
June 2014 DocID5833 Rev 2 1/19

AN1015
Application note

Software techniques for improving microcontrollers EMC performance 

Introduction

A major contributor to improved EMC performance in microcontroller-based electronics 
systems is the design of hardened software.

Problems induced by EMC disturbances need to be considered as early as possible in the 
design phase. EMC-oriented software increases the security and the reliability of your 
application. EMC-hardened software is inexpensive to implement, improves the final goods 
immunity performance and saves hardware and development costs. You should consider 
EMC disturbances to analog or digital data just like any other application parameter.

Examples of problems induced by EMC disturbances:

 Microcontroller not responding

 Program Counter runaway

 Execution of unexpected instructions

 Bad address pointing

 Bad execution of subroutines

 Parasitic reset and/or parasitic interrupts

 Corruption of IP configuration

 I/O deprogramming

Examples of consequences of failing software:

 Unexpected response of product

 Loss of context

 Unexpected branch in process

 Loss of interrupts

 Loss of data integrity 

 Corrupted reading of input values.

This application note deals with two categories of software techniques, namely:

 Preventive techniques: these can be implemented in existing designs, their purpose is to 
improve product robustness.

 Auto-recovery techniques: when a runaway condition is detected, a recovery subroutine 
is used to take the decision to execute fail-safe routines, optionally sending a warning and 
then automatically returning back to normal operations (this operation may be absolutely 
transparent to the user of the application).

www.st.com

http://www.st.com


Contents AN1015

2/19 DocID5833 Rev 2

Contents

1 Related documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preventive techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Using the watchdog and time control techniques . . . . . . . . . . . . . . . . . . . . 6

2.2 Securing the unused program memory area  . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Input filtering and comparison  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Management of unused interrupt vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Removing illegal and critical bytes from your code  . . . . . . . . . . . . . . . . . . 9

2.5.1 Critical Bytes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.2 IIlegal Bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.6 Averaging the A/D converter results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.7 Register reprogramming and regular checking  . . . . . . . . . . . . . . . . . . . . 10

2.8 Redundant data storage and exchange . . . . . . . . . . . . . . . . . . . . . . . . . . .11

3 Auto-recovery techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Saving your context in RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Using the watchdog for local control  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Using the reset flags to identify the reset source . . . . . . . . . . . . . . . . . . . 14

3.4 Saving data into non-volatile memory  . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Which results can be achieved?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



DocID5833 Rev 2 3/19

AN1015 List of tables

3

List of tables

Table 1. Summary of preventive techniques  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 2. Summary of auto-recovery techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Table 3. Document revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18



List of figures AN1015

4/19 DocID5833 Rev 2

List of figures

Figure 1. Classic examples of bad watchdog usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. Example of correct watchdog usage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Example of auto-recovery software  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 4. Local control by the watchdog  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 5. Identify reset sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



DocID5833 Rev 2 5/19

AN1015 Related documents

18

1 Related documents

 AN3181 “Guidelines for obtaining IEC 60335 Class B certification in an STM8 
application”

 AN3307 “Guidelines for obtaining IEC 60335 Class B certification for any STM32 
application”

 AN4435 “Guidelines for obtaining UL/CSA/IEC 60335 Class B certification in any 
STM32 application”



Preventive techniques AN1015

6/19 DocID5833 Rev 2

2 Preventive techniques

You can implement preventive techniques in existing designs to improve product robustness 
and immunity against external or internal EMC disturbance.

2.1 Using the watchdog and time control techniques

The watchdog is the most efficient tool available to ensuring that the MCU can recover from 
software runaway failures. Its principle is very simple: it is a timer which generates an MCU 
reset at the end of count. Once the watchdog is started, the only way of preventing the 
watchdog from resetting the microcontroller is to update the counter periodically in the 
program.

But to make the watchdog work at its full potential, you have to insert the enable and refresh 
instructions in your software at the right place of code execution.

Figure 1 shows two classic examples of bad watchdog implementation.

To do it the right way (see Figure 2), the following rules should be implemented:

 Enable the watchdog as soon as possible after reset, or use the Hardware option if 
available.

 Never refresh the watchdog during an interrupt routine or inside any local loop not 
guarded by timeout at code.

It is very important to optimize the period between the two refresh instructions according to 
the duration of the various routines, including the interrupt routines.

The minimum use of the watchdog resets the MCU, this means that the program execution 
context is lost as well as the application data's integrity. 

After reset, in addition to enabling the watchdog, on some MCUs you can use the reset flags 
to distinguish between Power On or Low Voltage reset or watchdog reset (refer to 
Section 3.3: Using the reset flags to identify the reset source. for more details).



DocID5833 Rev 2 7/19

AN1015 Preventive techniques

18

Figure 1. Classic examples of bad watchdog usage



Preventive techniques AN1015

8/19 DocID5833 Rev 2

Figure 2. Example of correct watchdog usage

2.2 Securing the unused program memory area

In most applications, program memory space is not filled completely by user code. For extra 
security, fill the unused memory locations with code that forces a watchdog reset or jumps to 
a known program location if you do not want to generate a reset.

This will ensure that even if the program counter is corrupted and jumps to an unused 
memory location, the MCU will recover and return to normal operations. 

In this unused area you can also jump to a recovery fail safe subroutine, which allows you to 
return to normal operations.



DocID5833 Rev 2 9/19

AN1015 Preventive techniques

18

For STM8 users, the STM8 "TRAP" instruction is also very convenient (only one instruction 
byte:83) for generating a software interrupt in order to recover from a jump to an unexpected 
location in memory.

Another effective way for recovery to normal operation is filling memory by value of illegal 
instruction opcode which fetch and execution generates reset on STM8 microcontrollers. 

STM32 microcontrollers with ARM® Cortex®-M core use fault exception which trap illegal 
memory accesses and illegal program behavior which may occure if the system is exposed 
to EMC disturbances. The undefined instruction opcode may be used to fill the unused 
memory of STM32 microcontroller to rise the Usage Fault exception where the fail safe 
routine recovers from errors in case of program counter run-away.

Another option is to use System serivce call with SVC instruciton to execute fail safe routine.

2.3 Input filtering and comparison

The routine which checks several times that that the state of input pin is stable before 
validating the state and continuing the program execution is a good practice to avoid 
unwanted reaction on spikes caused by external noise induced in input circuit.

This is a simple means of critical input filtering for no extra cost!

2.4 Management of unused interrupt vectors

To avoid problems caused by unexpected interrupt occurrences (whatever the source) it is 
recommended to manage all the possible interrupt sources by putting a valid interrupt 
routine address in the corresponding vector.

In the example below the unused interrupt vectors point to a fault management routine label 
filled with a simple “return from interrupt” instruction.

2.5 Removing illegal and critical bytes from your code

2.5.1 Critical Bytes

A critical byte is an instruction switching MCU in low power modes which is decoded by the 
microcontroller and forces it to stop executing any further instructions.

When the PC is corrupted it often becomes desynchronized (as most of the instructions 
have several bytes), and as a result it may read and decode critical bytes. 

To check and minimize the occurrence of these critical bytes you can check the program 
".list" file.

Very often critical bytes are generated by the compiler as label address bytes. In this case, if 
you simply insert one or several NOP instructions, all the label addresses will shift and this 
will change the critical byte value to another value.

2.5.2 IIlegal Bytes

Illegal bytes are defined as any byte value which is not part of the instruction set. They will 
either be executed as a NOP instruction or (on some MCUs) a reset is generated if an illegal 



Preventive techniques AN1015

10/19 DocID5833 Rev 2

byte is encountered. In this case, use the techniques described above (for critical bytes) to 
remove illegal bytes from your code.

2.6 Averaging the A/D converter results

If you are performing A/D conversion, you can repeat conversions several times, store the 
results in the RAM and then average them (or select the most frequently occurring values) 
to obtain accurate results in spite of any potential noise errors.

2.7 Register reprogramming and regular checking

It rarely happens that EMC disturbances alter the content of the registers. Generally the 
registers concerned are clock control registers or I/O configuration and data registers 
because they are close to the chip output pads.

In such cases a good security measure is to refresh these registers frequently.

Table 1. Summary of preventive techniques 

Software Quality 
Preventive techniques

Advantage Disadvantage Implementation

Watchdog

(Hardware or Software)

Control is CPU-
independent

Avoids MCU lock

Needs to be carefully 
handled if LP mode is 
used

Easy but the activation 
and refresh instructions 
must be carefully 
placed in the code for 
maximum efficiency

Force a watchdog reset 
in unused program 
memory

More direct and quicker 
than waiting for a 
watchdog timeout

Loss of previous 
context

Clear the WDG reset bit 
(see device spec.)

Fill unused program 
memory with software 
interrupt instructions

More direct and quicker 
than waiting for a WDG 
timeout.

None

Fill unused area with 
"TRAP" or SVC
op-code and manage 
the failure in the 
corresponding interrupt 
routine.

A/D Converter 
averaging

Ensure the ADC 
performance in a noisy 
surrounding.

Processing time 

Perform an iterative 
loop for ADC 
acquisitions and 
averaging.

Removal of illegal or 
critical opcode

Avoid MCU locks due to 
unexpected readings of 
WFET or WFI opcodes

None, except 
restriction on using 
these opcodes

String search in the 
".list" file (see 
Section 2.5).

Input filtering
Data acquisition 
stability

Processing time

Repeat measurement 
several times and 
perform a statistical 
choice between "0" or 
"1".



DocID5833 Rev 2 11/19

AN1015 Preventive techniques

18

2.8 Redundant data storage and exchange

All the data stored in the internal or external memory can be subject to corruption due to 
electromagnetic disturbance in extreme conditions. 

The preventive technique of storing doubled complementary values at nonadjacent memory 
areas, storing and checking the parity bits or ECC are all advanced methods which help to 
identify and/or correct the data corruption. 

Refer to AN4435 or safety manuals for more details on techniques improving software 
robustness available at st.com.

Unused interrupt 
management

Avoid runaways due to 
unexpected interrupts

None
Very easy (see 
Section 2.4)

Refreshing of critical 
registers

Safe running Uses MCU resources
Refresh critical 
registers in frequently-
executed loops

Table 1. Summary of preventive techniques (continued)

Software Quality 
Preventive techniques

Advantage Disadvantage Implementation



Auto-recovery techniques AN1015

12/19 DocID5833 Rev 2

3 Auto-recovery techniques

This section gives some techniques for quickly recovering your application context after an 
EMC failure.

Unexpected resets, Program Counter jumps and parasitic interrupts are the most common 
EMC failures observed in the MCU whatever the source of the disturbance.

In any of these cases the RAM (or EEPROM data memory when available) remains 
unchanged and can be used as very efficient way to save the application context and 
parameters.

Note that the RAM will lose its contents if the device is powered-off. The EEPROM data 
keeps its content at power-off but the write time is much longer.

3.1 Saving your context in RAM

Figure 3 shows an example of a software auto-recovery implementation: the critical 
software sequences (door OPEN or CLOSE commands, high speed motor controls) are 
memorized in a RAM byte ("RAM(SEQ)").

This allows us on the one hand to recover the context if an EMC event leads to an MCU 
reset, and on the other hand we can check the source before a executing a critical 
subroutine. In this case the high speed motor activation is allowed only if RAM(SEQ)=03).

The application parameters (T1&T2 timing values) are also stored in RAM when they are 
changed.

This means if a software runaway event occurred or the MCU is reset (by the LVD or the 
watchdog), the recovery routine (CRR) will restore the last door command, reload the timing 
parameters and resume the program execution without any external intervention.



DocID5833 Rev 2 13/19

AN1015 Auto-recovery techniques

18

Figure 3. Example of auto-recovery software

3.2 Using the watchdog for local control

Very often programmers consider the watchdog timer more or less just as a time bomb and 
only refresh it to its maximum value to have the widest possible margin without any direct 
relation to the expected program execution time.



Auto-recovery techniques AN1015

14/19 DocID5833 Rev 2

This is a poor approach, a far better method is to use the watchdog timer register to check 
the execution times of individual software routines and in case of an abnormality to react 
promptly before the watchdog end of count and either perform an immediate reset or go into 
a software recovery routine.

Figure 4. Local control by the watchdog

3.3 Using the reset flags to identify the reset source

There are several possible internal reset sources: LVD (Low Voltage detector) or Watchdog 
reset, POR (Power On Reset), hot reset (parasitic or external reset following a low state of 
the Reset pin).

The reset source is flagged in a “reset register” and this information is kept as long as the 
MCU's power supply is on.

Figure 5 shows how you can test the reset register at the beginning of your program and 
then branch to a context recovery routine (depending to the detected reset source) instead 
of restarting the "Power On Reset" initialization routine which is often complex and time 
consuming. 

It is very important to detect and manage parasitic resets as they are the most usual cause 
of microcontroller EMC failures.



DocID5833 Rev 2 15/19

AN1015 Auto-recovery techniques

18

Figure 5. Identify reset sources

3.4 Saving data into non-volatile memory

The time needed to store data in the non-volatile memory (Data EEPROM) is significantly 
longer compared with that needed for storing data into RAM. During this programming time 

Table 2. Summary of auto-recovery techniques 

Software Quality 
Auto-recovery 

techniques
Advantage Disadvantage Implementation

Local Control by the 
Watchdog

Process control of 
critical sequential 
blocks

Need to calculate an 
accurate time window

Check the sequence 
execution time using 
the WDG timer register

identify Reset Sources
Fast recovery from 
unexpected reset 
failures

None

Use the MCU "reset 
register" or the RAM to 
detect various reset 
sources. 

Application context 
save in RAM, Flash or 
EEPROM

Save application 
parameters, ensure 
critical task execution 
resume in case of MCU 
failures.

Uses MCU resources

Store software critical 
phases and parameters 
in RAM, Flash or 
EEPROM.

Use data in RAM, Flash 
or EEPROM to recover 
the last context before 
failure.



Auto-recovery techniques AN1015

16/19 DocID5833 Rev 2

the system may be compromised by EMC disturbances which results in system reset 
terminating the programming process, resulting in the data corruption.

To prevent such situation the data should be stored in a redundant container keeping its 
consistency by using, among others, validation marks.

The validity of content in this data container needs to be checked after each system start 
before actually using it.



DocID5833 Rev 2 17/19

AN1015 Which results can be achieved?

18

4 Which results can be achieved?

ST microcontrollers are designed, tested and optimized to remain fully functional with ESD 
voltages (according EN1000-4-2 standard) directly applied on any pin with voltage levels 
stated in their datasheets. Although this performance is good enough in most cases, it can 
be improved by using software techniques and at the same moment ensure an correct 
reaction of the system on EMC level which is sometimes above 4kV.

The properly designed system which is able to detect a corruption caused by EMC 
disturbance, initiate and successfully complete the auto recovery procedure resulting in 
system reset or reinitialization is always better then the system which does not detect any 
problem do not initiate an auto recovery mechanism and stay partially corrupted but without 
any visible change.



Revision history AN1015

18/19 DocID5833 Rev 2

5 Revision history

          

Table 3. Document revision history 

Date Revision Changes

02-Jul-2001 1 Initial release.

24-Jun-2014 2

Revised Introduction, Section 2, Section 2.1, Section 2.2, Section 2.3, 
Section 2.4, Section 2.5, Section 3.2 and Section 4

Added Section 1: Related documents, Section 2.8: Redundant data 
storage and exchange and Section 3.4: Saving data into non-volatile 
memory.

Updated Figure 3 and Figure 4.

Updated Table 1: Summary of preventive techniques and Table 2: 
Summary of auto-recovery techniques.



DocID5833 Rev 2 19/19

AN1015

19

          



Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the 
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any 
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no 
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this 
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products 
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such 
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED 
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED 
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS 
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE 
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) 
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS 
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT 
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS 
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY 
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE 
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void 
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any 
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - 
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com


