

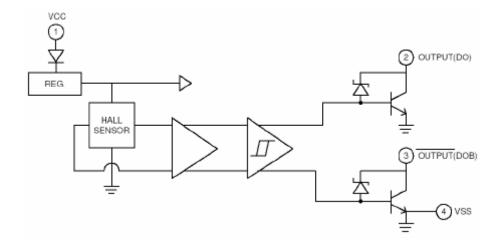
Spec. No. : C499A4 Issued Date : 2007.09.26 Revised Date : Page No. : 1/6

CSH277A4

Complementary Output Hall Effect Latched Sink Driver IC

Description

The CSH277A4 is an integrated Hall sensors with output drivers designed for electronic commutation of brushless DC motor applications. The device includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, and complementary open collector drivers for sinking large current loads. An internal bandgap regulator is used to provide temperature compensated supply voltage for internal circuits and allows a wide operating supply range. If a magnetic flux density larger than threshold BOP, DO is turned on (low) and DOB is turned off (high). The output state is held until a magnetic flux density reversal falls below Brp causing DO to be turned off and DOB turned on. CSH277A4 is rated for o peration over temperature range from -20°C to 85°C and voltage range from 3.5V to 20V. The devices are available in low cost die forms or rugged 4 pin SIP packages.


Features

- On-chip Hall sensor IC with two different sensitivity and hysteresis settings
- Internal bandgap regulator allows temperature compensated operations and a wide operating voltage range
- High output sinking capability up to 400mA for driving large load
- Lower current change rate reduces the peak output voltage during switching
- Build in protection diode for chip reverse power connecting
- Package: SIP-4L

Applications

- Brushless DC motor
- Brushless DC fan
- Revolution counting
- Speed measurement

Functional Block Diagrams

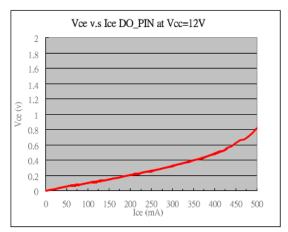
Pin Descriptions

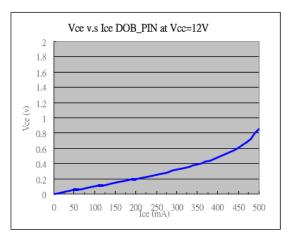
277 XXXX									
1		2	2	3		4			

Name	P/I/O	Pin#	Description
Vcc	Р	1	Positive Power supply
DO	0	2	Output Pin
DOB	0	3	Output Pin
Vss	Р	4	Ground

Absolute Maximum Ratings at Ta = 25°C

Parameter		Symbol	Value	Unit
Supply Voltage		Vcc	20V	V
Reverse Vcc Polarit	y Voltage	VRCC	-35V	V
Magnetic flux densit	Y	В	Unlimited	
Output OFF Voltage		Vce	60(Note1)	V
	Continuous		400	m A
Output ON Current	Hold	Ic –	500	mA
Operating Temperat	ure Range	Ta	-20 ~ 85	$^{\circ}\mathrm{C}$
Storage Temperatur	e Range	Ts	-65 ~ 150	°C
Package Power Dis	sipation	Pd	550	mW
Maximum Junction	Temp.	Tj	175	°C

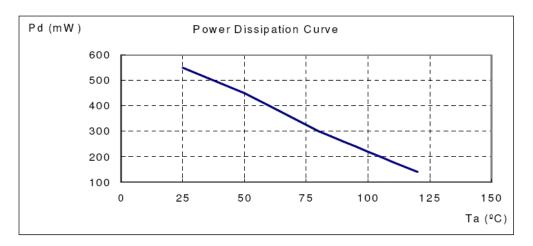

Note1: Output Zener protection voltage.


*Exceeding the absolute maximum ratings may cause permanent damage. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

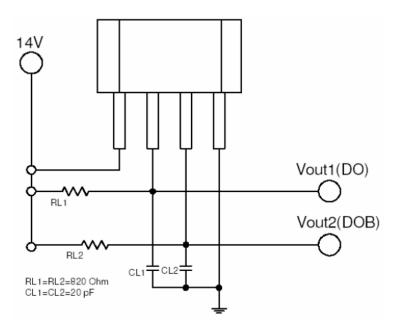
Electrical Characteristics (Ta=+25°C, Vcc=4.0V to 20V)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Low Supply Voltage	Vce	Vcc=3.5V, IL=100mA	-	0.4	-	V
Supply Voltage	Vcc	-	3.5	-	20	V
Output Saturation Voltage	Vce(sat)	Vcc=14V, IL=300mA	-	0.3	0.6	V
Output Leakage Current	Cex	Vce=14V, Vcc=14V	-	<0.1	10	uA
Supply Current	lcc	Vcc=20V, Output Open	-	14	20	mA
Output Rise Time	tr	Vcc=14V, RL=820Ω, CL=20pf	-	3.0	10	us
Output Falling Time	tf	Vcc=14V, RL=820Ω, CL=20pf	-	0.3	1.5	us
Switch Time Differential	Δt	Vcc=14V, RL=820Ω, CL=20pf	-	3.0	10	us

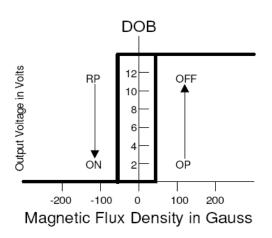
Output Driver Current vs. Vce Plot

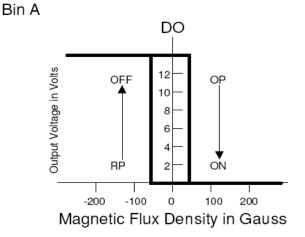


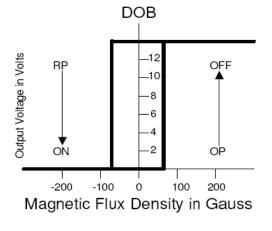
Power dissipation vs. Environment Temperature

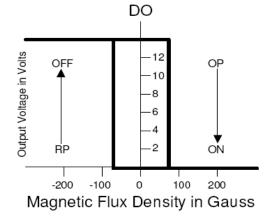

Ta(°C)													
Pd(mW)	550	450	400	350	300	280	260	240	220	200	180	160	140

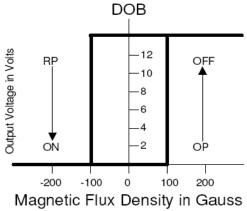
Magnetic Characteristics

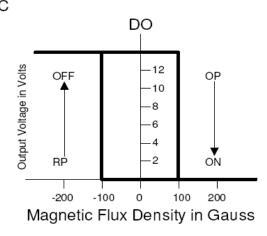

Characteristic		Symbol	Ta=+	• 25 ℃	Ta=0℃	Unit	
Characte	IISUC	Symbol	Min	Max	Min	Мах	Onit
	BIN A	Вор	5	50	5	50	Gauss
Operate Point	BIN B	Вор	-	70	-	70	Gauss
	BIN C	Вор	-	100	-	100	Gauss
	BIN A	Brp	-50	-5	-50	-5	Gauss
Release Point	BIN B	Brp	-70	-	-70	-	Gauss
	BIN C	Brp	-100	-	-100	-	Gauss
	BIN A	Bhys	40	80	40	80	Gauss
Hysteresis	BIN B	Bhys	40	80	40	80	Gauss
	BIN C	Bhys	40	80	40	80	Gauss

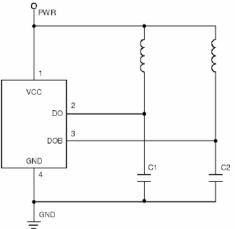

Test Circuit



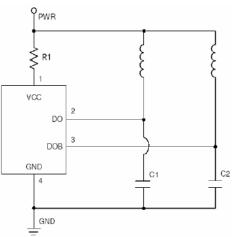

Hysteresis Characteristics







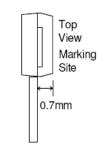
2) With FG output


Application Circuit Double Coil

1) Output on current, Ic > 250mA

Remark: C1, C2: Capacitor 2.2µF~4.7µF (optional)

3) Vcc > 18V

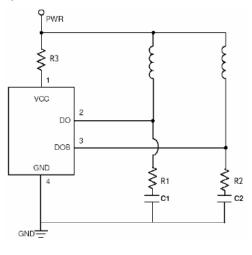


Remark: C1, C2: Capacitor 2.2µF~4.7µF (optional) R1: Resistor

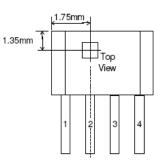
*R1's value will decide power consumption of IC & effect IC's start up voltage.

Package Information

Active Area Depth


Tolerance: +/- 0.05mm

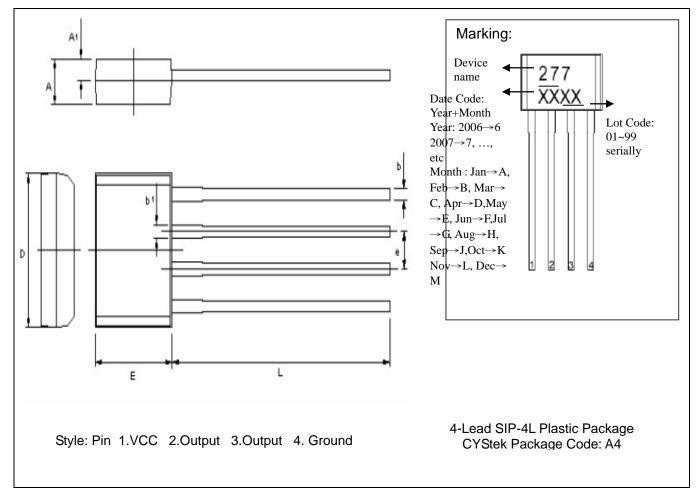
PWR PWR 1 VCC DO 2 DO 3 C1 C1



4) Vcc > 18V

GND

Package Sensor Location



CYStech Electronics Corp.

Spec. No. : C499A4 Issued Date : 2007.09.26 Revised Date : Page No. : 6/6

SIP-4L Dimension

DIM	Inches		Millimeters		DIM	Inches		Millimeters	
DIIVI	Min.	Max.	Min.	Max.	DIN	Min.	Max.	Min.	Max.
Α	0.051	0.071	1.295	1.803	D	0.201	0.211	5.105	5.359
A1	0.024	-	0.610	-	ш	0.139	0.149	3.531	3.785
b	0.013	0.017	0.330	0.432	L	0.551	0.630	14.00	16.00
b1	0.016	0.020	0.406	0.508	е	0.05 REF		1.27 REF	

Notes: 1.Dimension and tolerance based on our Spec. dated Apr. 18,2002.

2.Controlling dimension: millimeters.

3.Maximum lead thickness includes lead finish thickness, and minimum lead thickness is the minimum thickness of base material. 4.If there is any question with packing specification or packing method, please contact your local CYStek sales office.

Material:

• Mold Compound: Epoxy resin family, flammability solid burning class: UL94V-0

Important Notice:

• All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of CYStek.

• CYStek reserves the right to make changes to its products without notice.

• CYStek semiconductor products are not warranted to be suitable for use in Life-Support Applications, or systems.

• CYStek assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.