TRAL 1125 D-> TRAL 1225 D

TRIACS

T- 25-15

Power triac suited for use on 200 V and 380 V main.

FEATURES:

- Glass passivated chip.

IGT specified in four quadrants.
 ADVANTAGES:

Excellent (dv/dt)_C : > 10 V/μs.

 Metallic encapsulation gives an excellent thermal impedance and high reliability construction.

APPLICATIONS:

Motor control.

- Heating control.

- Light dimmer.

Triac de puissance utilisable sur les réseaux 200 V et 380 V.

CARACTERISTIQUES:

Pastille glassivée.

IGT défini dans les quatre quadrants.

AVĂNTAGES:

Excellente tenue aux (dv/dt)_C: > 10 V/μs.

- L'encapsulation métallique confère une excellente impédance thermique assurant une bonne fiabilité.

APPLICATIONS:

WWW.

Commande de moteur.

Régulation de chauffage.

-- Variateur de lumière.

ITRMS = 25 A/Tc = 60°C

VDRM: 200 V --> 1200 V

Boîtier: TO 48 metal (CB-267)

Standard type: 1/4"-28 UNF

On request, type number + suffix M: ISO M6

ABSOLUTE RATINGS (LIMITING VALUES) VALEURS LIMITES ABSOLUES D'UTILISATION			TRAL 1125 D → TRAL 1225 D	Units	
RMS on-state current (360° conduction angle) Courant efficace à l'état passant (angle de conduction 360°)	T _C = 60°C	ITRMS	25	A	
Non repetitive surge peak on-state current (on full cycle) at 25°C < T; initial < 100°C	F = 60 Hz	1 .	240	A	
Courant non répétitif de surcharge crête accidentelle à l'état passant (1 cycle complet) à 25°C< Tjinitial< 100°C	F = 50 Hz	ITSM	230		
2t value Valeur de la constante 2t	t = 10 ms	l2t	270	A2s	
Critical rate of rise of on-state current ⁴	Repetitive F = 50 Hz	di/dt	20	A/μs	
Vitesse critique de croissance du courant à l'état pessant	Non Repetitive	Gi/Ut	100]	
Storage and operating junction temperature range Températures extrêmes de stockage et de jonction en fonctionnement			- 40 + 150 - 40 + 100	°C	

ABSOLUTE RATING (LIMITING VALUE) VALEUR LIMITE ABSOLUE D'UTILISATION	Symbol	TRAL 1125 D	TRAL 2225 D	TRAL 3325 D	TRAL 3825 D	TRAL 1025 D	TRAL 1225 D	Unit
Repetitive peak off-state voltage Tension de crête répétitive à l'état bloqué	VDRM	±200	±400	±600	±700	±1000	±1200	٧

^{*}Gate supply Générateur de gâchette : $20~\text{V}/20~\Omega$ - t_{f} < 0,1 μs -

Half sine wave 6,3 µs Demi-sinusoïde de 6.3 µs specified spécifié

-VDRM

October 1984 - 1/4

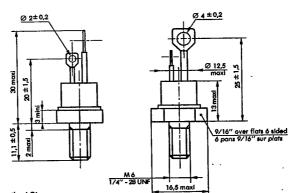
THOMSON SEMICONDUCTORS

45, avenue de l'Europe - 78140 VÉLIZY - France Tél.: 946.97.19 / Télex: 698 866 F

359

Thermal resistance Résistance thermique	Symbols	TRAL 1125 D → TRAL 1225 D	Units
Contact (case-heatsink) for recommended stud torque Contact (boîtier-radiateur) au couple de serrage recommandé	R _{th c-h}	0,4	°C/W
Junction to case for DC Jonction - boîtier en continu	R _{th j-c} DC	1,24	°C/W
Junction to case for 360° conduction angle (F = 50 Hz) Jonction - boitier pour angle de conduction 360° (F = 50 Hz)	R _{th j-c} AC	0,93	°C/W

GATE CHARACTERISTICS (MAXIMUM VALUES)


CARACTERISTIQUES DE GACHETTE (VALEURS MAXIMALES)

 $V_{GM}^* = 16 V (t = 10 \mu s)$ $P_{GM}^* = 40 \text{ W (t = 10 } \mu\text{s)}$ $IGM'' = 6 A (t = 10 \mu s)$ PG(AV) = 1WELECTRICAL CHARACTERISTICS (T_I = 25°C unless otherwise specified)

Symbols Quadrants	Quadranta	Values			Units	Took conditions		
	min.	typ.	max.	01	Test conditions			
	I-II-III 100	mA	$V_D = 12 \text{ V R}_L = 33 \Omega \text{ Pulse duration } > 20$					
IGT	IV			150	IIIA	VD = 12 V RE = 33 & Fulse duration > 20 pa		
V _{GT} *				3	V	$V_D = 12 \text{ V}$ R _L = 33 Ω Pulse duration > 20 μ t		
V _{GD} *		0,2			٧	T _j = 100°C V _D = V _{DRM} R _L = 3 kΩ Pulse duration > 20 μs		
lH**				50	mA	V _D = 12 V Gate open		
	1-111 — IV		50		mA	$V_D = 12 \text{ V R}_L = 33 \Omega \text{ Pulse duration } > 20 \mu \text{s}$		
iL.	11		100		mA	VD = 12 V nL = 33 tr Fulse dolation > 20		
VTM**				2	v	I _{TM} = 35 A t _p = 10 ms		
IDRM**				3		T _j = 100°C V _{DRM} rated Gate open		
dv/dt**		100			V/μs	Tj = 100°C Gate open Linear slope up to 0,67 VDRM		
(dv/dt)c**	neet4U.co	10 m			V/μs	T _C = 60°C (di/dt) _C = 11,2 A/ms ITRMS and VDRM rated		
tgt*			3		με	dig/dt = 2 A/μs ig = 200 mA ITRMS and VDRM rated		

- For either polarity of gate voltage with reference to electrode A₁.
- ** For either polarity of electrode A2 voltage with reference to electrode A1.

CASE DESCRIPTION DESCRIPTION DU BOITIER

Cooling method: by conduction (method C) Marking: type number

Weight: 13,5 ± 1g

Stud torque: 3,5 m \text{\text{N} min - 3,8 m \text{\text{N} max}

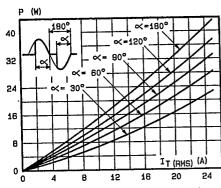


Fig.i - Maximum mean power dissipation versus RMS on-state current.

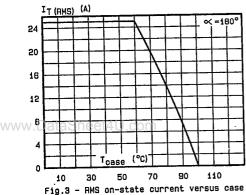
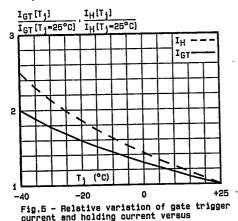



Fig.3 - AMS on-state current versus case temperature.

junction temperature.

Tcase (°C) P (W) °C/W Rth=0 °C/W °C/W 1.5°C/W 70 80 90 Tamb 50 70 110

Fig.2 - Correlation between maximum mean power dissipation and maximum allowable temperatures (Tamb and Toase) for different thermal resistances heatsink + contact.

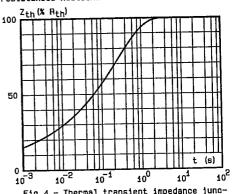


Fig.4 - Thermal transient impedance junction to case versus pulse duration.

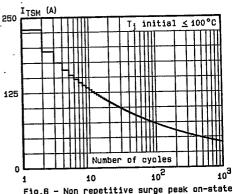


Fig.6 - Non repetitive surge peak on-state current versus number of cycles.

D

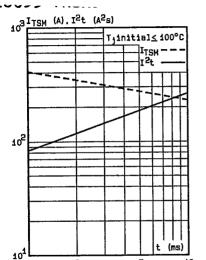


Fig.7 - Non repetitive surge peak on-state current for a sinusoidal pulse with width: t \leq 10ms, and corresponding value of I^2 t.

10

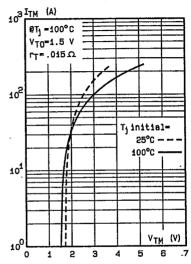


Fig.8 - On-state characteristic (maximum values).