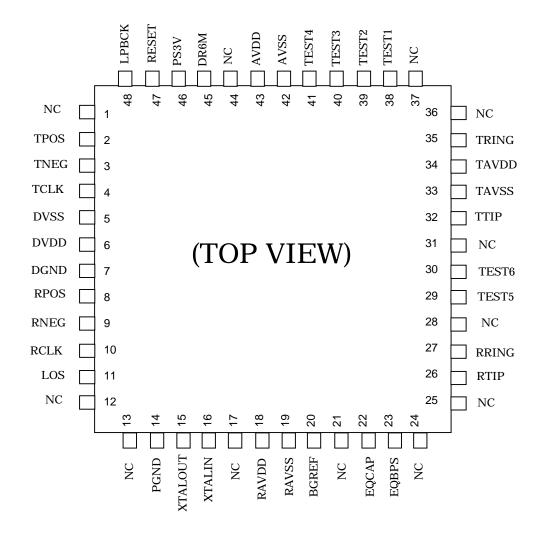

AK2531

J1 (1.5M) / J2 (6.3M) AMI Transceiver

FEATURE

- J1(1.544Mbps) / J2(6.312Mbps) AMI cording transceiver(LIU)
- Jitter Tolerance: Compliant with ITU-T G.824
- Transmitter Pulse Shape: Compliant with JT-G.703
- Loss of Signal Detection
- Line equalizer
- Local loopback function
- Crystal oscillator: 24.704MHz(1.5M), 25.248MHz(6.3M)
- Single 3.3V±5% or 5.0V±5% Supply
- Low Power Consumption:170mW(typ:1.544Mbps), 160mW(typ:6.322Mbps)
- Package: 48pin LQFP


BLOCK DIAGRAM

GENERAL DESCRIPTION

The AK2531 is the J1/J2(JT-G.703) transceiver for Leased line, MUX, Base station for mobile communications etc. It includes Pulse shaper, Line Driver, Clock and Data Recovery, LOS Detector, Crystal oscillator, etc. in one package. Internal equalizer automatically equalizes the receive pulse attenuated by the cable loss.

PIN ASSIGNMENTS

PIN CONDITION

Pin No.	Pin Name	I/O	Pin Type	AC Load	DC Load	Comments
1	NC	-				Note 1)
2	TPOS	I	TTL/CMOS			TTL for 5V, CMOS for 3.3V
3	TNEG	I	TTL/CMOS			TTL for 5V, CMOS for 3.3V
4	TCLK	ı	TTL/CMOS			TTL for 5V, CMOS for 3.3V
5	DVSS	ı	POWER			
6	DVDD	I	POWER			
7	DGND	I	POWER			
8	RPOS	0	CMOS	≤50pF		
9	RNEG	0	CMOS	≤50pF		
10	RCLK	0	CMOS	≤50pF		
11	LOS	0	CMOS	≤50pF		
12	NC	-				Note 1)
13	NC	-				Note 1)
14	PGND		POWER			
15	XTALOUT	0	ANALOG			
16	XTALIN	ı	ANALOG			
17	NC	-				Note 1)
18	RAVDD	I	POWER			
19	RAVSS	I	POWER			
20	BGREF	0	ANALOG		12kohm.	Connect to +/-1% accuracy resister
21	NC	-				Note 1)
22	EQCAP	I/O	ANALOG	100nF		Connect to +/-10% accuracy capacitance
23	EQBPS	I	TTL/CMOS			TTL/5V,CMOS/3.3V
24	NC	-				Note 1)
25	NC	-				Note 1)
26	RTIP	I	ANALOG			Input impedance between the both pins is over
27	RRING	ı	ANALOG			2kohm.
28	NC	-				Note 1)
29	TEST5	0				
30	TEST6	0				
31	NC	-				Note 1)
32	TTIP	0	ANALOG	≤15pF		
33	TAVSS	I	POWER			

Pin No.	Pin Name	I/O	Pin Type	AC Load	DC Load	Comments
34	TAVDD	I	POWER			
35	TRING	0	ANALOG	≤15pF		
36	NC	-				Note 1)
37	NC	-				Note 1)
38	TEST1	I	TTL/CMOS			TTL for 5V, CMOS for 3.3V
39	TEST2					
40	TEST3					
41	TEST4					
42	AVSS	I	POWER			
43	AVDD	I	POWER			
44	NC	-				Note 1)
45	DR6M	I	TTL/CMOS			TTL for 5V, CMOS for 3.3V
46	PS3V	1	CMOS			Note 2)
47	RESET	I	TTL/CMOS			TTL for 5V, CMOS for 3.3V
48	LPBCK	I	TTL/CMOS			TTL for 5V, CMOS for 3.3V

Note 1) Should be connected to VSS.

Note 2) Should be connected VDD for 3.3V operation or VSS for 5.0V operation.

PIN DESCRIPTIONS

Pin Name	I/O	Function	Comments		
Signal Inter	face				
TTIP	0	Transmit Positive Data Output			
TRING	0	Transmit Negative Data Output			
TPOS	I	Transmit Positive Data Input			
		Incoming data is sampled at the falling edge of TCLK			
TNEG	ı	Transmit Negative Data Input			
		Incoming data is sampled at the falling edge of TCLK			
TCLK	I	Transmit clock			
RTIP	I	Receive Positive Data Input			
RRING	I	Receive Negative Data Input			
RPOS	0	Receive Positive Data Output			
		Fixed to low level during LOS status.			
RNEG	0	Receive Negative Data Output			
		Fixed to low level during LOS status.			
RCLK	0	Receive Clock Output			
		Fixed to low level during LOS status.			
Control Interface					
DR6M	ı	Data Rate Select			
		H: 6.322Mbps L: 1.544Mbps			
PS3V	I	Power supply voltage select			
		H: 3.3V Supply L: 5.0V Supply			
EQBPS	I	Equalizer bypass			
		H : Disable Equalizer L : Enable Equalizer			
RESET	I	Reset			
		Active High input. Fixed to VSS for normal use.			
LPBCK	I	Loop back			
		When LPBCK=High, TTIP and TRING are loop back to RTIP and			
		RRING.			
LOS	0	Loss of signal			
		If the incoming signal is lower than the Loss of signal threshold for			
		more than 25 ms, LOS pin is set to High. During the loss status, if the			
		incoming signal becomes higher than the threshold, LOS pin is set to			
	<u> </u>	Low within 125 us.			
TEST1-4		Test pin			
		These pins are used only for tests. Should be fixed to low for normal			
TEOTE		use.			
TEST5,6	0	Test pin			
		These pins are used only for tests. Should be float for normal use.			

Pin Name	I/O	Function	Comments
Power Supp	oly		
DVSS	I	Negative Power Supply for Digital circuit	
DVDD	ı	Positive Power Supply for Digital circuit	
DGND	I	Negative Power Supply for Digital circuit	
PGND	I	Negative Power Supply for Pad	
RAVDD	I	Positive Power Supply for the analog circuit	
RAVSS	I	Negative Power Supply for the analog circuit	
TAVSS	I	Negative Power Supply for analog circuit.	
TAVDD	I	Positive Power Supply for analog circuit.	
AVSS	I	Negative Power Supply for analog circuit	
AVDD	I	Positive Power Supply for analog circuit	
BGREF	0	Current reference	
		12 kΩ resister should be connected between this pin and RAVSS.	
Others	1		
XTALOUT	0	X-tal Input / X-tal Output	
		X-tal should be connected between these pins.	
XTALIN	I	- 1.544Mbps : 24.704MHz	
AIALIN		- 6.322Mbps : 25.248MHz	
		20pF is the recommended value for the external capacitance connected	
		between each of these pins and VSS.	
EQCAP	I/O	Equalizer Stability Capatitor	
		External capacitance (100nF±10%) should be connected to stabilize	
		equalizer.	
NC	-	Not connected.	
		Must be connected to VSS except 29 and 30 pins.	
		29 and 30 pins must be left floating.	

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Min	Max	Units	Conditions
DC Supply	VDD	-0.3	6.5	V	Apply to TAVDD, RAVDD,
					AVDD, DVDD
Ground Level	VSS	0	0	V	Apply to PGND, TAVSS,
					RAVSS, DVSS, DGND, AVSS
					Note 1)
Digital Input Voltage	VDIN	PGND-0.3V	DVDD+0.3V	V	
Analog Input Voltage	VAIN	PGND-0.3V	RAVDD+0.3V	V	
Input Current	IIN	-10	10	mA	
Storage Temperature	Tstg	-55	130	°C	

Note 1) PGND \leq TAVSS, RAVSS, DVSS, DGND, AVSS DGND \leq DVSS

RECOMMENDED OPERATING COMDITIONS

Parameter	Symbol	min	typ	max	Units	Conditions
DC Supply (3.3V mode)	RAVDD,TAVD	3.135	3.3	3.465	V	3.3V+/-5%
DC Supply (5.0V mode)	DDVDD,AVDD	4.75	5.0	5.25	V	5.0V+/-5%
Ambient Operating Temperature	Та	-10	25	+70	°C	

ELECTRICAL CHARACTERISTICS

Parameter			Symbol	Min	typ	max	Units	Conditions
Power	VDD=5.0V	1.5M	PDH1		170	237	mW	Note1
Consumption		6.3M	PDH2		160	231	mW	Note1
	VDD=3.3V	1.5M	PDL1		122	174	mW	Note2
		6.3M	PDL2		99	146	mW	Note2

Note 1: 100% mark, Load 1100hm Note 2: 100% mark, Load 750hm

ELECTRICAL CHARACTERISTICS

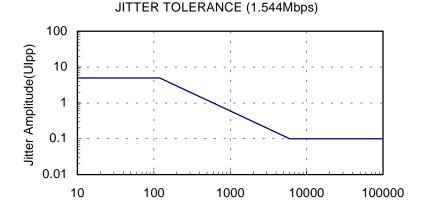
DC CHARACTERISTICS

Parameter	Symbol	Min	typ	max	Units	Conditions
5.0V Supply (PS3V=Low)						
Digital High-Level Output Voltage	VOH	0.9DVDD			V	IOH=-40uA
Digital Low-Level Output Voltage	VOL			0.4	V	IOL=1.6mA
Digital High-Level Input Voltage	VIH	2.4			V	
Digital Low-Level Input Voltage	VIL			0.8	V	
3.3V Supply (PS3V=High)						
Digital High-Level Output Voltage	VOH	0.9DVDD			V	IOH=-40uA
Digital Low-Level Output Voltage	VOL			0.4	V	IOL=1.6mA
Digital High-Level Input Voltage	VIH	0.7DVDD			V	
Digital Low-Level Input Voltage 1	VIL			0.3DVDD	V	Except EQBPS and
						PS3V pin
						(Note3)
Digital Low-Level Input Voltage 2	VILE			0.6	V	EQBPS pin

Note 3: PS3V pin should be connected to DVDD for 3.3V Supply and to DVSS for 5.0V Supply.

RECEIVER

Parameter			Symbol	Min	Тур	Max	Units	Conditions
Input Impedance			2			kohm		
Sensitivity	1.544Mbps	Equalizer OFF		-6		0	dB	Note 1, EQBPS="H"
		Equalizer ON		-18		-6	dB	Note 1, EQBPS="L"
6.312Mbps			-4.5		0	dB	Note 2	
Loss of Sig	nal Threshold	t		0.15		0.25	V_{0p}	Note 3
Allowable (Consecutive 2	Zeros		60			Bit	Note 4
S/X tolerance					16	dB	Note 5	
Generated Jitter				0.02		UIpp		
Jitter Tolera	ance		ITU-T G.	824		•	•	


Note 1: Relative value to the reference level with 110ohm cable. $(3.15V_{0p}\pm0.38)$

Note 2: Relative value to the reference level with 75ohm cable. (2.0V_{0p}±0.3%)

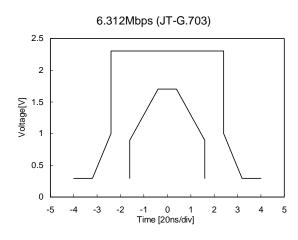
Note 3: Level at the line side of transformer.


Note 4: The device will tolerate consecutive zeros with PN20 pattern.

Note 5: The frequency of interference signal is 700kHz(1.544Mbps) or 3MHz(6.312Mbps).

JITTER TOLERANCE (6.312Mbps)

Jiiter Frequency(Hz)


TRANSMITTER

Parameter	Symbol	Min	Тур	Max	Units	Condi	tions
1.544Mbps (DR6M=Low)							
Transmit Pulse Amplitude	Va	2.77	3.15	3.53	V_{0p}	JT-G703	Note1
Transmit Pulse Width		285	324	363	Ns		
Transmit Pulse Under-Shoot		-0.25Va		-0.75Va	V _{0p}		
Transmit Data Latency from TPOS/TNEG to TTIP/TRING			0.75	1	Bit		
6.312Mbps (DR6M=High)							
Transmit Pulse Shape			JT-C	G703		Note2	
Transmit Pulse Amplitude At Normalized point		1.7	2.0	2.3	V_{0p}	Note2	
Transmit Data Latency from TPOS/TNEG to TTIP/TRING			1	1.5	bit		

Note 1: Measured at the line side of transformer terminated with 110ohm. (isolated pulse: "1000")

Note 2: Measured at the line side of transformer terminated with 75ohm. (isolated pulse: "1000")

ISOLATED PULSE MASK

AC CHARACTERISTICS (Clock/Data)

Parameter		Symbol	Min	Тур	Max	Units	Condi-	Notes
							tions	
Clock 1.544Mbps	TCLK	fci1		1.544000		MHz	±50ppm	
Frequency 6.312Mbps		fci2		6.312000			±30ppm	
Duty Cycle	TCLK		40		60	%		Note 1
	RCLK		46		54	%		Note 1
Delay Time	RCLK	t _{pd}	-20		20	ns	15pFload	Fig.1
from RCLK to RPOS/RNEG	RPOS RNEG		-25		25	ns	50pFload	Fig.1
Setup/Hold Time from TCLK to TPOS/TNEG	TCLK TPOS TNEG	t _{su}	-15		15	ns		Fig.1
Rise Time/Fall Time	RCLK,	t _r			10	ns	15pFload	Fig.2
	RPOS, RNEG,	·			20	ns	50pFload	Fig.2
	LOS							

Note 1: Duty Cycle: ($t_{pwh} \! / \, (\; t_{pwh} \! + t_{pwl}) \;) \times 100\%$

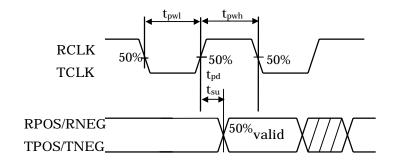


Fig. 1 Transmit/Receive Data Timing



Fig. 2 Rise and Fall Time (RCLK,RPOS,RNEG,TCLK,TPOS,TNEG)

FUNCTIONAL DESCRIPTION

POWER SUPPLY

AK2531 operates at 3.3V or 5.0V. PS3V should be set to High for 3.3V or Low for 5.0V.

PS3V pin	Power Supply
Н	3.3V
L	5.0V

DATA TRANSFER RATE

AK2531 operates at the data rate of 1.544 Mbps or 6.312 Mbps. If you set DR6M pin to High, AK2531 goes into the mode for 6.312 Mbps, or if you set DR6M pin to Low, AK2531 goes into the mode for 1.544 Mbps. Depending on the data rate, MCLK pin requires 24.704 MHz for 1.544 Mbps or 25.248 MHz for 6.312 Mbps.

DR6M pin	Data Transfer Rate MCLK	
Н	6.312Mbps	25.248MHz
L	1.544Mbps	24.704MHz

EXTERNAL COMPONENTS

The external components shown in the table below should be connected to the appropriate pins depending on the operation voltage or data rate.

	5.0V Supply		3.3V Supply	
	1.544Mbps	6.312Mbps	1.544Mbps	6.312Mbps
Turns Ratio	1:1	1:1	1:1.4	1:1
Load Impedance	110ohm	75ohm	110ohm	75ohm
Receive side	55 ohm	37.5 ohm	28 ohm	37.5 ohm
Termination				
Crystal Frequency	24.704MHz	25.248MHz	24.704MHz	25.248MHz
Characteristics	Described in "Electrical Characteristics"			

PULSE SHAPER

AK2531 samples the transmit data at TPOS and TNEG pins on the falling edge of TCLK. The sampled incoming data are converted to AMI signal and output at TTIP and TRING pins. If TCLK is in loss, AMI data is set to the Space "0" and is synchronized to the Xtal.

LINE EQUALIZER

AK2531 equalizes the line loss of \sqrt{f} characteristics. EQBPS pin should be set as shown below.

EQBPS pin	Equalizer	Conditions of Cable	
Н	Bypassed	110Ω twisted pair up to 6dB cable loss (1.544Mbps mode)	
L	Enable	110 Ω twisted pair from 6dB to 18dB cable loss (1.544Mbps mode)	
		75 Ω coax cable up to 4.5dB cable loss (6.312Mbps mode)	

LOCAL LOOPBACK

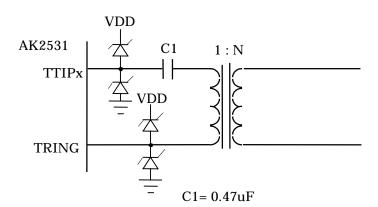
If you set LPBCK pin to High, AK2531 makes the transmit clock and the line driver output loopback to the receive clock and data input. In this mode, LOS pin is fixed to "Low".

LPBCK pin	Mode	Operation		
Н	Loopback	TCLK	\rightarrow	RCLK
		TTIP	\rightarrow	RTIP
		TRING	\rightarrow	RRING
L	Normal Operation			

LOSS OF SIGNAL

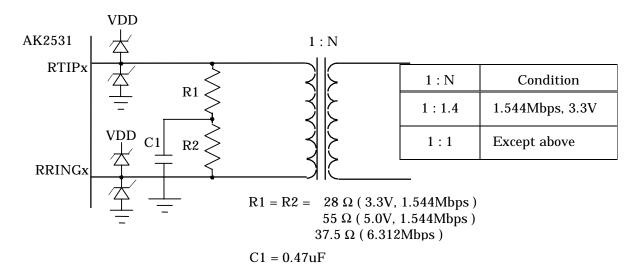
If the received signal level is lower than the LOS threshold during 25ms(typ), AK2531 recognizes that status as Loss of signal and LOS pin goes to "high". LOS pin returns to "low" within 125us after the received signal level is beyond the LOS threshold.

The states of each pin are shown below.


Pin name	STATE		
	Normal operation Loss of signal		
LOS	L	Н	
RCLK	Recovered clock	L	
RPOS	Recovered positive data	L	
RNEG	Recovered negative data	L	

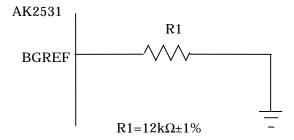
POWER ON RESET

When the power supply for AK2531 rises within 10ms, AK2531 will be in the reset state for 15ms (max : guaranteed by design).

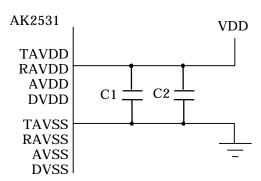

RECOMMENDED EXTERNAL CIRCUIT

TRANSMITTER

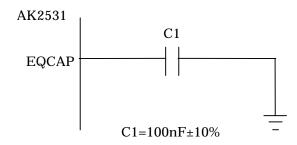
1 : N	Condition	
1:1.4	1.544Mbps, 3.3V	
1:1	Except above	


RECEIVER

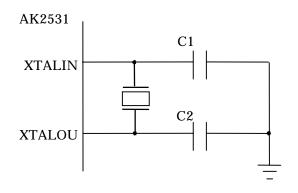
REFERENCE


 $12~k\Omega\pm1\%$ resistor should be connected to determine the internal reference current.

R1 is recommended to connect to AK2531 as short as possible to avoid noise.


POWER SUPPLY

AK2531 has 4 paths for the power supply such as RAVDD-RAVSS,TAVDD-TAVSS,AVDD-AVSS and DVDD-DVSS. To decouple the power supplies, as shown below, C1, C2 capacitors should be connected between those power supplies respectively. These should be connected to AK2531 as short as possible. The table below shows a typical recommended value. These values depend on the condition of the power supply line on user's board. Please decide the value of the capacitors based on your evaluation.



Pin name	C1	C2
RAVDD-RAVSS,	1uF	0.1uF
AVDD-AVSS		
DVDD-DVSS,	1uF	0.01uF
TAVDD-TAVSS		

EQUALIZER STABILITY CAPACITOR

X-TAL OSC

Xtal:

1.544Mbps : 24.704 MHz ± 50 ppm

6.312Mbps: 25.248 MHz ± 50 ppm

C1 = C2 = 20 pF (Max 25pF)

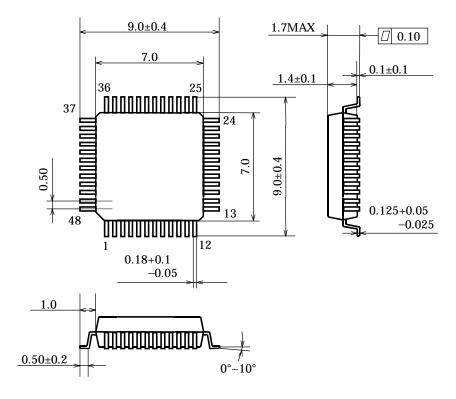
PACKAGE

48pin LQFP

MARKING

(1)Pin #1 indication

(2)Date Code: 7digits XXXXYZZ


(3)Marketing Code: AK2531

(4)AKM Logo

OUTLINE DIMENSIONS

Units: mm

IMPORTANT NOTICE

• These products and their specifications are subject to change without notice. Before considering any use or application, consult the Asahi Kasei Microsystems Co., Ltd. (AKM) sales office or authorized distributor concerning their current status.

- AKM assumes no liability for infringement of any patent, intellectual property, or other right in the application or use of any information contained herein.
- Any export of these products, or devices or systems containing them, may require an export license or other official approval under the law and regulations of the country of export pertaining to customs and tariffs, currency exchange, or strategic materials.
- AKM products are neither intended nor authorized for use as critical components in any safety, life support, or other hazard related device or system, and AKM assumes no responsibility relating to any such use, except with the express written consent of the Representative Director of AKM. As used here:
 - (a) A hazard related device or system is one designed or intended for life support or maintenance of safety or for applications in medicine, aerospace, nuclear energy, or other fields, in which its failure to function or perform may reasonably be expected to result in loss of life or in significant injury or damage to person or property.
 - (b) A critical component is one whose failure to function or perform may reasonably be expected to result, whether directly or indirectly, in the loss of the safety or effectiveness of the device or system containing it, and which must therefore meet very high standards of performance and reliability.
- It is the responsibility of the buyer or distributor of an AKM product who distributes, disposes of, or otherwise places the product with a third party to notify that party in advance of the above content and conditions, and the buyer or distributor agrees to assume any and all responsibility and liability for and hold AKM harmless from any and all claims arising from the use of said product in the absence of such notification.

MS0079-E-00 17 2001/03