74LV4052-Q100

Dual 4-channel analog multiplexer/demultiplexer Rev. 1 — 22 July 2013 Pro

Product data sheet

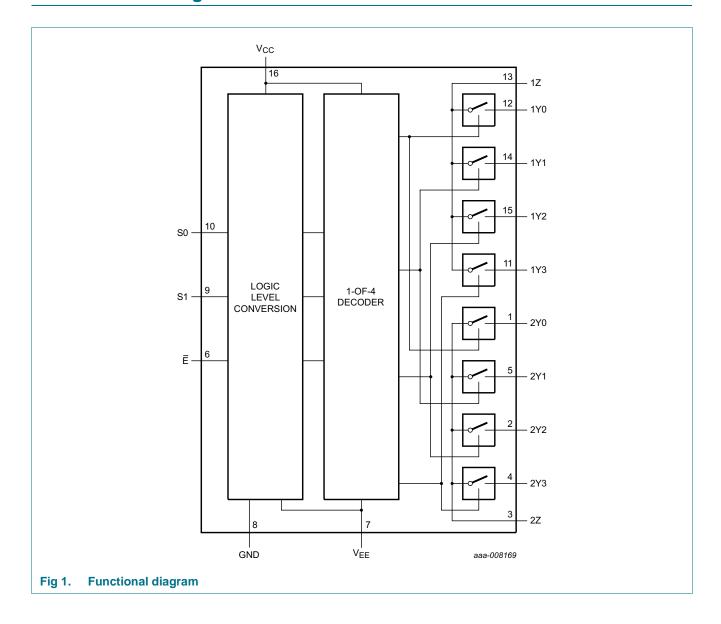
General description 1.

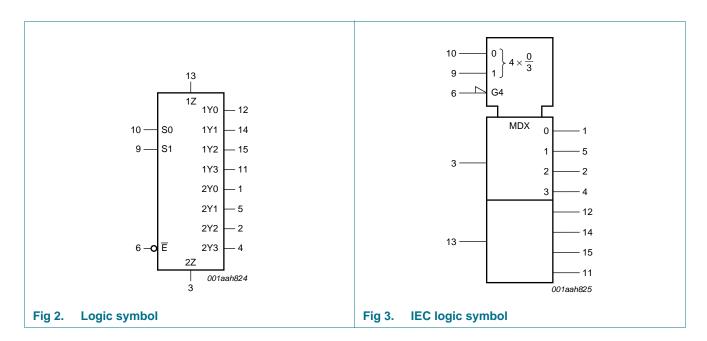
The 74LV4052-Q100 is a dual 4-channel analog multiplexer/demultiplexer with a common select logic. Each multiplexer has four independent inputs/outputs (nY0 to nY3) and a common input/output (nZ). The common channel select logics include two digital select inputs (S0 and S1) and an active LOW enable input (\overline{E}). With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by S0 and S1. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S0 and S1. V_{CC} and GND are the supply voltage pins for the digital control inputs (S0, S1 and E). The V_{CC} to GND ranges are 1.0 V to 6.0 V. The analog inputs/outputs (nY0, to nY3, and nZ) can swing between V_{CC} as a positive limit and V_{EE} as a negative limit. V_{CC} - V_{EE} may not exceed 6.0 V. For operation as a digital multiplexer/demultiplexer, V_{EE} is connected to GND (typically ground).

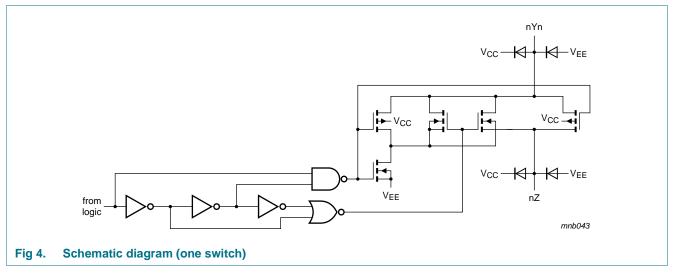
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.

Features and benefits 2.

- Automotive product qualification in accordance with AEC-Q100 (Grade 1)
 - ◆ Specified from -40 °C to +85 °C and from -40 °C to +125 °C
- Optimized for low-voltage applications: 1.0 V to 6.0 V
- Accepts TTL input levels between V_{CC} = 2.7 V and V_{CC} = 3.6 V
- Low ON resistance:
 - ♦ 145 Ω (typical) at $V_{CC} V_{EE} = 2.0 \text{ V}$
 - 90 Ω (typical) at $V_{CC} V_{EE} = 3.0 \text{ V}$
 - 60 Ω (typical) at $V_{CC} V_{EE} = 4.5 \text{ V}$
- Logic level translation:
 - ◆ To enable 3 V logic to communicate with ± 3 V analog signals
- Typical 'break before make' built in
- ESD protection:
 - MIL-STD-833, method 3015 exceeds 2000 V
 - HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V (C = 200 pF, R = 0 Ω)

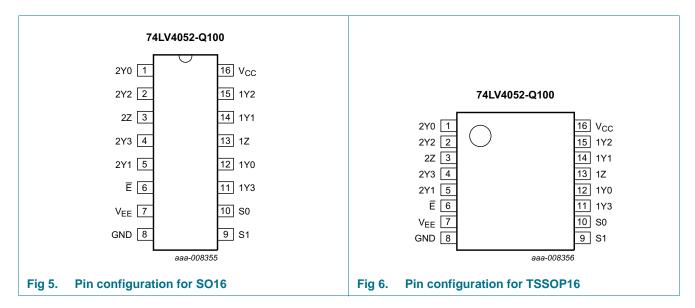



3. Ordering information


Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LV4023D-Q100	–40 °C to +125 °C	SO16	plastic small outline package; 16 leads; body width 3.9 mm	SOT109-1
74LV4053PW-Q100	–40 °C to +125 °C	TSSOP16	plastic thin shrink small outline package; 16 leads; body width 4.4 mm	SOT403-1

4. Functional diagram



5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2. Pin description

Symbol	Pin	Description
2Y0	1	independent input or output
2Y2	2	independent input or output
2Z	3	common input or output
2Y3	4	independent input or output
2Y1	5	independent input or output
Ē	6	enable input (active LOW)
V _{EE}	7	negative supply voltage
GND	8	ground (0 V)
S1	9	select logic input
S0	10	select logic input
1Y3	11	independent input or output
1Y0	12	independent input or output
1Z	13	common input or output
1Y1	14	independent input or output
1Y2	15	independent input or output
V _{CC}	16	positive supply voltage

6. Functional description

Table 3. Function table[1]

•			Channel on
Ē	S1	S0	
L	L	L	nY0 and nZ
L	L	Н	nY1 and nZ
L	Н	L	nY2 and nZ
L	Н	Н	nY3 and nZ
Н	Χ	X	none

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

7. Limiting values

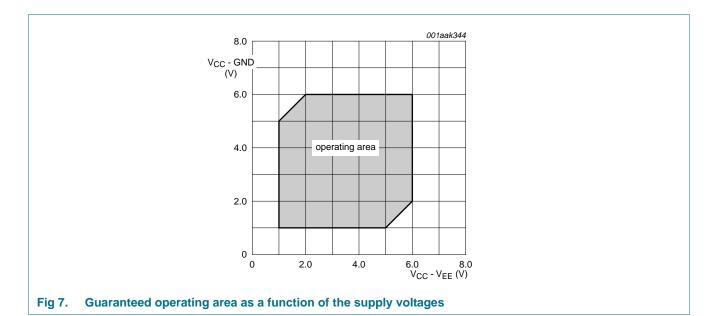
Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to $V_{SS} = 0 \text{ V (ground)}$.

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		<u>[1]</u> –0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V or } V_{I} > V_{CC} + 0.5 \text{ V}$	[2] _	±20	mA
I _{SK}	switch clamping current	V_{SW} < -0.5 V or V_{SW} > V_{CC} + 0.5 V	[2] _	±20	mA
I_{SW}	switch current	$V_{SW} > -0.5 \text{ V or } V_{SW} < V_{CC} + 0.5 \text{ V};$ source or sink current	[2] -	±25	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	<u>[3]</u>		
		DIP16 package	-	750	mW
		SO16 package	-	500	mW
		SSOP16 and TSSOP16 package	-	400	mW

^[1] To avoid drawing V_{CC} current out of terminal nZ, when switch current flows into terminals nYn, the voltage drop across the bidirectional switch must not exceed 0.4 V. If the switch current flows into terminal nZ, no V_{CC} current flows out of terminals nYn. In this case, there is no limit for the voltage drop across the switch, but the voltages at nYn and nZ may not exceed V_{CC} or V_{EE} .

^[2] The minimum input voltage rating may be exceeded if the input current rating is observed.


^[3] For SO16 package: above 70 °C the value of P_{tot} derates linearly with 8 mW/K.
For TSSOP16 package: above 60 °C the value of P_{tot} derates linearly with 5.5 mW/K.

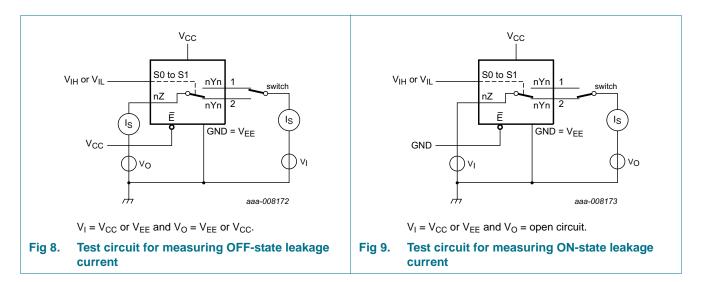
8. Recommended operating conditions

Table 5. Recommended operating conditions[1]

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage	see Figure 7	1	3.3	6	V
VI	input voltage		0	-	V_{CC}	V
V _{SW}	switch voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature	in free air	-40	-	+125	°C
Δt/ΔV	input transition rise and fall rate	$V_{CC} = 1.0 \text{ V to } 2.0 \text{ V}$	-	-	500	ns/V
		$V_{CC} = 2.0 \text{ V to } 2.7 \text{ V}$	-	-	200	ns/V
		V _{CC} = 2.7 V to 6.0 V	-	-	100	ns/V

^[1] The static characteristics are guaranteed from V_{CC} = 1.2 V to 6.0 V. However, LV devices are guaranteed to function down to V_{CC} = 1.0 V (with input levels GND or V_{CC}).

9. Static characteristics


Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	+125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	V _{CC} = 1.2 V	0.9	-	-	0.9	-	V
		V _{CC} = 2.0 V	1.4	-	-	1.4	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	-	-	2.0	-	V
		V _{CC} = 4.5 V	3.15	-	-	3.15	-	V
		$V_{CC} = 6.0 \text{ V}$	4.20	-	-	4.20	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 1.2 V	-	-	0.3	-	0.3	V
		V _{CC} = 2.0 V	-	-	0.6	-	0.6	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	-	-	0.8	-	0.8	V
		V _{CC} = 4.5 V	-	-	1.35	-	1.35	V
		$V_{CC} = 6.0 \text{ V}$	-	-	1.80	-	1.80	V
I _I	input leakage current	$V_I = V_{CC}$ or GND						
		$V_{CC} = 3.6 \text{ V}$	-	-	1.0	-	1.0	μΑ
		$V_{CC} = 6.0 \text{ V}$	-	-	2.0	-	2.0	μΑ
I _{S(OFF)}	OFF-state leakage current	$V_I = V_{IH}$ or V_{IL} ; see <u>Figure 8</u>						
	=) OFF-state leakage curren	$V_{CC} = 3.6 \text{ V}$	-	-	1.0	-	1.0	μΑ
		$V_{CC} = 6.0 \text{ V}$	-	-	2.0	-	2.0	μΑ
I _{S(ON)}	ON-state leakage current	$V_I = V_{IH}$ or V_{IL} ; see <u>Figure 9</u>						
		$V_{CC} = 3.6 \text{ V}$	-	-	1.0	-	1.0	μΑ
		$V_{CC} = 6.0 \text{ V}$	-	-	2.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A						
		$V_{CC} = 3.6 \text{ V}$	-	-	20	-	40	μΑ
		$V_{CC} = 6.0 \text{ V}$	-	-	40	-	80	μΑ
ΔI_{CC}	additional supply current	per input; $V_I = V_{CC} - 0.6 \text{ V}$; $V_{CC} = 2.7 \text{ V}$ to 3.6 V	-	-	500	-	850	μΑ
Cı	input capacitance		-	3.5	-	-	-	pF
C_{sw}	switch capacitance	independent pins nYn	-	5	-	-	-	pF
		common pins nZ	-	12	-	-	-	pF

^[1] Typical values are measured at T_{amb} = 25 °C.

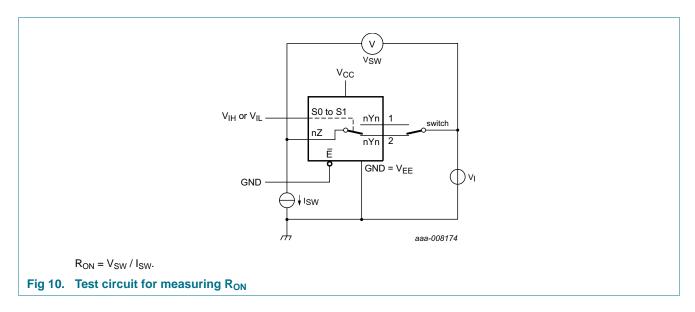
9.1 Test circuits

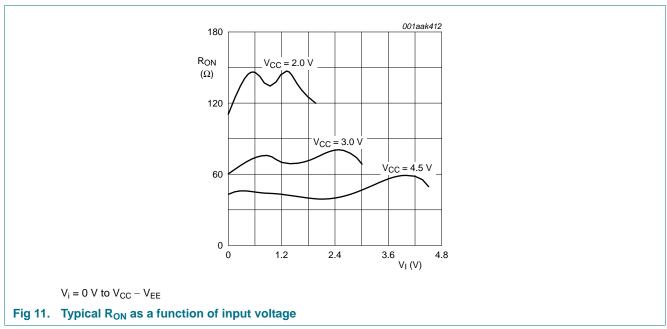
9.2 ON resistance

Table 7. ON resistanceAt recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see <u>Figure 10</u> and <u>Figure 11</u>.

Symbol	Parameter	Conditions		°C to +8	5 °C	-40 °C to +125 °C		Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(peak)}	ON resistance (peak)	$V_I = 0 V \text{ to } V_{CC} - V_{EE}$	'					
		$V_{CC} = 1.2 \text{ V}; I_{SW} = 100 \mu\text{A}$	<u> </u>	-	-	-	-	Ω
		V_{CC} = 2.0 V; I_{SW} = 1000 μA	-	145	325	-	375	Ω
		V_{CC} = 2.7 V; I_{SW} = 1000 μA	-	90	200	-	235	Ω
	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	80	180	-	210	Ω	
		V_{CC} = 4.5 V; I_{SW} = 1000 μA	-	60	135	-	160	Ω
		V_{CC} = 6.0 V; I_{SW} = 1000 μA	-	55	125	-	145	Ω
ΔR_{ON}	ON resistance mismatch	$V_I = 0 V \text{ to } V_{CC} - V_{EE}$						
	between channels	$V_{CC} = 1.2 \text{ V}; I_{SW} = 100 \mu\text{A}$	_	-	-	-	-	Ω
		V_{CC} = 2.0 V; I_{SW} = 1000 μA	-	5	-	-	-	Ω
		V_{CC} = 2.7 V; I_{SW} = 1000 μA	-	4	-	-	-	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	4	-	-	-	Ω
		V_{CC} = 4.5 V; I_{SW} = 1000 μA	-	3	-	-	-	Ω
		V_{CC} = 6.0 V; I_{SW} = 1000 μA	-	2	-	-	-	Ω

Table 7. ON resistance ...continued


At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for graphs see <u>Figure 10</u> and Figure 11.

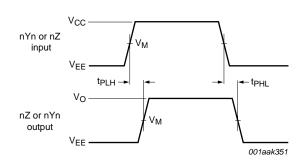

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	-40 °C to	o +125 °C	Unit
			Min	Typ[1]	Max	Min	Max	
R _{ON(rail)}	ON resistance (rail)	V _I = GND		1	1			
		$V_{CC} = 1.2 \text{ V}; I_{SW} = 100 \mu\text{A}$	-	225	-	-	-	Ω
	$V_{CC} = 2.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	110	235	-	270	Ω	
	$V_{CC} = 2.7 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	70	145	-	165	Ω	
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	60	130	-	150	Ω
		$V_{CC} = 4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	45	100	-	115	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	40	85	-	100	Ω
R _{ON(rail)}	ON resistance (rail)	$V_I = V_{CC} - V_{EE}$						
		$V_{CC} = 1.2 \text{ V}; I_{SW} = 100 \mu A$ [2]	-	250	-	-	-	Ω
		$V_{CC} = 2.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	120	320	-	370	Ω
		V_{CC} = 2.7 V; I_{SW} = 1000 μA	-	75	195	-	225	Ω
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V};$ $I_{SW} = 1000 \mu\text{A}$	-	70	175	-	205	Ω
		$V_{CC} = 4.5 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	50	130	-	150	Ω
		$V_{CC} = 6.0 \text{ V}; I_{SW} = 1000 \mu\text{A}$	-	45	120	-	135	Ω

^[1] Typical values are measured at T_{amb} = 25 °C.

^[2] When supply voltages ($V_{CC} - V_{EE}$) near 1.2 V the analog switch ON resistance becomes extremely non-linear. When using a supply of 1.2 V, use these devices only for transmitting digital signals.

9.3 On resistance waveform and test circuit

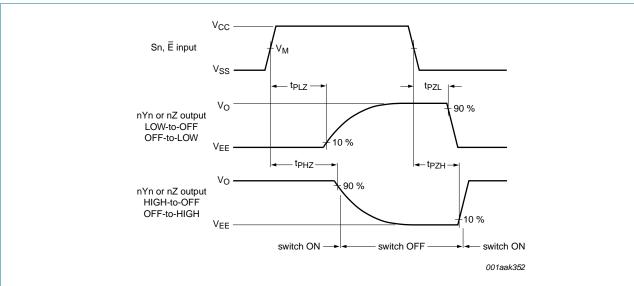
10. Dynamic characteristics


Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit, see Figure 14.

Symbol	Parameter	Conditions		-40	°C to +85	S°C	-40 °C to +125 °C		Unit
				Min	Typ[1]	Max	Min	Max	
t _{pd}	propagation delay	nYn to nZ, nZ to nYn; see Figure 12	[2]				1	1	
		V _{CC} = 1.2 V		-	25	-	-	-	ns
		V _{CC} = 2.0 V		-	9	17	-	20	ns
		V _{CC} = 2.7 V		-	6	13	-	15	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	-	5	10	-	12	ns
		V _{CC} = 4.5 V		-	4	9	-	10	ns
		V _{CC} = 6.0 V		-	3	7	-	8	ns
t _{en}	enable time	E, Sn to nYn, nZ; see Figure 13	[2]						
		V _{CC} = 1.2 V		-	190	-	-	-	ns
		V _{CC} = 2.0 V		-	65	121	-	146	ns
		V _{CC} = 2.7 V		-	48	89	-	108	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$	[3]	-	30	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	-	36	71	-	86	ns
		V _{CC} = 4.5 V		-	32	60	-	73	ns
		V _{CC} = 6.0 V		-	25	46	-	56	ns
t _{dis}	disable time	E, Sn to nYn, nZ; see Figure 13	[2]						
		V _{CC} = 1.2 V		-	125	-	-	-	ns
		V _{CC} = 2.0 V		-	43	80	-	95	ns
		V _{CC} = 2.7 V		-	33	59	-	71	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V; } C_L = 15 \text{ pF}$	[3]	-	22	-	-	-	ns
		V _{CC} = 3.0 V to 3.6 V	[3]	-	26	48	-	57	ns
		V _{CC} = 4.5 V		-	23	41	-	49	ns
		V _{CC} = 6.0 V		-	18	32	-	38	ns
C _{PD}	power dissipation capacitance	C_L = 50 pF; f_i = 1 MHz; V_I = GND to V_{CC}	[4]	-	57	-	-	-	pF

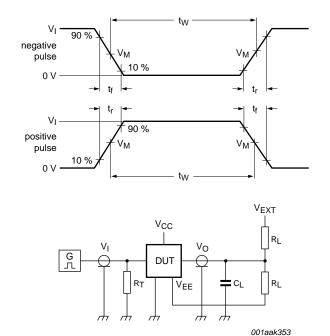
- [1] All typical values are measured at T_{amb} = 25 °C.
- [2] $\ t_{pd}$ is the same as t_{PLH} and $t_{PHL}.$
 - t_{en} is the same as t_{PZL} and t_{PZH} .
 - $t_{\mbox{\scriptsize dis}}$ is the same as $t_{\mbox{\scriptsize PLZ}}$ and $t_{\mbox{\scriptsize PHZ}}.$
- [3] Typical values are measured at nominal supply voltage (V_{CC} = 3.3 V).
- [4] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).
 - $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma((C_L + C_{sw}) \times V_{CC}^2 \times f_o) \text{ where:}$
 - f_i = input frequency in MHz, f_o = output frequency in MHz
 - C_L = output load capacitance in pF
 - C_{sw} = maximum switch capacitance in pF;
 - V_{CC} = supply voltage in Volts
 - N = number of inputs switching
 - $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.


10.1 Waveforms

Measurement points are given in Table 9.

 V_{OL} and V_{OH} are typical voltage output levels that occur with the output load.

Fig 12. nYn, nZ to nZ, nYn propagation delays


Measurement points are given in Table 9.

 $V_{\mbox{\scriptsize OL}}$ and $V_{\mbox{\scriptsize OH}}$ are typical voltage output levels that occur with the output load.

Fig 13. Enable and disable times

Table 9. Measurement points

Supply voltage	Input	Output
V _{CC}	V _M	V _M
< 2.7 V	0.5V _{CC}	0.5V _{CC}
2.7 V to 3.6 V	1.5 V	1.5 V
> 3.6 V	0.5V _{CC}	0.5V _{CC}

Test data is given in Table 10.

Definitions for test circuit:

 R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

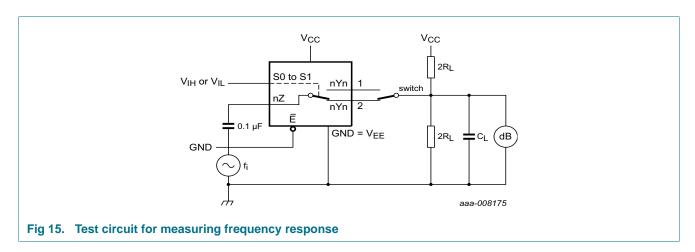
 V_{EXT} = External voltage for measuring switching times.

Fig 14. Test circuit for measuring switching times

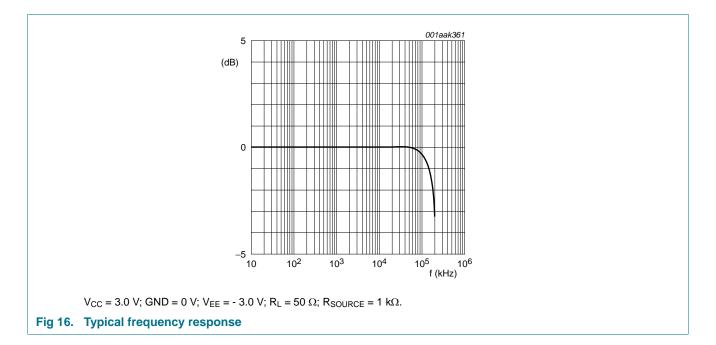
Table 10. Test data

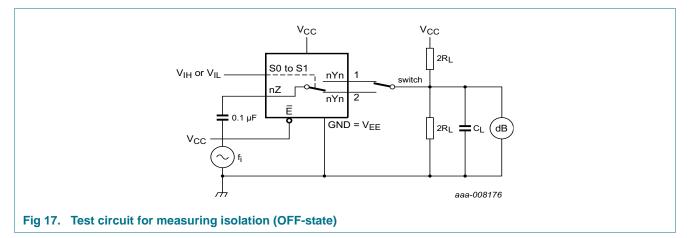
Supply voltage	Input		Load		V _{EXT}		
V _{CC}	VI	t _r , t _f	CL	R _L	t _{PHL} , t _{PLH}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
< 2.7 V	V _{CC}	≤ 6 ns	50 pF	1 kΩ	open	V_{EE}	2V _{CC}
2.7 V to 3.6 V	2.7 V	≤ 6 ns	15 pF, 50 pF	1 kΩ	open	V_{EE}	2V _{CC}
> 3.6 V	V_{CC}	≤ 6 ns	50 pF	1 kΩ	open	V_{EE}	2V _{CC}

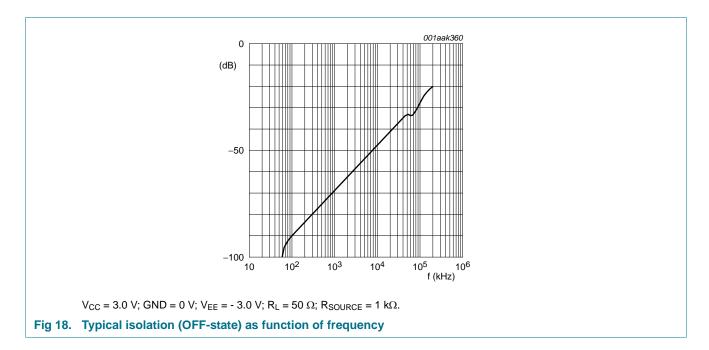
10.2 Additional dynamic parameters

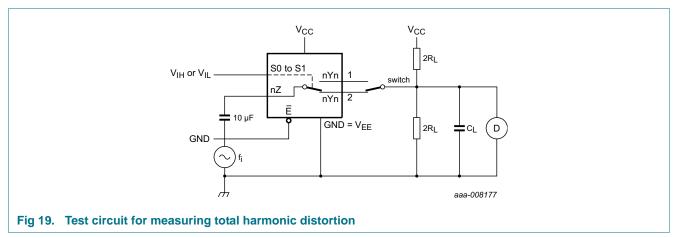

Table 11. Additional dynamic characteristics

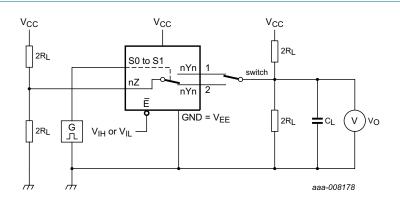
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); $V_I = \text{GND}$ or V_{CC} (unless otherwise specified); $t_r = t_f \le 6.0$ ns; $T_{amb} = 25$ °C.

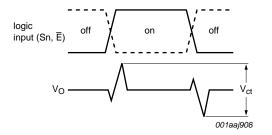

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
THD	total harmonic	f_i = 1 kHz; C_L = 50 pF; R_L = 10 k Ω ; see <u>Figure 19</u>				
	distortion	$V_{CC} = 3.0 \text{ V}; V_I = 2.75 \text{ V (p-p)}$	-	8.0	-	%
		$V_{CC} = 6.0 \text{ V}; V_I = 5.5 \text{ V (p-p)}$	-	0.4	-	%
		f_i = 10 kHz; C_L = 50 pF; R_L = 10 k Ω ; see <u>Figure 19</u>				
		$V_{CC} = 3.0 \text{ V}; V_I = 2.75 \text{ V (p-p)}$	-	2.4	-	%
		$V_{CC} = 6.0 \text{ V}; V_I = 5.5 \text{ V (p-p)}$	-	1.2	-	%
f _(-3dB)	-3 dB frequency	$C_L = 50 \text{ pF}$; $R_L = 50 \Omega$; see Figure 15	<u>[1]</u>			
	response	V _{CC} = 3.0 V	-	180	-	MHz
		V _{CC} = 6.0 V	-	200	-	MHz
α_{iso}	isolation (OFF-state)	f_i = 1 MHz; C_L = 50 pF; R_L = 600 Ω ; see Figure 17	[2]			
		V _{CC} = 3.0 V	-	-50	-	dB
		V _{CC} = 6.0 V	-	-50	-	dB
V _{ct}	crosstalk voltage	between digital inputs and switch; $f_i = 1 \text{ MHz}$; $C_L = 50 \text{ pF}$; $R_L = 600 \Omega$; see Figure 20				
		V _{CC} = 3.0 V	-	0.11		V
		V _{CC} = 6.0 V	-	0.12	-	V
Xtalk	crosstalk	between switches; f_i = 1 MHz; C_L = 50 pF; R_L = 600 Ω ; see Figure 21	[2]			
		V _{CC} = 3.0 V	-	-60	-	dB
		$V_{CC} = 6.0 \text{ V}$	-	-60	-	dB

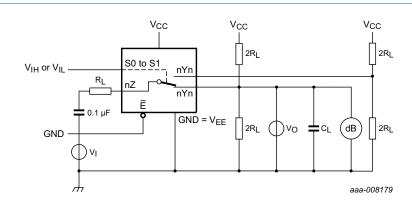

^[1] To obtain 0 dBm level at output for 1 MHz, adjust f_i voltage (0 dBm = 1 mW into 50 Ω).


10.2.1 Test circuits

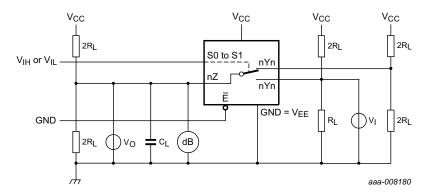



^[2] To obtain 0 dBm level at output for 1 MHz, adjust f_i voltage (0 dBm = 1 mW into 600 Ω).





a. Test circuit



b. Input and output pulse definitions V_1 may be connected to Sn or \overline{E} .

Fig 20. Test circuit for measuring crosstalk voltage between digital inputs and switch

a. Switch-on channel.

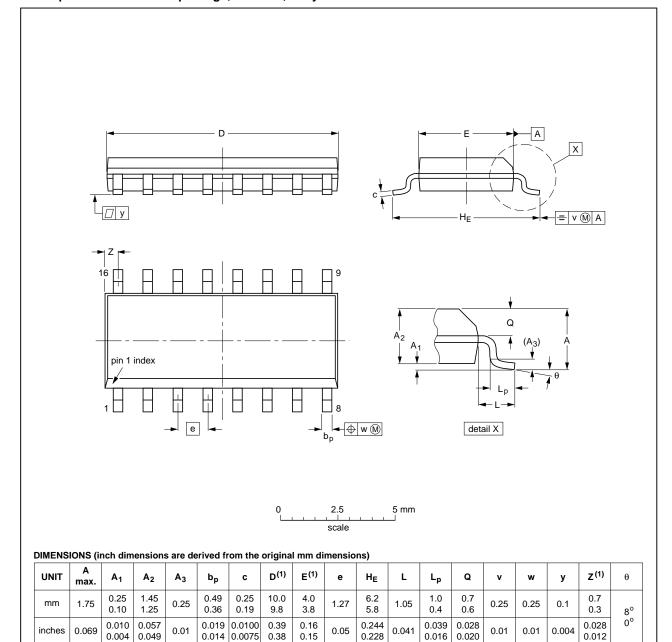

b. Switch-off channel.

Fig 21. Test circuit for measuring crosstalk between switches

11. Package outline

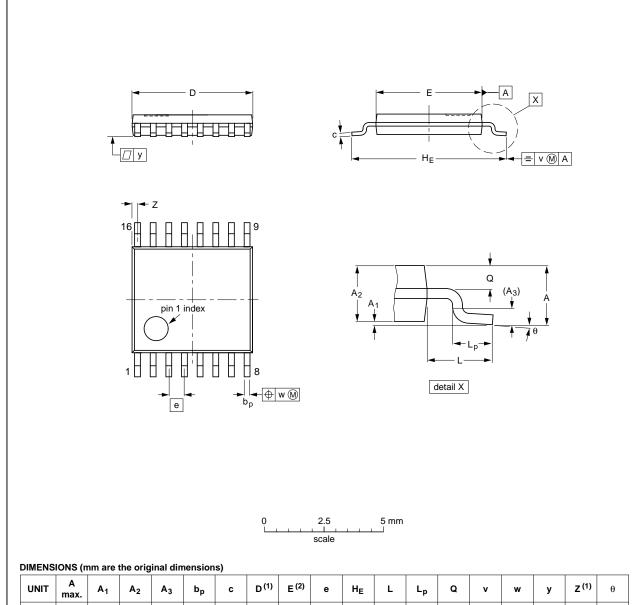
SO16: plastic small outline package; 16 leads; body width 3.9 mm

SOT109-1

Note

1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.

OUTLINE		REFER	EUROPEAN	IOOUE DATE			
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT109-1	076E07	MS-012				99-12-27 03-02-19	


Fig 22. Package outline SOT109-1 (SO16)

74LV4052_Q100 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2013. All rights reserved.

TSSOP16: plastic thin shrink small outline package; 16 leads; body width 4.4 mm

SOT403-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	1.1	0.15 0.05	0.95 0.80	0.25	0.30 0.19	0.2 0.1	5.1 4.9	4.5 4.3	0.65	6.6 6.2	1	0.75 0.50	0.4 0.3	0.2	0.13	0.1	0.40 0.06	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT403-1		MO-153				99-12-27 03-02-18

Fig 23. Package outline SOT403-1 (TSSOP16)

74LV4052_Q100 All information provided in this document is subject to legal disclaimers.

12. Abbreviations

Table 12. Abbreviations

Acronym	Description
CMOS	Complementary Metal-Oxide Semiconductor
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

13. Revision history

Table 13. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LV4052_Q100 v.1	20130722	Product data sheet	-	-

14. Legal information

14.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

14.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

14.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information. NXP Semiconductors takes no responsibility for the content in this document if provided by an information source outside of NXP Semiconductors.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. Unless otherwise agreed in writing, the product is not designed, authorized or warranted to be suitable for use in life support, life-critical or safety-critical systems or equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors and its suppliers accept no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from competent authorities.

Translations — A non-English (translated) version of a document is for reference only. The English version shall prevail in case of any discrepancy between the translated and English versions.

14.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

15. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

16. Contents

1	General description
2	Features and benefits
3	Ordering information
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 7
9.1	Test circuits
9.2	ON resistance 8
9.3	On resistance waveform and test circuit 10
10	Dynamic characteristics
10.1	Waveforms
10.2	Additional dynamic parameters 14
10.2.1	Test circuits
11	Package outline
12	Abbreviations
13	Revision history
14	Legal information
14.1	Data sheet status
14.2	Definitions
14.3	Disclaimers
14.4	Trademarks
15	Contact information
16	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.