
September 2013 Doc ID024189 Rev 2 1/30

AN4240
Application note

Introduction to the Cryptographic Service Engine (CSE) module for
SPC56ECxx and SPC564Bxx devices

Introduction
This application note provides an easy introduction to the usage of the CSE module inside the
SPC56ECxx and SPC564Bxx family of devices.

The CSE module implements the security functions described in the Secure Hardware Extension (SHE)
functional specification version 1.1.

Three examples show main the features of the cryptographic service engine and in the same time the
differences between the Electronic Code Book (ECB), and the Cipher Block Chaining (CBC) mode of the
Advanced Encryption Standard (AES) algorithm, defined by SHE specification.

In particular, first example shows how to load cryptographic keys into secure flash in order to permit the
usage of the cryptographic module. Second application code shows that if a data or an image has a low
variance, the CBC cipher mode provides a best performance in terms of message encryption in
comparison with the ECB cipher mode. Last example code shows how to release a Secure Boot in order
to prevent application code from being altered by an unauthorized party cipher.

www.st.com

http://www.st.com

Contents AN4240

2/30 Doc ID024209 Rev 2

Contents

1 CSE IP block overview . 5

2 AES-128 encryption and decryption overview . 7

2.1 Electronic Code Book (ECB) . 7

2.2 Cipher Block Chaining (CBC) . 8

2.3 CMAC (Cipherbased Message Authentication Code) 8

3 Secure Boot procedure . 9

4 Secure storage for cryptographic keys . 11

5 Application code structure . 13

5.1 Peripherals and tools used . 13

5.2 Code Implementation . 13

5.2.1 Disable Software Watchdog . 14

5.2.2 Mode Init . 14

5.2.3 PLL configuration function . 15

5.2.4 CSE initialization function . 16

5.2.5 Load Crypto Keys function . 17

5.2.6 App code to be added to have a secure boot . 17

5.2.7 Demo application code . 19

6 Application demo results . 21

7 Conclusion . 25

Appendix A How to generate the M1-M5 parameters . 26

A.1 Memory update protocol . 26

A.2 Cryptographic keys used. 27

Appendix B References . 28

B.1 Reference documents . 28

Revision history . 29

Doc ID024209 Rev 2 3/30

AN4240 List of tables

List of tables

Table 1. Secure boot example structure to add at the start of boot sectorr . 9
Table 2. Memory Slots . 11
Table 3. Key attributes . 11
Table 4. Memory Update Policy . 12
Table 5. Examples of Keys used for the project . 27
Table 6. Revision history . 29

List of figures AN4240

4/30 Doc ID024209 Rev 2

List of figures

Figure 1. CSE IP block. 5
Figure 2. ECB block diagram . 7
Figure 3. CBC block diagram. 8
Figure 4. CMAC Scheme . 8
Figure 5. Secure Boot Mode procedure. 10
Figure 6. Software Watchdog disable function . 14
Figure 7. Mode Init function . 15
Figure 8. PLL init function . 16
Figure 9. CSE init function . 16
Figure 10. Get UID function . 17
Figure 11. Load Key function . 17
Figure 12. Secure boot code . 18
Figure 13. Locator file . 18
Figure 14. Locator memory setup . 19
Figure 15. Encryption/Decryption functions . 20
Figure 16. Demo Starting point . 21
Figure 17. ECB encryption. 22
Figure 18. CBC encryption. 23
Figure 19. ECB decryption. 23
Figure 20. CBC decryption. 24

Doc ID024209 Rev 2 5/30

AN4240 CSE IP block overview

1 CSE IP block overview

Cryptographic Service Engine (CSE) is a peripheral module that implements the security
functions described in the Secure Hardware Extension (SHE) Functional Specification
Version 1.1.

The CSE is an on-chip extension of the microcontroller. It is intended to move the control
over cryptographic keys from software domain into the hardware domain and therefore
protect those keys from software attacks.

CSE design includes a host interface (via peripheral bridge) with a set of memory mapped
registers used by CPU to issue commands (for example Get_ID, INIT_CSE, etc).
Furthermore a system bus interface (via xbar IF) allows the CSE to directly access the
system memory. Here the crypto module behaves like any other master. Through the host
interface the user configures and controls the CSE module, for example putting the module
into low power mode, enabling interrupts for finished command processing or suspending
command processing. The status and error register gives further system information.

Figure 1. CSE IP block

Two dedicated blocks of system flash memory are used by the CSE for secure key and
firmware storage. These blocks are not accessible by other masters from system and
therefore are called secure flash. The command processing is done by a 32-bit CSE core
with attached ROM and RAM running at system frequency of SoC. See Figure 1.

CSE IP block overview AN4240

6/30 Doc ID024209 Rev 2

After system boot, the core comes out of reset and executes reset code from the module
ROM. This code will load the firmware from the secure flash into the module RAM and start
executing from there. This reduces the flash accesses by the crypto core.

The AES block is a slave to the crypto internal bus. It processes the encryption (plain text to
ciphertext) and decryption (ciphertext to plaintext) and offers AES CMAC authentication.

The 32-bit secure core works at 120 MHz with a throughput of 100 Mbit/sec.

Doc ID024209 Rev 2 7/30

AN4240 AES-128 encryption and decryption overview

2 AES-128 encryption and decryption overview

The CSE module supports two cipher modes: Electronic Code Book (ECB) and Cipher
Block Chaining (CBC) and CMAC authentication mode.

Block ciphers like AES algorithm works with a granularity of 64 or 128 bits. This means that
if someone wants to encode data, it is necessary to split the message with an equivalent
granularity.

In the ECB cipher mode the output cipher message depends not only on the chosen
cryptographic key and the input data, but same input is encrypted in the same manner.

This could provide an opportunity to hack the message using an example statistical
analysis.

For this reason, the CBC cipher mode introduces more entropy to the encryption process
using a chaining structure which is described in the following sections.

2.1 Electronic Code Book (ECB)
This cipher mode is the easiest one, because the input message (plaintext) is passed to the
cryptographic block with a key and the output message (ciphertext) is obtained directly, see
Figure 2.

This means that input message with a low variance could be encrypted in an equivalent
manner and it could have a low security threshold.

Figure 2. ECB block diagram

AES-128 encryption and decryption overview AN4240

8/30 Doc ID024209 Rev 2

2.2 Cipher Block Chaining (CBC)
The Cipher Block Chaining mode allows an higher level of entropy because the output of the
first ciphertext is derived by an initialization vector and a cryptographic key.
The chaining structure permits using the previous ciphertext as cryptographic key for the
next encryption block, as described in Figure 3.

Using this mode, each cipher block depends on the previous processed plaintext block.

Figure 3. CBC block diagram

2.3 CMAC (Cipherbased Message Authentication Code)
A CMAC provides a method for authenticating messages and data. The CMAC algorithm
accepts as input a secret key and an arbitrary-length message to be authenticated, and
outputs a CMAC. The CMAC value protects both a message's data integrity as well as its
authenticity, by allowing verifiers (who also possess the secret key) to detect any change in
the message content.

Figure 4. CMAC Scheme

Doc ID024209 Rev 2 9/30

AN4240 Secure Boot procedure

3 Secure Boot procedure

The CSE module allows authentication boot code in flash. This sentence is misunderstood
because the CSE is not intended to be used to encrypt the code flash content.

The Secure Boot procedure starts when the System Status and Configuration Module
(SSCM) releases a SECURE_BOOT command. After that the CSE module downloads from
the internal secure flash the firmware and the valid keys.

Note: The device must be previously configured with valid cryptographic keys in order to issue a
Secure Boot.

The sequence to authenticate Boot Code is as follows:

1) program the code flash with the boot code.
This implies that the boot code includes the start address and length parameters at address
RCHW+4 and RCHW+8 as shown in Table 1:

In this case the boot code starts at 0x10 and CSE authenticates 4 KB of code.

2) Program valid cryptographic keys (BOOT_MAC_KEY) into secure flash

3) Reset the device twice; the first time CSE calculates the BOOT_MAC over the indentified
boot code and stores this value in the secure flash, the second time CSE compares the
BOOT_MAC with the previous one stored in the secure flash. If they match then CSE sets
Secure Boot OK bit (CSE.SR[BOK]=1).

After this procedure, keys marked as Boot Protected are used by application code. On
subsequent booting, provided BOOT_MAC_KEY and the code flash are not erased, CSE
calculates a MAC over the identified boot code. If the output value matches the value stored
in secure flash (BOOT_MAC).
Figure 5. represents this process.

Table 1. Secure boot example structure to add at the start of boot sectorr

Address Content Comment

0x0 0x015A Reset Configuration Half Word

0x4 0x10 Start Address for BOOT_MAC calculation

0x8 0x1000 Length of code to be authenticated in bytes (4KB)

0xC – Skipped for 64bit boundary

0x10 Code starts here First address of code

Secure Boot procedure AN4240

10/30 Doc ID024209 Rev 2

Figure 5. Secure Boot Mode procedure

Doc ID024209 Rev 2 11/30

AN4240 Secure storage for cryptographic keys

4 Secure storage for cryptographic keys

The CSE provides secure, and non-volatile storage for cryptographic keys as described in
the SHE Functional Specification. The keys are stored in fifteen memory slots, with one
ROM slot, thirteen non-volatile slots, and one RAM slot as shown in Table 2. The first four
slots have a dedicated usage, the other slots are available for application specific keys. The
BOOT_MAC slot is loaded with a MAC value used by the secure boot process. All other
slots are used for encryption or message authentication keys. The SECRET_KEY slot is
programmed with a random value during device fabrication same as the Unique Identifier
Number (UID). It is unique for every part and is programmed into the secure flash when it is
tested in wafer form. UID is 120 bits long. UID is used during inter ECU communications to
confirm that external controllers is not substituted. SECRET KEY may only be used to
import/export keys.

All CSE encryption and message authentication commands specify a key, by its Key ID.

Table 3. describes that each memory slot holds a 128-bit value, a 28-bit counter and five
security flags.

Table 2. Memory Slots

Slot Name Key ID Type

SECRET_KEY 0x0 ROM

MASTER_ECU_KEY 0x1 non-volatile

BOOT_MAC_KEY 0x2 non-volatile

BOOT_MAC 0x3 non-volatile

KEY_1 0x4 non-volatile

KEY_2 0x5 non-volatile

KEY_3 0x6 non-volatile

KEY_4 0x7 non-volatile

KEY_5 0x8 non-volatile

KEY_6 0x9 non-volatile

KEY_7 0xA non-volatile

KEY_8 0xB non-volatile

KEY_9 0xC non-volatile

KEY_10 0xD non-volatile

RAM_KEY 0xE RAM

Table 3. Key attributes

Flag Name Description

WRITE_PROT If set, memory slot cannot be updated

BOOT_PROT If set, memory slot is disabled if Secure Boot is not enabled

DEBUG_PROT If set. memory slot is disabled if a debugger is connected

Secure storage for cryptographic keys AN4240

12/30 Doc ID024209 Rev 2

In general, knowledge of a specific key is needed in order to update that specific key.
MASTER_ECU_KEY is a key with special meaning. It is used to authorize updating other
keys (BOOT_MAC_KEY, BOOT_MAC, BOOT_MAC_KEY and all KEY_1 to KEY_10)
without knowledge of those keys. See Table 4: Memory Update Policy of the SHE
specification, reported here for convenience:

Table 4 shows that the knowledge of the MASTER ECU KEY allows updating of all the other
keys. This implies that it is the most important key as it allows to reset the device to its
factory state, (with all the security memory slots empty) only if no key has the WRITE_PROT
flag set.

Setting this flag is an irreversible step and for this reason, the user has to be very carefull
during the creation of the key attributes of the cryptographic keys.

KEY_USAGE If set, memory slot holds a MAC key, otherwise it holds an encryption key

WILDCARD If set, memory slot cannot be updated with the wildcard UID

Table 4. Memory Update Policy

Slot to update MASTER ECU KEY BOOT MAC KEY BOOT MAC KEY<n> RAM KEY

MASTER ECU KEY X

BOOT MAC KEY X X

BOOT MAC X X

KEY<n> X X

RAM KEY X

Table 3. Key attributes (continued)

Flag Name Description

Doc ID024209 Rev 2 13/30

AN4240 Application code structure

5 Application code structure

This section gives an overview of the application code implemented to test some CSE
features as the encryption/decryption using ECB and CBC cipher modes and an example
code in order to release a Secure Boot loading some cryptographic keys in the secure slots.

5.1 Peripherals and tools used
• Device: SPC564xB/C

• Compiler: GHS v6.1

• Debugger: Lauterbach

• System clock: 120 MHz by PLL initialization

• CGM (Clock Generation Module): PLL is configured as system clock

• CSE module

• ME: Mode entry in order to configure the Magic Carpet

• SWT: Software Watchdog in order to disable the periodic reset

5.2 Code Implementation
In order to load the cryptographic keys in the secure flash of the device, to release a secure
boot and then start the demo application, three different GHS projects are implemented.

First project is needed to load the cryptographic keys obtained off line, using an executable
file precompiled in order to obtain all the five “M” parameters and the 2 K parameters to
generate 10 user Crypto Keys, BOOT_MAC_KEY and MASTER_ECU_KEY. For more
information read the Appendix A at the end of this document.

Second project is used to release a Secure Boot OK, adding in the start up file and in the
locator file, few lines of code and implementing the Secure Boot Procedure as describe in
Figure 5.

Third project is the demo application code which shows the main differences between the
ECB and CBC cipher mode, as described in the previous paragraph.

The first application code configures the device in order to have the following:

• Basic configuration procedure:

– Disable Software Watchdog

– Initialize Magic Carpet

– initialize PLL to 120 MHz from 40 MHz of the external oscillator

• Initialization of the CSE module

• Updating a blank sample and loading the cryptographic keys into the secure flash

– Issue a Get UID command

– Issue a LOAD KEY command

Application code structure AN4240

14/30 Doc ID024209 Rev 2

The second application code configuress the device in order to:

• Add in the ctr0.ppc file the code size and the start address of the code to be secured

• Add in the locator file the reserved section needed to release the secure boot

• Reset the device two times in order to issue Secure Boot OK, as described in the
Secure boot procedure Figure 5.

Finally the third application code configures the device in order to:

• Issue a CSE BOOT OK command to verify if the content of the flash is not modified

• Issue an encryption ECB and a CBC command over a preloaded figure (ST Logo)

• Issue a decryption ECB and a CBC command over the encrypted figure to show the
plain text figure again

5.2.1 Disable Software Watchdog

This function allows disabling the Software Watchdog using a key word and permit the
access to the control register of the SWT module.

The SWT is disabled in order to avoid the period execution of watchdog service that could
issue a system reset:

Figure 6. Software Watchdog disable function

5.2.2 Mode Init

This function allows to configure the mode entry of the device in order to turn on all the
peripherals considering the right dividers for a system clock of 120 MHz.

Doc ID024209 Rev 2 15/30

AN4240 Application code structure

Figure 7. Mode Init function

5.2.3 PLL configuration function

This function permits to select the clock source for the PLL. In this case the PLL is driven by
the FXOSC oscillator at 40 MHz. Then it configures the RUN[0] mode in order to enable the
external oscillator, turning on the PLL and setting the PLL as system clock.

The CGM module allows to set several dividers (Input, loop and output) in order to set the
ouput of the PLL to be at 120 MHz frequency.

In order to complete the mode entry two keys are written in the Mode Entry MCTL register.

Application code structure AN4240

16/30 Doc ID024209 Rev 2

Figure 8. PLL init function

5.2.4 CSE initialization function

The INIT_CSE command loads the command processor firmware and memory slot data
from the CSE Flash blocks into local memory. It does not execute the secure boot protocol.
The CSE firmware version is loaded into the CSE_P1 register. This command must be
issued before any other command when using device boot modes, that do not support
secure boot.

Figure 9. CSE init function

Doc ID024209 Rev 2 17/30

AN4240 Application code structure

5.2.5 Load Crypto Keys function

The update blank part function allows to get the UID value of the device, a 120-bit read only
unique identification number which is programmed during device fabrication. The UID is
used in the memory update procedure and is available for application specific uses.

Figure 10. Get UID function

The UID value is derived here in order to be used later to check if the updating procedure
has been processed correctly.

Furthermore, few lines of code is used to load the Cryptographic keys in order to update
eleven keys: ten USER KEYS and BOOT_MAC_KEY.

Figure 11. Load Key function

In this case, M1 to M5 parameters have been calculated off line. In order to check that the
updating procedure was performed correctly, CSE calculates M4 and M5 to compare those
values with the values obtained off line.

How to obtain those parameters is explained in the Appendix A.

5.2.6 App code to be added to have a secure boot

In order to issue a Secure Boot OK it is necessary to add in the crt0.ppc file, the following
lines:

Application code structure AN4240

18/30 Doc ID024209 Rev 2

Figure 12. Secure boot code

The few lines of code create a section called rchw (reset configuration half word) just at the
first address of the CFLASH memory adding the start address for BOOT CMAC calculation,
the start address of the application and the lenght of the code to be authenticated, as
described in Figure 12.

In the locator file it is also necessary add the same section at the beginning of CFLASH and
define the size of the code to be authenticated, as shown Figure 13.:

Figure 13. Locator file

Doc ID024209 Rev 2 19/30

AN4240 Application code structure

where:

Figure 14. Locator memory setup

Once the BOOT_MAC_KEY is loaded in the device, the CSE is able to calculate the CMAC
of the secure boot as defined in the startup file after a first reset. With a second reset the
CSE will check if the content of the flash has been modified, comparing the CMAC
previously calculated over the authenticated code versus the new CMAC calculated over
the same flash content. If they match the CSE release a Secure Boot OK.

5.2.7 Demo application code

As described before the last project allows, once CSE has released a secure boot, to use
the cryptographic keys to encrypt and decrypt a logo.

The following lines of code permit the encryption and decryption commands using the ECB
and CBC cipher modes over a preloaded image.

The Cryptographic key used, is the KEY1 which has the KEY USAGE flag equal to 0 in
order to be used for encryption/decryption feature.

For the CBC cipher mode, an initialize vector is used to add more entropy to the process.

The st_Bitmap is the ST logo of 1800 blocks size obtained using an image bitmap converter.

Application code structure AN4240

20/30 Doc ID024209 Rev 2

Figure 15. Encryption/Decryption functions

Doc ID024209 Rev 2 21/30

AN4240 Application demo results

6 Application demo results

To better understand the differences between the two cipher modes the following figures will
show an ECB encryption and a CBC encryption starting from the same image:

Figure 16. Demo Starting point

Figure 16 shows that the ECB encryption should not be suggested for encryption of
message with a low variance because, for the same nature of the algorithm, identical
plaintext blocks of messages are encrypted into identical ciphertext blocks. This does not
hide the data pattern well. In some sense it does not provide a high level of confidentiality
and security.

Application demo results AN4240

22/30 Doc ID024209 Rev 2

Figure 17. ECB encryption

While in the CBC encryption, having a chaining structure, each block of plaintext is XORed
with the previous ciphertext block before encryption. In this way, each ciphertext block is
independent on all plaintext block processed up to that point. To make each message
unique, an initialization vector (IV) must be used in the first block.

Doc ID024209 Rev 2 23/30

AN4240 Application demo results

Figure 18. CBC encryption

Here are the following decryption of the encrypted images:

Figure 19. ECB decryption

Application demo results AN4240

24/30 Doc ID024209 Rev 2

Figure 20. CBC decryption

Doc ID024209 Rev 2 25/30

AN4240 Conclusion

7 Conclusion

To protect the cryptographic keys from software attacks, the control over those keys are
moved from the software domain to the hardware domain. The SPC564xB/C device is the
first ST device which offers the security features specified in the Secure Hardware
Extension (SHE) functional specification completely in hardware, offering a higher security
standard to OEM’s in the future when using this device.

The discussions and explanations in this document provide an overview of the features the
CSE module implements and how these features are used.

The three example codes show a mini-life cycle in order to load cryptographic keys, issue a
secure boot and encrypt and decrypt an image using two cipher modes, showing the
superiority of the CBC cipher mode against the ECB one.

How to generate the M1-M5 parameters AN4240

26/30 Doc ID024209 Rev 2

Appendix A How to generate the M1-M5 parameters

A.1 Memory update protocol
SHE requires that in order to update the memory containing the keys are the following 5
parameters must be calculated and passed to CSE:

• K1 = KDF(KAuthID, KEY_UPDATE_ENC_C)

– KDF is defined as key derivation function
– KAuthID is Authorizing key value. Part from factory has no keys programmed. In this

case AuthID = ID (for example Authorizing key is the key itself) is used
– KEY_UPDATE_ENC_C is a constant value defined by SHE as:
– 0x01015348_45008000_00000000_000000B0

• K2 = KDF(KAuthID, KEY_UPDATE_MAC_C)
– KEY_UPDATE_MAC_C is a constant value defined by SHE as:
– 0x01025348_45008000_00000000_000000B0

• M1 = UID’|ID|AuthID - 128 bits
– AuthID is either ID (number of key being updated) or MASTER_ECU_KEY

number(0x1)
– UID is 0 (Wildcard value) because WC flag = 0 on parts from factory
– UID is 120 bit and ID and AuthID are 4 bits each
– ID is the identification number of key we want to update

• M2 = ENCCBC,K1,IV=0(CID’|FID’|“0...0"95|KID’) - 256 bits
– ENCCBC is the encryption using K1 (as defined) with IV = 0
– The message to encrypt is a concatenation of :
– CID : the new counter value (28 bit). 0x0000001 in this case
– FID : New Protection flags –WP|BP|DP|KU|WC (5 bits)
– 95 zeros to fill first 128 bit block with zeros
– KID : the new key value (128 bit)

• M3 = CMACK2(M1|M2) – 128 bits
– A CMAC is performed using K2 over concatenation of M1 and M2 (128+256 = 384 bit

input size)

To complete the list, other parameters are needed to calculate offline M4 and M5 and make
a match to check if the cryptographic keys updating procedure has been performed
correctly:

• K3 = KDF(KEYID, KEY_UPDATE_ENC_C)
– KEYID is the new key value

• K4 = KDF(KEYID, KEY_UPDATE_MAC_C)

• M4 = UID|ID|AuthID|M4* (256 bit size)
– UID : Unique ID (120 bit)
– ID: Identification number of key to be updated (4 bits)
– AuthID: Identification number of key authorizing the update (4 bits)

• M4*: ENC_ECB, K3(CID|CIDPAD)
– where an ECB encryption is performed using K3 as key over the concatenation of:
– CIDPAD = 0x8000000000000000000000000 (1 and 99 0’s)

Doc ID024209 Rev 2 27/30

AN4240 How to generate the M1-M5 parameters

– CID = counter value (28 bit)

• M5 = CMAC,K4(M4) (128 bit size)
– A CMAC is performed over using key K4 over M4

Note: If a key has it is Write Protect (WP) attribute set, the key cannot ever be updated or erased.
See Table 3. Key Attributes. Write Protection should only be used when the user is
absolutely certain that the key is never changed or erased. Setting Write Protection on any
single key means that the part cannot be reset to its factory state using the DEBUG
CHALLENGE/AUTHORIZATION sequence.

In order to generate M1-M5 parameters some precompiled executable files have been
used.

The following sources were downloaded from www.hoozi.com and modified. Original author
is Niyaz PK.

AES_ENC_CBC_CMD.c

AES_ENC_ECB_CMD.c

AES_MP_KDF_CMD.c

The following sources was based on an original program by Junhyuk Son and Jicheol Lee:

AES_CMAC_CMD.c

A.2 Cryptographic keys used
For the demo code, a set of pre-calculated keys and values are used which are shown in
Table 5. These values found in some of the header files provided with the examples. To use
user-defined keys, the user needs to use offline scripts to calculate the necessary values.

Table 5. Examples of Keys used for the project

Slot name
Key ID
[hex]

Address offset
[hex]

Key flags
[bin]

128-bit key word 0 word 1word 2 word 3

BOOT_MAC
_
KEY

0x2 0x060 00011 12340000 00000000 00000000 00005678

KEY_1 0x4 0x0A0 00001 2FF8B03C 5C540546 5A9C94BD 2D863279

KEY_2 0x5 0x0C0 00001 85852FF8 E7860C89 B3AB9D63 B8D6288F

KEY_3 0x6 0x0E0 01001 A36FF144 FB6D5E2C DA0D2894 DA0D2894

KEY_4 0x7 0x100 00101
86078C1A BCDCC6B6 C52C851D
E5652BF5

KEY_5 0x8 0x120 00011 043A1A50 DB3954D2 22FEB37F 1F678FCA

KEY_6 0x9 0x140 00001 4B957750 4B957750 6F75C3E0 5C8DCD59

KEY_7 0xA 0x160 00011 2B7E1516 28AED2A6 ABF71588 09CF4F3C

KEY_8 0xB 0x180 00111 10AF4B5B 024195B9 1730D7F5 94C87E19

KEY_9 0xC 0x1A0 00001 93346F4C 6A8ABCCD 37D52249 291F4138

KEY_10 0xD 0x1C0 01011 68B674CB 8198A250 3A285100 F4DDC40A

References AN4240

28/30 Doc ID024209 Rev 2

Appendix B References

B.1 Reference documents
• SPC564Bxx, SPC56ECxx 32-bit MCU family built on the embedded Power

Architecture® (RM0070, Doc ID 18196)

• 32-bit MCU family built on the Power Architecture® for automotive body electronics
applications (SPC564Bxx, SPC56ECxx Data sheet, Doc ID 17478)

• SHE - Secure Hardware Extension functional specification Version1.1 (rev 439)
available on www.automotive-his.de

• [FIPS197] NIST/FIPS: Announcing the Advanced Encryption Standard (AES);
November 26, 2001; http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Doc ID024209 Rev 2 29/30

AN4240 Revision history

Revision history

Table 6. Revision history

Date Revision Changes

17-May-2013 1 Initial release.

17-Sep-2013 2 Updated Disclaimer.

AN4240

30/30 Doc ID024209 Rev 2

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

