2	VVD1	This jack is open when JP10 (VDD1) is short.
VVD2	Blue	VDD1 $\sim+5.25[\mathrm{~V}]$	VVD2	This jack is open when JP11 (VDD2) is short.
AGND	Black	$0[\mathrm{~V}]$	Analog Ground	This jack should be always connected.
DGND	Black	$0[\mathrm{~V}]$	Digital ground	This jack should be always connected.
VVSS2	(Black	$0[\mathrm{~V}]$	Analog Ground	This jack should be always connected.

Table 1. Set up of power supply lines
Note 2 . Each supply line should be distributed from the power supply unit.
2) Set-up the evaluation modes, jumper pins and DIP-switches. (Refer next sections.)
3) Connect the PORT3 ($\mu \mathrm{P}-\mathrm{I} / \mathrm{F}$) with PC by the enclosed 10 -wire flat cable.
4) Set up the PC and execute the enclosed control software. (Please refer to the Control Software Manual.)
5) Turn the power on.
6) Reset the AK4705A once by bringing the SW1 (PDN) "L", and return it to "H".

■ Evaluation mode

1) S/PDIF mode (Optical Link or BNC: default)

When the CM0 (DIP-switch S1_1 on board) is "L", the AK4112B (DIR) generates MCLK, BICK, LRCK and SDATA from the received bit stream through PORT2 (TORX176: optical link) or J2 (BNC). This mode is used for the evaluation using CD test disk. The PORT1 (EXT) should be open.

1)-1. DIP-switch set-up

No.	CM0	DIF2	DIF0	Audio Data Format of AK4112B	Notes
1	"L""	L""	L"	16bit LSB justified	1
2	"L"	"L"	"H"	18bit LSB justified	2
3	"L""	H" "	L"	24bit MSB justified	3
4 "L" "	"H"	"H"	24bit I ${ }^{2}$ S 4		

(Default)
Table 2. DIP-switch set-up (DIF1="L")

Much the data format of the AK4705A via I²C-bus control as following notes.
Note 1. 16bit LSB justified
Set up the DIP-switch as follows.

Set up the control registers DIF1/0 of the AK4705A by enclosed software as follows.

```
OOH Г DEM1 Г DEMO Г DIF1 Г DIF0 Г AUTO Г DAPD Г MUTE Г STBY
```

Note 2. 18bit LSB justified
Set up the DIP-switch as follows.

Set up the control registers DIF1/0 of the AK4705A by enclosed software as follows.

OOH	$\Gamma \mathrm{DEM1}$	$\sqrt{\checkmark}$ DEMO	「 DIF1	$\sqrt{ }$ DIFO	Γ AUTO	Γ DAPD	Г MUTE	$\Gamma \mathrm{stay}$

Note 3. 24bit MSB justified
Set up the DIP-switch as follows.

Set up the control registers DIF1/0 of the AK4705A by enclosed software as follows.
$\mathrm{OOH} \quad \square \mathrm{DEM} 1 \nabla \mathrm{DEM0} \nabla \mathrm{DIF} 1 \quad \square \mathrm{DIFO} \quad \square \mathrm{AUTO} \quad \square \mathrm{DAPD} \quad \square \mathrm{MUTE} \quad \Gamma \mathrm{STBY}$

Note 4. 24bit I ${ }^{2}$ S (Default)

Set up the DIP-switch as follows.

Set up the control registers DIF1/0 of the AK4705A by enclosed software as follows.

OO		Г DEM1	- DEMO	\checkmark DIF1	\checkmark DIFO	\ulcorner Аито	\ulcorner DAPD	Γ MUTE	Γ stey

1)-2. Jumper pins set up

The JP6 selects the input port of S/PDIF bit stream form Port2 (TOTX176) or J2 (BNC RX).

JP6

(TORX)
(Default)

(BNC)

2) On-board X'tal model Feeding external MCLK via BNC

When the CM0 (DIP-switch S1_1 on board) is "H", the AK4112B generates MCLK, BICK and LRCK from on-board X'tal or external clock form J1. SDATA should be fed via PORT1.

2)-1. DIP-switch set-up

No. \&M0	DIF2	DIF0	
1	"H"	Don't care	Don't care

Table 3. DIP-switch set-up (DIF1="L")

2)-2. Jumper pins set up

2)-2-a. Using on-board X'tal

2)-2-b. Using external clock via BNC connector J1

3) Feeding all clocks from external

Under the following set-up, all external signals can be fed to the AK4705A through POTR1 (EXT). The AKM's evaluation board for ADC can be used.

3)-1. DIP-switch set-up

No. 4 M0	DIF2	DIF0	
1	Don't care	Don't care	Don't care

Table 4. DIP-switch set-up (DIF1="L")

3)-2. Jumper pins set up

$\begin{aligned} & \text { JP1 } \\ & \text { EXT } \end{aligned}$	$\begin{gathered} \text { JP2 } \\ \text { MCLK } \end{gathered}$	JP3 BICK	JP4 SDTI	$\begin{gathered} \text { JP5 } \\ \text { LRCK } \end{gathered}$
$\bullet \bullet$	$\bullet \bullet$	\bullet -	$\bullet \bullet$	\bullet -
(Open)	Open)	(Open)	(Open)	(Open)

■ Other jumper pins set up

[JP12](VCRRC) : Input Jack selection for the VCRRC pin of AK4705A
When the VCRC pin of the AK4705A outputs 0 V by setting CIO bit to " 1 ", the signal can be fed through the J27 (VCRCOUT) to VCRRC pin.
"I": The signal is fed through the J18 (VCRRC) to VCRRC pin. (Default)
"I/O": The signal is fed through the J27 (VCRCOUT) to VCRRC pin.
The CIO bit of AK4705A should be set to " 1 ".

[J P7](GND): Analog ground and digital ground
Op
en: separated. (Default)
Short: connected. (The jack "DGND" can be open.)

■ DIP-switch (S1) List

No.	w Name	Default	Function
1	CM0	OFF	S/P DIF mode (Refer the evaluation mode)
2 D	F2	ON	24 bit I2S mode (Refer the evaluation mode)
3 D	F0	ON	
$4-$	OFF		(Reserved)
$5-2$	OFH		(Reserved)

Table 5. DIP-switch list (DIF1="L")

■ Jumper List

No. J	umper Name	Function
1 EX	T	MCLK source set-up when CM0="H". Open: X’tal (Default). Short: External clock via BNC (J1). Remove the on-board X'tal.
$\begin{array}{r} 2,3 \\ 4,5 \end{array}$	MCLK, BICK, LRCK, SDTI	Clock source set-up Short: Connect the DIR (AK4112B). (Default) Open: Separate the DIR. Supply clocks via Port1.
6 R	X	S/PDIF's port set-up when CM0="L". TORX: Optical connector PORT2. (Default) BNC: BNC connector J2.
7	GND	Analog ground and digital ground Open: separated (Default). Short: connected (The connector "DGND" can be open.).
8 D	-A	Power supply source set-up for digital section of AKD4705A-A. Open: from the "D5V" Jack. Short: from the regulator or the " +5 V " Jack. Don't connect anything to the "D5V" Jack. (Default)
9 R	EG	Power supply source set-up for VD of AK4705A. Open: from the " +5 V " Jack. Short: from the regulator. Don’t connect anything the " +5 V " Jack. (Default)
10 V	VD1	Power supply source set-up for VVD1 of AK4705A. Open: from the "VVD1" Jack. Short: from the regulator or the " +5 V " Jack. Don't connect anything to the "VVD1" Jack. (Default)
11 V	VD2	Power supply source set-up for VVD1 of AK4705A. Open: from the "VVD2" Jack. Short: from the regulator or the " +5 V " Jack. Don't connect anything to the "VVD2" Jack. (Default)
12 V	CRRC	Input Selection for VCRRC "I" side: Input to VCRRC from VCRRC jack. (Default) "I/O" side: Input to VCRC from VCRC jack. (Note: Refer CIO bit of AK4705A)

Table 6. Jumper list

Serial Control

The AK4705A-A can be controlled via the printer port (parallel port) of IBM-AT compatible PC. Connect PORT3 (μ P-IF) with PC by 10 wire flat cable packed with the AKD4705A-A.
Be careful connector direction. Flat cable should be connected 10-pin header, red line put on 10pin header 5 and 6 pin.

Figure 2. Connection of 10 pin flat cable for PORT3

■ Input/Output port List

Sig		nal Name	Notes
Audio	Input	J5 (VCRINL), J3 (VCRINR), J9 (TVINL), J8 (TVINR)	Max: 2Vrms
	Output	J12 (VCROUTL), J10 (VCROUTR), J6 (TVOUTL), J7 (TVOUTR), J4 (MONOOUT)	Max: 3Vrm
Digital	Input	Port2 (TORX176) or J2 BNC (RX)	Max: D5V+0.3V
Video	Input	J13 (ENCB), J15 (ENCG), J17 (ENCRC), J19 (ENCC), J21 (ENCV), J23(ENCY), J25(TVVIN), J14(VCRVIN), J18(VCRRC; Note), J20(VCRG), J22(VCRB)	Max: $1.5 \mathrm{Vp}-\mathrm{p}$
	Output	J27 (VCRCOUT; Note), J29 (TVVOUT), J30 (TVRC), J31 (TVG), J32 (TVB), J33 (RFV), J34 (VCRVOUT)	Max: 3Vp-p
Slow Blanking	Input	J24 (VCRSB)	Max: VP+0.3V
	Output	J24 (VCRSB), J28 (TVSB)	Max: VP
Fast Blanking	Input	J16 (VCRFB)	Max: VVD1+0.3V
	Output	J26 (TVFB)	Max: VVD2

Table 7. Input / Output port List
Note 3. Please refer to JP12 and CIO bit of the AK4705A.

■ The indication content for LED

LED turns on during each output is " H ".
[LE1] Indicates unlock or parity error of S/PDIF. Connected to the ERF pin of DIR (AK4112B). (Normally off.)
[LE2] Indicates the validity status of S/PDIF. Connected to the V pin of DIR (AK4112B). (Normally off.)

■ Toggle switch (SW1 on board) operation

"H": AK4705A is active.
"L": AK4705A is powered down.

Note 4. When the power of AKD4705A-A is ON at first, SW1 should be switched from "L" to "H".

4) Control Software Manual

■ Set-up of evaluation board and control software

1. Set up the AKD4705A-A according to previous term.
2. Connect IBM-AT compatible PC with AKD4705A-A by 10-line type flat cable (packed with AKD4705A-A). Take care of the direction of 10pin header. (Please install the driver in the CD-ROM when this control software is used on Windows 2000/XP. Please refer "Installation Manual of Control Software Driver by AKM device control software". In case of Windows95/98/ME, this installation is not needed. This control software does not operate on Windows NT.)
3. Insert the CD-ROM labeled "AK4705A Evaluation Kit" into the CD-ROM drive.
4. Access the CD-ROM drive and double-click the icon of "akd4705a-a.exe" to set up the control program.
5. Then please evaluate according to the follows.

■ Operation flow

Keep the following flow.

1. Set up the control program according to explanation above.
2. Click "Port Reset" button.
3. Click "Write default" button

■ Explanation of each buttons

1. [Port Reset]: Set up the USB interface board (AKDUSBIF-A) when using the board.
2. [Write default]: Initialize the register of AK4705A.
3. [All Write]: Write all registers that is currently displayed.
4. [Function1]: Dialog to write data by keyboard operation.
5. [Function2]: Dialog to write data by keyboard operation.
6. [Function3]: The sequence of register setting can be set and executed.
7. [Function4]: The sequence that is created on [Function3] can be assigned to buttons and executed.
8. [Function5]: The register setting that is created by [SAVE] function on main window can be assigned to buttons and executed.
9. [SAVE]: Save the current register setting.
10. [OPEN]: Write the saved values to all register.
11. [Write]: Dialog to write data by mouse operation.

■ Indication of data

Input data is indicated on the register map. Red letter indicates " H " or " 1 " and blue one indicates " L " or " 0 ". Blank is the part that is not defined in the datasheet.

- Explanation of each dialog

1. [Write Dialog]: Dialog to write data by mouse operation

There are dialogs corresponding to each register.
Click the [Write] button corresponding to each register to set up the dialog. If you check the check box, data becomes " H " or " 1 ". If not, " L " or " 0 ".

If you want to write the input data to the AK4705A, click [OK] button. If not, click [Cancel] button.
2. [Function1 Dialog] Dialog to write data by keyboard operation

Address Box: Input registers address in 2 figures of hexadecimal.
Data Box: Input registers data in 2 figures of hexadecimal.
If you want to write the input data to the AK4705A, click [OK] button. If not, click [Cancel] button.
3. [Function2 Dialog]: Dialog to evaluate DATT

There are dialogs corresponding to register of 02h.
Address Box: Input registers address in 2 figures of hexadecimal.
Start Data Box: Input starts data in 2 figures of hexadecimal.
End Data Box: Input end data in 2 figures of hexadecimal.
Interval Box: Data is written to AK4705A by this interval.
Step Box: Data changes by this step.
Mode Select Box:
If you check this check box, data reaches end data, and returns to start data.
[Example] Start Data $=00$, End Data $=09$
Data flow: 0001020304050607080909080706050403020100
If you do not check this check box, data reaches end data, but does not return to start data.
[Example] Start Data $=00$, End Data $=09$ Data flow: 00010203040506070809

If you want to write the input data to the AK4705A, click [OK] button. If not, click [Cancel] button.

4. [SAVE] and [OPEN]

4-1. [SAVE]

All of current register setting values displayed on the main window are saved to the file. The extension of file name is "akr".
<Operation flow>
(1) Click [SAVE] Button.
(2) Set the file name and click [SAVE] Button. The extension of file name is "akr".

4-2. [OPEN]

The register setting values saved by [SAVE] are written to the AK4705A. The file type is the same as [SAVE].
<Operation flow>
(1) Click [OPEN] Button.
(2) Select the file (*.akr) and Click [OPEN] Button.

5. [Function3 Dialog]

The sequence of register setting can be set and executed.
(1) Click [F3] Button. The following is displayed.
(2) Set the control sequence.

Set the address, Data and Interval time. Set " -1 " to the address of the step where the sequence should be paused.
(3) Click [START] button. Then this sequence is executed.

The sequence is paused at the step of Interval="-1". Click [START] button, the sequence restarts from the paused step.
This sequence can be saved and opened by [SAVE] and [OPEN] button on the Function3 window. The extension of file name is "aks".

Figure 3. Window of [F3]

6. [Function4 Dialog]

The sequence file (*.aks) saved by [Function3] can be listed up to 10 files, assigned to buttons and then executed. When [F4] button is clicked, the window as shown in Figure 2 opens.

Figure 4. [F4] window (1)

6-1. [OPEN] buttons on left side and [START] buttons

(1) Click [OPEN] button and select the sequence file (*.aks) saved by [Function3].

The sequence file name is displayed as shown in Figure 3. (In case that the selected sequence file name is "DAC_Stereo_ON.aks")

Figure 5. [F4] window (2)
(2) Click [START] button, then the sequence is executed.

6-2. [SAVE] and [OPEN] buttons on right side

[SAVE] : The name assign of sequence file displayed on [Function4] window can be saved to the file. The file name is "*.ak4".
[OPEN] : The name assign of sequence file(*.ak4) saved by [SAVE] is loaded.

6-3. Note

(1) This function doesn't support the pause function of sequence function.
(2) All files used by [SAVE] and [OPEN] function on right side need to be in the same folder.
(3) When the sequence is changed in [Function3], the sequence file (*.aks) should be loaded again in order to reflect the change.

7. [Function5 Dialog]

The register setting file(*.akr) saved by [SAVE] function on main window can be listed up to 10 files, assigned to buttons and then executed. When [F5] button is clicked, the window as shown in Figure 4 opens.

Figure 6. [F5] window

7-1. [OPEN] buttons on left side and [WRITE] button

(1) Click [OPEN] button and select the register setting file (*.akr).

The register setting file name is displayed as shown in Figure 7. [F5] windows (2). (In case that the selected file name is "DAC_Output.akr")
(2) Click [WRITE] button, then the register setting is executed.

Figure 7. [F5] windows (2)

7-2. [SAVE] and [OPEN] buttons on right side

[SAVE] : The name assign of register setting file displayed on [Function5] window can be saved to the file. The file name is "*.ak5".
[OPEN] : The name assign of register setting file(*.ak5) saved by [SAVE] is loaded.

7-3. Note

(1) All files used by [SAVE] and [OPEN] function on right side need to be in the same folder.
(2) When the register setting is changed by [SAVE] Button on the main window, the register setting file (*.akr) should be loaded again in order to reflect the change.

REVISION HISTORY

Date $(\mathrm{yy} / \mathrm{mm} / \mathrm{dd})$	Manual Revision	Board Revision	Reason P	age	Contents
$07 / 09 / 26 \mathrm{KM091000}$	0	First Edition			

IMPORTANT NOTICE

- These products and their specifications are subject to change without notice.

When you consider any use or application of these products, please make inquiries the sales office of Asahi Kasei EMD Corporation (AKEMD) or authorized distributors as to current status of the products.

- AKEMD assumes no liability for infringement of any patent, intellectual property, or other rights in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKEMD products are neither intended nor authorized for use as critical components Note1) in any safety, life support, or other hazard related dev ice or system ${ }_{\text {Note2) }}$, and AKEMD assumes no responsibility for such use, except for the use approved with the express written consent by Representative Director of AKEMD. As used here:

Note1) A critical component is one whose failure to function or perf orm may reasonably be expected to res ult, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
Note2) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.

- It is the responsibility of the buyer or distributor of AKEMD products, who distributes, disposes of, or otherwise places the product with a third party, to notify such third party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKEMD harmless from any and all claims arising from the use of said product in the absence of such notification.

AKD4705 Rev. 0 48LQFP L1

S」 q7ロ」8A O．v9Я टOTAロNA

