BTA04 T/D/S/A
BTB04 T/D/S/A
KERSEMI ELECTRONIC CO.,LTD.
SENSITIVE GATE TRIACS

TO-220AB

FEATURES

- Very low IGT = 10mA max
- Low $\mathrm{I}_{\mathrm{H}}=15 \mathrm{~mA}$ max
- BTA Family:

Insulating voltage $=2500 \mathrm{~V}_{(\mathrm{RMS}}$
(UL recognized: E81734)

DESCRIPTION

The BTA/BTB04 T/D/S/A triac family are high performance glass passivated PNPN devices.
These parts are suitables for general purpose applications where gate high sensitivity is required. Application on 4Q such as phase control and static switching.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter			Value	Unit
$I_{\text {T(RMS })}$	RMS on-state current (360° conduction angle)	BTA	$\mathrm{Tc}=90^{\circ} \mathrm{C}$	4	A
		BTB	$\mathrm{Tc}=95^{\circ} \mathrm{C}$		
$I_{\text {TSM }}$	Non repetitive surge peak on-state current (Tj initial $=25^{\circ} \mathrm{C}$)		$\mathrm{tp}=8.3 \mathrm{~ms}$	42	A
			$t \mathrm{p}=10 \mathrm{~ms}$	40	
$1^{2} \mathrm{t}$	1^{2} t value		$t \mathrm{p}=10 \mathrm{~ms}$	8	$\mathrm{A}^{2} \mathrm{~s}$
dl/dt	Critical rate of rise of on-state current Gate supply: $\mathrm{I}_{\mathrm{G}}=50 \mathrm{~mA} \quad \mathrm{dl}_{\mathrm{G}} / \mathrm{dt}=0.1 \mathrm{~A} / \mu \mathrm{s}$		Repetitive $F=50 \mathrm{~Hz}$	10	A/ $/ \mathrm{S}$
			Non repetitive	50	
$\begin{gathered} \mathrm{Tstg} \\ \mathrm{Tj} \end{gathered}$	Storage and operating junction temperature range			$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+110 \end{aligned}$	${ }^{\circ} \mathrm{C}$
TI	Maximum lead soldering temperature during 10s at 4.5 mm from case			260	${ }^{\circ} \mathrm{C}$

Symbol	Parameter	BTA $/$ BTB04-			Unit
		400 T/D/S/A	600 T/D/S/A	700 T/D/S/A	
$V_{\text {DRM }}$ $V_{\text {RRM }}$		400	600	700	

THERMAL RESISTANCE

Symbol	Parameter		Value	Unit
Rth (j-a)	Junction to ambient		60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Rth (j-c) DC	Junction to case for DC	BTA	4.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		BTB	3.2	
Rth (j-c) AC	Junction to case for 360° conduction angle ($\mathrm{F}=50 \mathrm{~Hz}$)	BTA	3.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		BTB	2.4	

GATE CHARACTERISTICS (maximum values)
$\mathrm{PG}_{\mathrm{G}(\mathrm{AV})}=1 \mathrm{~W} \quad \mathrm{P}_{\mathrm{GM}}=40 \mathrm{~W}(\mathrm{tp}=20 \mu \mathrm{~s}) \quad \mathrm{I}_{\mathrm{GM}}=4 \mathrm{~A}(\mathrm{tp}=20 \mu \mathrm{~s}) \quad \mathrm{V}_{\mathrm{GM}}=16 \mathrm{~V}(\mathrm{tp}=20 \mu \mathrm{~s})$

ELECTRICAL CHARACTERISTICS

Symbol	Test conditions			Quadrant		BTA / BTB04				Unit	
					T	D	S	A			
$I_{\text {GT }}$	$V_{D}=12 \mathrm{~V}(\mathrm{DC}$	$R L=33 \Omega$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		I-II- III	MAX.	5	5	10	10	mA
				IV	MAX.	5	10	10	25		
V_{GT}	$\mathrm{V}_{\mathrm{D}}=12 \mathrm{~V}$ (DC)	$\mathrm{R}_{\mathrm{L}}=33 \Omega$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I-II-III-IV	MAX.	1.5				V	
$V_{G D}$	$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\text {DRM }}$	$\mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega$	$\mathrm{Tj}=110^{\circ} \mathrm{C}$	I-II - III - IV	MIN.	0.2				V	
tgt	$\begin{aligned} & V_{D}=V_{\text {DRM }} \quad I_{G} \\ & d l_{G} / \mathrm{dt}=0.5 \mathrm{~A} / \mathrm{I} \end{aligned}$	$=40 \mathrm{~mA}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I-II-III-IV	TYP.	2				$\mu \mathrm{s}$	
IL	$\mathrm{I}_{\mathrm{G}}=1.2 \mathrm{I}_{\mathrm{GT}}$		$\mathrm{Tj}=25^{\circ} \mathrm{C}$	I - III - IV	TYP.	10	10	20	20	mA	
			II	20		20	40	40			
IH^{*}	$I_{T}=100 \mathrm{~mA}$ Gate open			$\mathrm{Tj}=25^{\circ} \mathrm{C}$		MAX.	15	15	25	25	mA
$\mathrm{V}_{\text {TM }}$ *	$\mathrm{I}_{\text {т }}=5.5 \mathrm{~A}$	$p=380 \mu \mathrm{~s}$	$\mathrm{Tj}=25^{\circ} \mathrm{C}$		MAX.	1.65				V	
IDRM IRRM	VRM rated VRRM rated		$\mathrm{Tj}=25^{\circ} \mathrm{C}$		MAX.	0.01				mA	
			$\mathrm{Tj}=110^{\circ} \mathrm{C}$		MAX.	0.75					
$\mathrm{dV} / \mathrm{dt}$ *	Linear slope up to $V_{D}=67 \% V_{\text {DRM }}$ gate open		$\mathrm{Tj}=110^{\circ} \mathrm{C}$		TYP.	10	10	-	-	$\mathrm{V} / \mathrm{\mu s}$	
				MIN.	-	-	10	10			
(dl/dt) c^{*}	$(\mathrm{dl} / \mathrm{dt}) \mathrm{c}=1.8 \mathrm{~A}$			$\mathrm{Tj}=110^{\circ} \mathrm{C}$		TYP.	1	1	5	5	$\mathrm{V} / \mathrm{\mu s}$

[^0]PRODUCT INFORMATION

Package	$\mathrm{I}_{\text {(RMS })}$	$\mathrm{V}_{\text {DRM }} / \mathrm{V}_{\text {RRM }}$	Sensitivity Specification			
	A	V	T	D	S	A
BTA (Insulated)	4	400	X			X
		600	X	X		
		700	X		X	
BTB (Uninsulated)		400	X	X		
		600	X		X	

ORDERING INFORMATION

Fig．1：Maximum RMS power dissipation versus RMS on－state current（ $F=50 \mathrm{~Hz}$ ）．（Curves are cut off by（dI／dt）c limitation）

Fig．3：Correlation between maximum RMS power dissipation and maximum allowable temperature （Tamb and Tcase）for different thermal resistances heatsink＋contact（BTB）．

Fig．5：Relative variation of thermal impedance versus pulse duration．

Fig．2：Correlation between maximum RMS power dissipation and maximum allowable temperature （Tamb and Tcase）for different thermal resistances heatsink＋contact（BTA）．

Fig．4：RMS on－state current versus case temper－ ature．

Fig．6：Relative variation of gate trigger current and holding current versus junction temperature．

$$
\frac{\operatorname{lgt}[[\mathrm{Tj}]}{\operatorname{lgt}\left[\mathrm{T} j=25^{\circ} \mathrm{C}\right]} \quad \frac{\ln [\mathrm{T}]]}{\ln \left[\mathrm{Tj}=25^{\circ} \mathrm{C}\right]}
$$

Fig．7：Non repetitive surge peak on－state current versus number of cycles．

Fig．9：On－state characteristics（maximum values）．

Fig．8：Non repetitive surge peak on－state current for a sinusoidal pulse with width： $\mathrm{t} \leq 10 \mathrm{~ms}$ ，and cor－ responding value of $\mathrm{I}^{2} \mathrm{t}$ ．

[^0]: * For either polarity of electrode A_{2} voltage with reference to electrode A_{1}

