

FEATURES

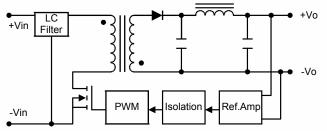
- 1500VDC Isolation
- Six-Sided Shielding
- Efficiency up to 86%
- MTBF > 700,000 Hours
- Internal SMT Construction
- DESCRIPTION
- 4:1 Ultra Wide Input Range
- UL 94V-0 Package Material
 UL60950-1 Safety Approval
- Complies with EN55022 Class A
- Positive Remote On/Off Control (Optional)

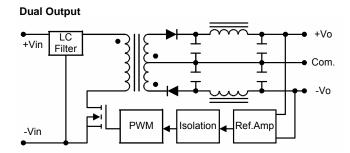
The DMW series of DC/DC converters provide up to 15 watts in a 2 x 1 x 0.4 inch package. These converters operate over 4:1 wide input voltage ranges of 9-36VDC and 18-75VDC. This series also has single and dual output models available. These converters feature efficiency up to 86%, positive remote ON/OFF (optional), six-sided shielding, 1500VDC isolation, and short circuit protection. This series is ideal for data communication equipment, mobile battery driven equipment, process/machine control equipment, telecommunication equipment, computer peripheral systems, distributed power systems, mixed analog/digital subsystems, and industrial robot systems. The EN55022 Class A conducted noise compliance minimizes design time, cost, and eliminates the need for external filter components.

	ased on 25°C, Nominal Input Voltage, and Maximum Output Cur eserve the right to change specifications based on technological				
SPECIFICATION	TEST CONDITIONS	Min	Nom	Max	Unit
NPUT (V _{in})		0	04	20	
Dperating Voltage Range	24V nominal input models	9	24	36	VDC
·	48V nominal input models	<u>18</u>	48	75	VDC VDC
Start Voltage	24V nominal input models		8.5	9	VDC
	48V nominal input models	15	17	18	
Jnder Voltage Shutdown	24V nominal input models	7	8	8.5	VDC
	48V nominal input models	13	15	17	VDC
Reverse Polarity Input Current				1	A
Short Circuit Input Power				3500	mW
nput Surge Voltage (1000ms)	24V nominal input models	-0.7		50	VDC
	48V nominal input models	-0.7		100	VDC
nput Filter			Pi F	llter	
DUTPUT (V _o)					
Dutput Voltage Range				Table	
Dutput Voltage Accuracy			±1.0	±2.0	%
Dutput Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%
oad Regulation	Io = 10% to 100%		±0.5	±1.0	%
ine Regulation	Vin = min. to max.		±0.1	±0.5	%
Dutput Power				15	W
Dutput Current Range			See	Table	
Ripple & Noise (peak to peak)	20MHz bandwidth		55	80	mV _{pk-p}
Ripple & Noise (peak to peak)	Over Line, Load, and Temperature			100	mV _{pk-p}
Ripple & Noise				15	mVrms
ransient Recovery Time (See Note 1)	25% load step change		300	500	μs
Fransient Response Deviation	25% load step change		±2	±4	%
POSITIVE REMOTE ON/OFF (See Note 5)	20% load step change		12	14	70
Supply On		2	2.5 to 5.5VDC	or Open Circ	it
Supply Off		-0.7		0.8	VDC
Standby Input Current		-0.7		10	
Standby Input Current	$\lambda = 0.00$				mA
Control Input Current (On)	Vin - RC = 5.0V			50 -1	mA
Control Input Current (Off) Control Common	Vin – RC = 0V				mA
			Referenced to	negative inp	ut
PROTECTION			1	1	1 04
Over Power Protection		120			%
Short Circuit Protection				nuous	
nput Fuse Recommendation	24V nominal input models			w-Blow Type	
	48V nominal input models		1250mA Slo	w-Blow Type	
GENERAL					
Efficiency			See	Table	
Switching Frequency		290	330	400	KHz
solation Voltage Rated	60 seconds	1500			VDC
solation Voltage Test	Flash Test for 1 second	1650			VDC
solation Resistance	500VDC	1000			MΩ
solation Capacitance	100KHz, 1V		1200	1500	pF
nternal Power Dissipation			.200	5,000	mW
ENVIRONMENTAL		I	1	0,000	
Operating Temperature (Ambient)		-40	1	+60	°C
Operating Temperature (Case)		-40		+100	0°
Storage Temperature					0°
	1 Emm from coop for 40	-50		+125	
ead Temperature	1.5mm from case for 10 seconds			260	°C
łumidity				95	%
Cooling				onvection	
RFI		S	ix-sided shield		
Femperature Coefficient			±0.01	±0.02	%/°C
ИТВЕ	MIL-HDBK-217F @ 25°C, Ground Benign			0 hours	
Conducted EMI			EN55022	2 Class A	
PHYSICAL					
			4 4 2	(22-)	
Veight			1,1.307	2 (320)	
		20 x 10		z (32g) (50 8 x 25 4 x	(10.2 mm
Veight Dimensions Case Material			x 0.4 inches al with non-co	(50.8 x 25.4 >	

MODEL SELECTION TABLE

Model Number Input Volta		Output	Output Current		Input Current		Reflected	Output	Efficiency	Max Capacitive
wouer Number	Input Voltage	Voltage	Min	Max	No Load	Max Load	Ripple Current	Power	(Тур)	Load
DMW24S3.3-3000	24 VDC	3.3 VDC	300mA	3000mA		528mA	40mA (typ)	9.9W	78%	470µF
DMW24S5-3000		5 VDC	300mA	3000mA		762mA		15W	82%	470µF
DMW24S5.1-3000		5.1 VDC	300mA	3000mA		735mA		15.3W	81%	470µF
DMW24S12-1250		12 VDC	125mA	1250mA		726mA		15W	85%	470µF
DMW24S15-1000	(9 ~ 36 VDC)	15 VDC	100mA	1000mA	25mA (typ)	771mA		15W	86%	470µF
DMW24D5-1500		±5 VDC	±150mA	±1500mA	-	735mA		15W	81%	220µF
DMW24D12-625		±12 VDC	±62.5mA	±625mA		726mA		15W	85%	220µF
DMW24D15-500		±15 VDC	±50mA	±500mA		787mA		15W	86%	220µF
DMW48S3.3-3000	-	3.3 VDC	300mA	3000mA	– 15mA (typ)	26mA	- 30mA (typ)	9.9W	78%	470µF
DMW48S5-3000		5 VDC	300mA	3000mA		381mA		15W	82%	470µF
DMW48S5.1-3000		5.1 VDC	300mA	3000mA		368mA		15.3W	81%	470µF
DMW48S12-1250	48 VDC	12 VDC	125mA	1250mA		363mA		15W	85%	470µF
DMW48S15-1000	(18 ~ 75 VDC)	15 VDC	100mA	1000mA		386mA		15W	86%	470µF
DMW48D5-1500		±5 VDC	±150mA	±1500mA		368mA		15W	81%	220µF
DMW48D12-625		±12 VDC	±62.5mA	±625mA		363mA		15W	85%	220µF
DMW48D15-500		±15 VDC	±50mA	±500mA		393mA		15W	86%	220µF

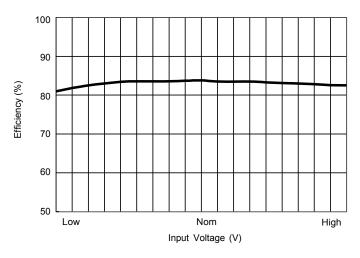

NOTES


1. Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.

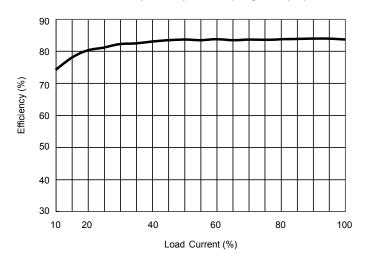
- 2. The DMW series requires a minimum output load to maintain specified regulations. Operation under no-load condition will not damage these devices; however they may not meet all listed specifications.
- 3. All DC/DC converters should be externally fused at the front end for protection.
- 4. Other input and output voltages may be available, please contact factory.
- 5. Only positive control logic remote On/Off is available. To order the converter with positive remote on/off add the suffix "RC" to the part number.
- 6. To order the converter with EN55022 Class A function, please add the suffix "A" to the part number.
- 7. To order the converter with a heatsink please add the suffix "HS" to the part number.

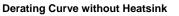
BLOCK DIAGRAMS

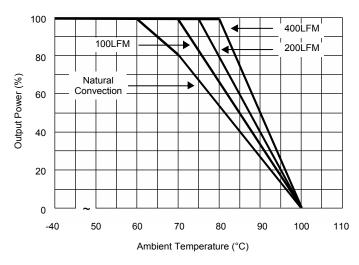
Single Output

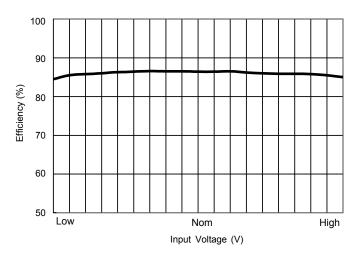


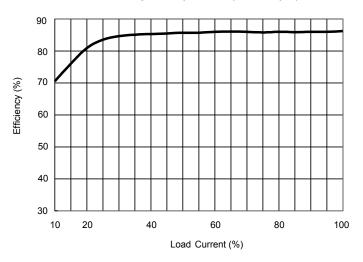
INPUT VOLTAGE TRANSIENT RATING

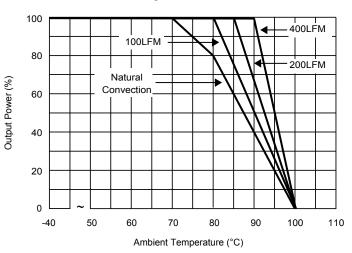





Efficiency vs Input Voltage (Single Output)


Efficiency vs Output Load (Single Output)



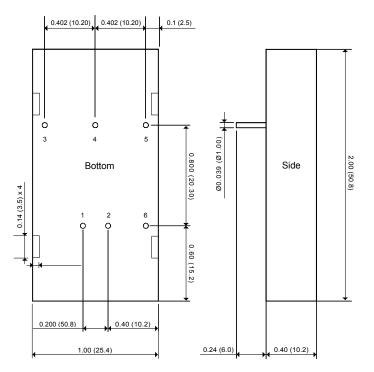


Efficiency vs Input Voltage (Dual Output)

Efficiency vs Output Load (Dual Output)

Derating Curve with Heatsink

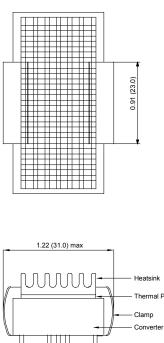
02/24/2010


Wall Industries, Inc. 5 Watson Brook Road Exeter, NH 03833 603-778-2300 <u>www.wallindustries.com</u> Fax 603-778-9797

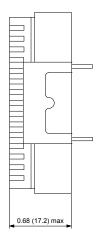
MECHANICAL DRAWING

STANDARD

Unit: inches (mm)

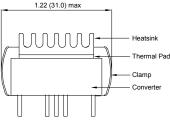

1. Tolerance: X.XX±0.01 (X.X±0.25) X.XXX±0.005 (X.XX±0.13)

2. Pin: ±0.002 (±0.05)


PIN CONNECTIONS					
Pin	Single Output Dual Outpu				
1	+Vin	+Vin			
2	-Vin	-Vin			
3	+Vout	+Vout			
4	No Pin	Common			
5	-Vout	-Vout			
6	*Positive Remote ON/OFF (Optional)				

*Add the suffix "RC" to the part number for Remote On/Off option

WITH HEATSINK


Unit: inches (mm)

1. Tolerance: X.XX±0.01 (X.X±0.25)

2. Pin: ±0.002 (±0.05)

X.XXX±0.005 (X.XX±0.13)

Heatsink Specifications

Heatsink Material: Aluminum Finish: Anodic treatment (black) Weight: 0.07oz (2g)

The Advantages of adding a Heatsink:

- 1. To help heat dissipation and increase the stability and reliability of DC/DC converters at high operating temperature atmosphere.
- 2. To upgrade the operating temperature of DC/DC converters, please refer to the Derating Curve.

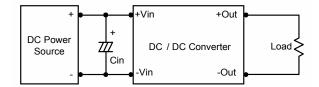
The DMW Series converter is encapsulated in a low thermal resistance molding compound that has excellent resistance/electrical characteristics over a wide temperature range or in high humidity environments. The encapsulant and unit case are both rated to UL 94V-0 flammability specifications. Leads are tin plated for improved solderability.

Rev C

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent.

A logic low is -0.7V to 0.8V. A logic high is 2.5V to 5.5V.


The maximum sink current at on/off terminal during a logic low is -1mA. The maximum allowable leakage current of the switch at on/off terminal (2.5 to 5.5V) is 50µA.

Over Current Protection

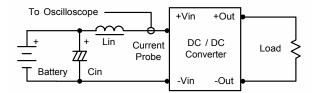
To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. A capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100KHz) capacitor of a 6.8μ F for the 24V and 48V input devices.

Maximum Capacitive Load

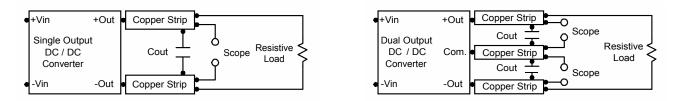
The DMW series has a limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 220µF maximum capacitive load for dual outputs and 470µF capacitive load for single outputs. The maximum capacitance can be found in the Model Selection Guide.


TEST CONFIGURATIONS

Input Reflected-Ripple Current Test Setup

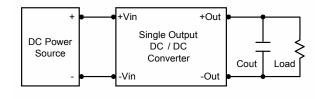
Input reflected-ripple current is measured with an inductor Lin (4.7μH) and Cin (220μF, ESR < 1.0Ω at 100KHz) to simulate source impedance.

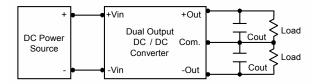
Capacitor Cin offsets possible battery impedance.


Current ripple is measured at the input terminals of the module. Measurement bandwidth is 0-500 KHz.

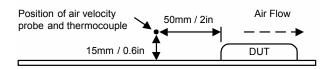
Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor.


Scope measurement should be made by using a BNC socket; measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC/DC converter.



Output Ripple Reduction


A good quality low ESR capacitor placed as close as possible across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module, and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in an experimental apparatus.

COMPANY INFORMATION:

Wall Industries, Inc. has created custom and modified units for over 40 years. Our in-house research and development engineers will provide a solution that exceeds your performance requirements on time and on budget. Our ISO9001-2008 certification is just one example of our commitment to producing a high quality, well documented product for our customers.

Our past projects demonstrate our commitment to you, our customer. Wall Industries, Inc. has a reputation for working closely with its customers to ensure each solution meets or exceeds form, fit and function requirements. We will continue to provide ongoing support for your project above and beyond the design and production phases. Give us a call today to discuss your future projects.

Contact **Wall Industries** for further information:

Phone:	☎ (603)778-2300
Toll Free:	2 (888)587-9255
Fax:	2 (603)778-9797
<u>E-mail:</u>	sales@wallindustries.com
Web:	www.wallindustries.com
Address:	5 Watson Brook Rd.
	Exeter, NH 03833