

STWA20N95K5

N-channel 950 V, 0.275 Ω, 17.5 A SuperMESH[™] 5 Power MOSFET in TO-247 long leads package

Figure 1. Internal schematic diagram

Datasheet - preliminary data

Features

Order codes	V _{DSS}	R _{DS(on)} max	I _D	P _W
STWA20N95K5	950 V	0.330 Ω	17.5 A	250 W

- Worldwide best FOM (figure of merit)
- Ultra low gate charge
- 100% avalanche tested
- Zener-protected

Applications

• Switching applications

Description

This device is an N-channel Power MOSFET developed using SuperMESH[™] 5 technology. This revolutionary, avalanche-rugged, high voltage Power MOSFET technology is based on an innovative proprietary vertical structure. The result is a drastic reduction in on-resistance and ultra low gate charge for applications which require superior power density and high efficiency.

Table 1. Device summary

Order codes	Marking	Package	Packaging
STWA20N95K5	20N95K5	TO-247 long leads	Tube

Contents

1	Electrical ratings	3
2	Electrical characteristics	4
	2.1 Electrical characteristics (curves)	6
3	Test circuits	8
4	Package mechanical data	9
5	Revision history1	1

1

Electrical ratings

Symbol	Parameter	Value	Unit	
V _{GS}	Gate- source voltage	± 30	V	
I _D	Drain current (continuous) at T _C = 25 °C	17.5	Α	
۱ _D	Drain current (continuous) at T _C = 100 °C	11	А	
I _{DM} ⁽¹⁾	Drain current (pulsed)	70	Α	
P _{TOT}	Total dissipation at $T_{C} = 25 \ ^{\circ}C$	250	W	
I _{AR}	Max current during repetitive or single pulse avalanche (pulse width limited by T _{jmax})	6	A	
E _{AS}	Single pulse avalanche energy (starting $T_J = 25$ °C, $I_D = I_{AS}$, $V_{DD} = 50$ V)	200		
E _{SD}	Gate-source human body model (R= 1,5 k Ω , C = 100 pF)	2	kV	
dv/dt (2)	dv/dt ⁽²⁾ Peak diode recovery voltage slope		V/ns	
Tj Operating junction temperature -55 temperature Tstg Storage temperature -55 temperature		-55 to 150	°C	

Table 2. Absolute maximum ratings

1. Pulse width limited by safe operating area.

2. I_{SD} \leq 17.5 A, di/dt \leq 100 A/ μ s, V_{Peak} \leq V_{(BR)DSS}

Table 3. Thermal da

Symbol	Parameter	Value	Unit
Rthj-case	Thermal resistance junction-case max	0.5	°C/W
Rthj-amb	Thermal resistance junction-amb max	50	°C/W

2 Electrical characteristics

(T_{CASE} = 25 °C unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$I_{\rm D}$ = 1 mA, $V_{\rm GS}$ = 0	950			V
I _{DSS}	Zero gate voltage drain current (V _{GS} = 0)	V _{DS} = 950 V, V _{DS} = 950 V, Tc=125 °C			1 50	μΑ μΑ
I _{GSS}	Gate body leakage current (V _{DS} = 0)	V _{GS} = ± 20 V			±10	μA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 9 A		0.275	0.330	Ω

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
C _{iss}	Input capacitance		-	1500	-	pF	
C _{oss}	Output capacitance	V _{DS} =100 V, f=1 MHz, V _{GS} =0	-	80	-	pF	
C _{rss}	Reverse transfer capacitance	VDS - 100 V, I - 1 WH2, VGS-0 -	-	5	-	pF	
C _{o(tr)} ⁽¹⁾	Equivalent capacitance time related	$V_{GS} = 0, V_{DS} = 0$ to 760 V	-	170	-	pF	
C _{o(er)} ⁽²⁾	Equivalent capacitance energy related		-	65	-	pF	
R _G	Intrinsic gate resistance	f = 1MHz open drain	-	3.5	-	Ω	
Qg	Total gate charge	$V_{DD} = 760 \text{ V}, I_D = 9 \text{ A}$ $V_{GS} = 10 \text{ V}$ (see Figure 15)	-	40	-	nC	
Q _{gs}	Gate-source charge		-	8	-	nC	
Q _{gd}	Gate-drain charge		-	25	-	nC	

1. Time related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

2. energy related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS}

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit		
t _{d(on)}	Turn-on delay time		-	17	-	ns		
t _r	Rise time	$V_{DD} = 475 \text{ V}, I_D = 9 \text{ A},$ $R_G = 4.7 \Omega, V_{GS} = 10 \text{ V}$ (see Figure 17)	-	12	-	ns		
t _{d(off)}	Turn-off delay time		-	70	-	ns		
t _f	Fall time		-	20	-	ns		

Table 6. Switching times

Table 7. Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		17.5	А
I _{SDM}	Source-drain current (pulsed)		-		70	А
V _{SD} ⁽¹⁾	Forward on voltage	I _{SD} = 17.5 A, V _{GS} =0	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 17.5 A, V _{DD} = 60 V	-	530		ns
Q _{rr}	Reverse recovery charge	$di/dt = 100 A/\mu s,$	-	12		μC
I _{RRM}	Reverse recovery current	(see Figure 16)	-	44		А
t _{rr}	Reverse recovery time	I _{SD} = 17.5 A,V _{DD} = 60 V	-	650		ns
Q _{rr}	Reverse recovery charge	di/dt=100 A/µs, Tj=150 °C	-	14		μC
I _{RRM}	Reverse recovery current	(see Figure 16)	-	77		А

1. Pulsed: pulse duration = 300μ s, duty cycle 1.5%

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)GSO}	Gate-source breakdown voltage	I_{GS} = ± 1 mA, I_{D} = 0	30	-	-	V

The built-in-back Zener diodes have specifically been designed to enhance not only the device's ESD capability, but also to make them safely absorb possible voltage transients that may occasionally be applied from gate to source. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

2.1 Electrical characteristics (curves)

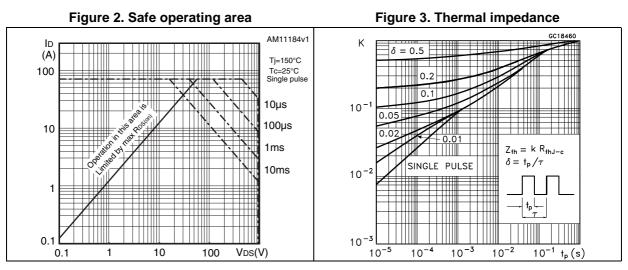
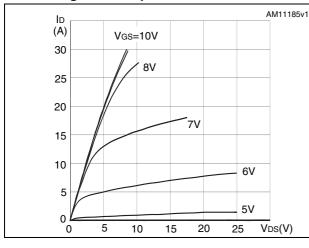



Figure 4. Output characteristics

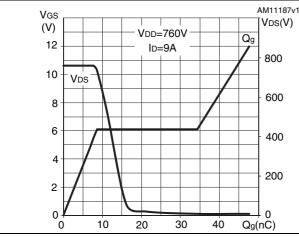
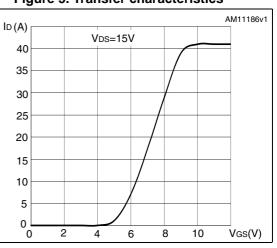



Figure 5. Transfer characteristics

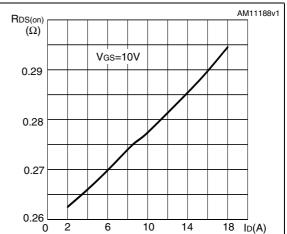
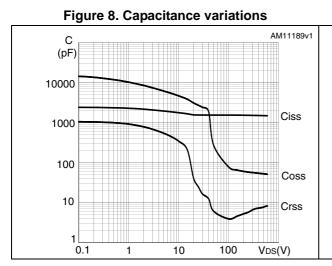
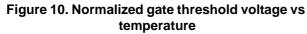




Figure 7. Static drain-source on-resistance

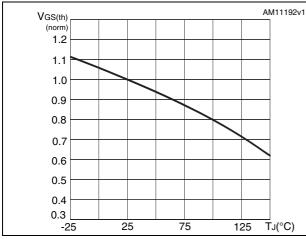
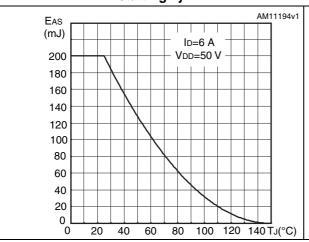



Figure 12. Maximum avalanche energy vs starting Tj

Electrical characteristics

Figure 9. Output capacitance stored energy

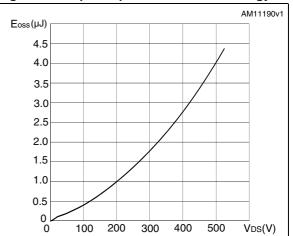


Figure 11. Normalized on-resistance vs temperature

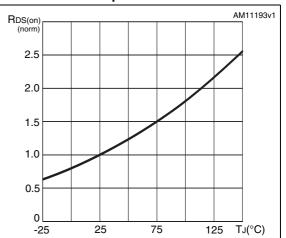
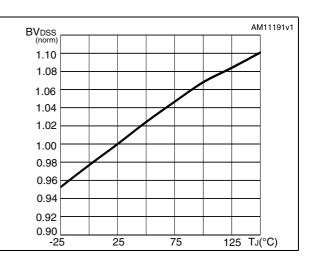
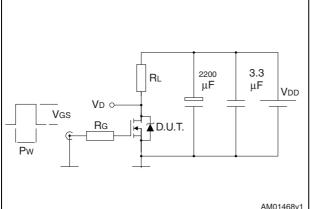



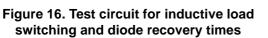
Figure 13. Normalized B_{VDSS} vs temperature



1kΩ

VG

Test circuits 3


Figure 14. Switching times test circuit for resistive load

100Ω 🛱 🖬 D.U.T. Vi=20V=VGMAX 2200 2.7kΩ 📥 μF - $47 k\Omega$ $1 k\Omega$ Pw

12V

IG=CONST

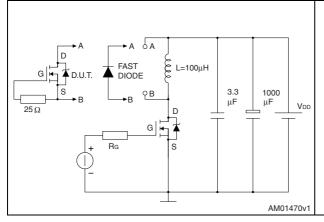


Figure 18. Unclamped inductive waveform

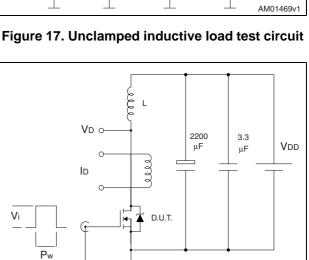
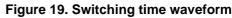
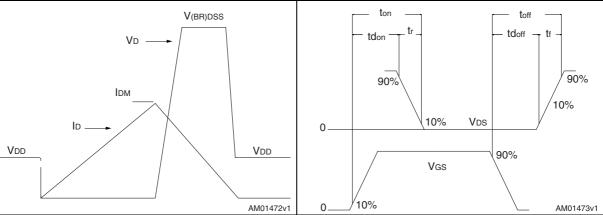




Figure 15. Gate charge test circuit

 $47 k\Omega$

AM01471v1

8/12

4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

D	mm				
Dim. —	Min.	Тур.	Max.		
A	4.90		5.15		
D	1.85		2.10		
E	0.55		0.67		
F	1.07		1.32		
F1	1.90		2.38		
F2	2.87		3.38		
G	10.90 BSC				
Н	15.77		16.02		
L	20.82		21.07		
L1	4.16		4.47		
L2	5.49		5.74		
L3	20.05		20.30		
L4	3.68		3.93		
L5	6.04		6.29		
М	2.25		2.55		
V		10°			
V1		3°			
V3		20°			
Dia.	3.55		3.66		

Table 9. TO-247 long leads mechanical data

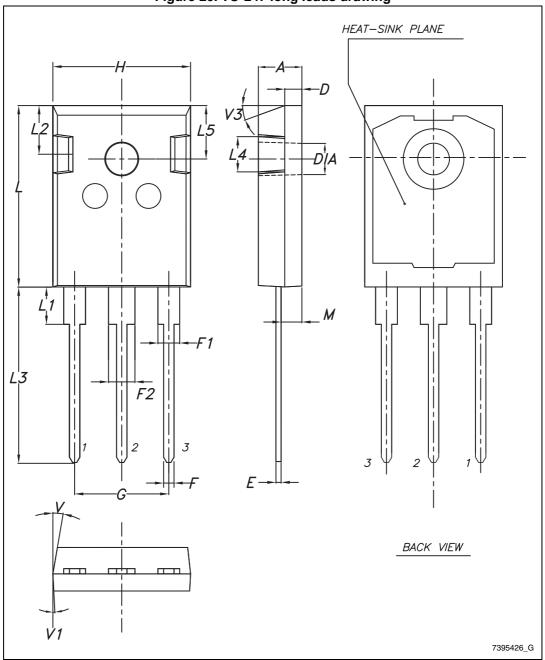


Figure 20. TO-247 long leads drawing

5 Revision history

Table 10. Boodment revision history					
Date	Revision	Changes			
21-Nov-2013	1	First release.			

Table 10. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID025573 Rev 1

