Plastic High Power Silicon PNP Transistor ... designed for use up to 30 Watt audio amplifiers utilizing complementary or quasi complementary circuits. • DC Current Gain — $h_{FE} = 40 \text{ (Min)} @ I_C = 1.0 \text{ Adc}$ • BD802 is complementary with BD 795, 797, 799, 801 ## **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |---|-----------------------------------|-------------|----------------| | Collector–Emitter Voltage | V _{CEO} | 100 | Vdc | | Collector-Base Voltage | V _{CBO} | 100 | Vdc | | Emitter–Base Voltage | V _{EBO} | 5.0 | Vdc | | Collector Current | I _C | 8.0 | Adc | | Base Current | I _B | 3.0 | Adc | | Total Device Dissipation T _C = 25°C
Derate above 25°C | P _D | 65
522 | Watts
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -55 to +150 | °C | # THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--------------------------------------|--------|------|------| | Thermal Resistance, Junction to Case | θЈС | 1.92 | °C/W | # **BD802** 8 AMPERE POWER TRANSISTORS PNP SILICON 100 VOLTS 65 WATTS # **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | Symbol | Min | Max | Unit | |---|----------------------|----------|-----|------| | Collector–Emitter Sustaining Voltage* (I _C = 0.05 Adc, I _B = 0) | BV _{CEO} | 100 | _ | Vdc | | Collector Cutoff Current
(V _{CB} = 100 Vdc, I _E = 0) | I _{CBO} | _ | 0.1 | mAdc | | Emitter Cutoff Current
(V _{BE} = 5.0 Vdc, I _C = 0) | I _{EBO} | _ | 1.0 | mAdc | | DC Current Gain $(I_C = 1.0 \text{ A}, V_{CE} = 2.0 \text{ V})$ $(I_C = 3.0 \text{ A}, V_{CE} = 2.0 \text{ V})$ | h _{FE} | 30
15 | | | | Collector–Emitter Saturation Voltage* (I _C = 3.0 Adc, I _B = 0.3 Adc) | V _{CE(sat)} | _ | 1.0 | Vdc | | Base–Emitter On Voltage* (I _C = 3.0 Adc, V _{CE} = 2.0 Vdc) | V _{BE(on)} | _ | 1.6 | Vdc | | Current–Gain — Bandwidth Product $(I_C = 0.25 \text{ Adc}, V_{CE} = 10 \text{ Vdc}, f = \text{MHz})$ | f⊤ | 3.0 | _ | MHz | ^{*}Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0. # **BD802** Figure 1. Active Region Safe Operating Area The Safe Operating Area Curves indicate $I_C - V_{CE}$ limits below which the device will not enter secondary breakdown. Collector load lines for specific circuits must fall within the applicable Safe Area to avoid causing a catastrophic failure. To insure operation below the maximum T_J , power–temperature derating must be observed for both steady state and pulse power conditions. Figure 2. Collector Saturation Region Figure 3. Normalized DC Current Gain Figure 4. "On" Voltage # **BD802** Figure 5. Thermal Response #### **BD802** #### PACKAGE DIMENSIONS # TO-220AB **CASE 221A-09 ISSUE AA** #### NOTES: - DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. - CONTROLLING DIMENSION: INCH. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.405 | 9.66 | 10.28 | | c | 0.160 | 0.190 | 4.07 | 4.82 | | D | 0.025 | 0.035 | 0.64 | 0.88 | | F | 0.142 | 0.147 | 3.61 | 3.73 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | H | 0.110 | 0.155 | 2.80 | 3.93 | | 7 | 0.018 | 0.025 | 0.46 | 0.64 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.39 | | T | 0.235 | 0.255 | 5.97 | 6.47 | | 5 | 0.000 | 0.050 | 0.00 | 1.27 | | ٧ | 0.045 | | 1.15 | | | Z | | 0.080 | | 2.04 | are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes ON Semiconductor and ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. ## **PUBLICATION ORDERING INFORMATION** # NORTH AMERICA Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: ONlit@hibbertco.com Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada N. American Technical Support: 800-282-9855 Toll Free USA/Canada EUROPE: LDC for ON Semiconductor - European Support German Phone: (+1) 303-308-7140 (Mon-Fri 2:30pm to 7:00pm CET) Email: ONlit-german@hibbertco.com Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET) Email: ONlit-french@hibbertco.com English Phone: (+1) 303-308-7142 (Mon-Fri 12:00pm to 5:00pm GMT) Email: ONlit@hibbertco.com EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781 *Available from Germany, France, Italy, UK, Ireland # CENTRAL/SOUTH AMERICA: Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST) Email: ONlit-spanish@hibbertco.com Toll-Free from Mexico: Dial 01-800-288-2872 for Access then Dial 866-297-9322 ASIA/PACIFIC: LDC for ON Semiconductor - Asia Support **Phone**: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time) Toll Free from Hong Kong & Singapore: 001-800-4422-3781 Email: ONlit-asia@hibbertco.com JAPAN: ON Semiconductor, Japan Customer Focus Center 4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031 Phone: 81-3-5740-2700 Email: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.