High-Speed

FEATURES

1000 MHz Toggle Rate
Driver/Comparator/Active Load and Dynamic Clamp Included
Inhibit Mode Function
100-Lead LQFP Package with Built-In Heat Sink

Driver

48Ω Output Resistance
800 ps Tr/Tf for a 3 V Step
Comparator
1.1 ns Propagation Delay at 3 V

Load
$\pm 40 \mathrm{~mA}$ Voltage Programmable Current Range 50 ns Settling Time to $\mathbf{1 5 ~ m V}$
APPLICATIONS
Automatic Test Equipment
Semiconductor Test Systems
Board Test Systems
Instrumentation and Characterization Equipment

PRODUCT DESCRIPTION

The AD53522 is a complete, high-speed, single-chip solution that performs the pin electronics functions of driver, comparator, and active load (DCL) for ATE applications. In addition, the driver contains a dynamic clamp function and the active load contains an integrated Schottky diode bridge.
The driver is a proprietary design that features three active states: Data High Mode, Data Low Mode, and Term Mode, as well as an Inhibit State. In conjunction with the integrated dynamic clamp this facilitates the implementation of a high-speed active termination. The output voltage range is -0.5 V to +6.5 V to accommodate a wide variety of test devices.
The dual comparator, with an input range equal to the driver output range, features PECL compatible outputs. Signal tracking capability is in the range of $3 \mathrm{~V} / \mathrm{ns}$.
The active load can be set for up to 40 mA load current. I_{OH}, I_{OL}, and the buffered VCOM are independently adjustable. On-board Schottky diodes provide high-speed switching and low capacitance.
Also included on the chip is an on-board temperature sensor that gives an indication of the silicon surface temperature of the DCL. This information can be used to measure θ_{JC} and θ_{JA}

FUNCTIONAL BLOCK DIAGRAM

or flag an alarm if proper cooling is lost. Output from the sensor is a current sink that is proportional to absolute temperature. The gain is trimmed to a nominal value of $1.0 \mu \mathrm{~A} / \mathrm{k} \Omega$. As an example, the output current can be sensed by using a $10 \mathrm{k} \Omega$ resistor connected from 10 V to the THERM (I $\mathrm{I}_{\mathrm{OUT}}$) pin. A voltage drop across the resistor will be developed that equals: $10 \mathrm{k} \Omega \times 1 \mu \mathrm{~A} / \mathrm{k} \Omega=10 \mu \mathrm{~V} / \mathrm{k} \Omega=2.98 \mathrm{~V}$ at room temperature.

REV. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD53522-SPECIFICATIONS

DRIVER ${ }^{1}$
$\left(T_{J}=85^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C},+\mathrm{V}_{S}=+10.5 \mathrm{~V} \pm 1 \%,-\mathrm{V}_{S}=-4.5 \mathrm{~V} \pm 1 \%, \mathrm{VCCO}=3.3 \mathrm{~V}\right.$ unless otherwise noted. $)$

Spec No.	Parameter	Conditions	Min	Typ ${ }^{2}$	Max	Unit	$\begin{aligned} & \text { Spec }^{3} \\ & \text { Perf } \end{aligned}$
1 2 3	DIFFERENTIAL INPUT CHARA (DATA to DATAb, IOD to IODb, RLD to RLDb) Voltage Range Differential Voltage with LVPECL levels Bias Current	TERISTICS Note: Inputs are from Same Logic Type Family Note: AC Tests Performed $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, 2.5 \mathrm{~V}$	$\begin{aligned} & 0 \\ & \pm 400 \\ & -250 \end{aligned}$	± 600	$\begin{aligned} & +3.3 \\ & \pm 1000 \\ & +250 \end{aligned}$	V mV $\mu \mathrm{A}$	N P P
4	REFERENCE INPUTS Bias Currents	Max Value Measured During Linearity Tests	-50		+50	$\mu \mathrm{A}$	P
10	OUTPUT CHARACTERISTICS Logic High Range	$\begin{aligned} & \text { Data }=\mathrm{H}, \mathrm{VH}=-0.4 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \text {, } \\ & \mathrm{Vl}=-0.5 \mathrm{~V}(\mathrm{VT}=0 \mathrm{~V}, \mathrm{VH} \text { meets } \end{aligned}$	-0.4		+6.5	V	P
11	Logic Low Range	test 20, 21 , and 22 specs) Data $=\mathrm{L}, \mathrm{VL}=-0.5 \mathrm{~V}$ to +6.4 V , $\mathrm{VH}=6.5 \mathrm{~V}(\mathrm{VT}=0 \mathrm{~V}, \mathrm{VL}$ meets	-0.5		+6.4	V	P
12	Amplitude [VH-VL]	$\begin{aligned} & \mathrm{VL}=-0.05 \mathrm{~V}, \mathrm{VH}=+0.05 \mathrm{~V}, \\ & \mathrm{VT}=0 \mathrm{~V} \text { and } \mathrm{VL}=-0.5 \mathrm{~V}, \\ & \mathrm{VH}=+6.5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V} \end{aligned}$	+0.1		+7.0	V	P
20	ABSOLUTE ACCURACY VH Offset	$\begin{aligned} & \text { Data }=\mathrm{H}, \mathrm{VH}=0 \mathrm{~V}, \mathrm{VL}=-0.5 \mathrm{~V}, \\ & \mathrm{VT}=+3 \mathrm{~V} \end{aligned}$	-50		+50	mV	P
21	VH Gain Error	$\begin{aligned} & \text { Data }=\mathrm{H}, \mathrm{VH}=-0.4 \mathrm{~V} \text { to }+6.5 \mathrm{~V}, \\ & \mathrm{VL}=-0.5 \mathrm{~V}, \mathrm{VT}=+3 \mathrm{~V} \end{aligned}$	-0.3		+0.3	\% of VH	P
22	Linearity Error	$\begin{aligned} & \text { Data }=\mathrm{H}, \mathrm{VH}=-0.4 \mathrm{~V} \text { to }+6.5 \mathrm{~V}, \\ & \mathrm{VL}=-0.5 \mathrm{~V}, \mathrm{VT}=+3 \mathrm{~V} \end{aligned}$	-5		+5	mV	P
30	VL Offset	$\begin{aligned} & \text { Data }=\mathrm{L}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=6.5 \mathrm{~V}, \\ & \mathrm{VT}=3 \mathrm{~V} \end{aligned}$	-50		+50	mV	P
31	VL Gain Error	$\begin{aligned} & \text { Data }=\mathrm{L}, \mathrm{VL}=-0.5 \mathrm{~V} \text { to }+6.4 \mathrm{~V}, \\ & \mathrm{VH}=+6.5 \mathrm{~V}, \mathrm{VT}=+3 \mathrm{~V} \end{aligned}$	-0.3		+0.3	\% of VL	P
32	Linearity Error	$\begin{aligned} & \text { Data }=\mathrm{L}, \mathrm{VL}=-0.5 \mathrm{~V} \text { to }+6.4 \mathrm{~V}, \\ & \mathrm{VH}=+6.5 \mathrm{~V}, \mathrm{VT}=+3 \mathrm{~V} \end{aligned}$	-5		+5	mV	P
33	Offset Temperature Coefficient	$\mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V}$		0.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	N
40	OUTPUT RESISTANCE $\mathrm{VH}=-0.3 \mathrm{~V}$	$\begin{aligned} & \mathrm{VL}=-0.5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=+1, \\ & +30 \mathrm{~mA} \end{aligned}$	+46		+50	Ω	N
41	$\mathrm{VH}=+6.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{VL}=-0.5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=-1, \\ & -30 \mathrm{~mA} \end{aligned}$	+46		+50	Ω	P
42	$\mathrm{VL}=-0.5 \mathrm{~V}$	$\begin{aligned} & \mathrm{VH}=+6.5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=+1, \\ & +30 \mathrm{~mA} \end{aligned}$	+46		+50	Ω	P
43	$\mathrm{VL}=+6.4 \mathrm{~V}$	$\begin{aligned} & \mathrm{VH}=+6.5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-1, \\ & -30 \mathrm{~mA} \end{aligned}$	+46		+50	Ω	N
44	$\mathrm{VH}=+2.5 \mathrm{~V}$	$\mathrm{VL}=0 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=-30 \mathrm{~mA}$ (Trim Point)		+47.5		Ω	P
50	Dynamic Current Limit	$\begin{aligned} & \mathrm{Cbyp}=39 \mathrm{nF}, \mathrm{VH}=+6.5 \mathrm{~V}, \\ & \mathrm{VL}=-0.5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V} \end{aligned}$	$+100$			mA	N
51	Static Current Limit	Output to $-0.5 \mathrm{~V}, \mathrm{VH}=+6.5 \mathrm{~V}$, $\mathrm{VL}=-0.5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V}, \mathrm{DATA}=\mathrm{H}$	-120		-60	mA	P
52	Static Current Limit	Output to $+6.5 \mathrm{~V}, \mathrm{VH}=+6.5 \mathrm{~V}$, $\mathrm{VL}=-0.5 \mathrm{~V}, \mathrm{VT}=0 \mathrm{~V}, \mathrm{DATA}=\mathrm{L}$	+60		+120	mA	P

AD53522							
Spec No.	Parameter	Conditions	Min	Typ ${ }^{2}$	Max	Unit	$\begin{aligned} & \text { Spec }^{3} \\ & \text { Perf } \end{aligned}$
60	VTERM Voltage Range	TERM MODE, $\mathrm{VTERM}=-0.3 \mathrm{~V}$ to $+6.3 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=+3 \mathrm{~V}$ (VTERM meets test 61, 62, and 63 specs)	-0.3		+6.3	V	P
61	VTERM Offset	TERM MODE, VTERM $=0 \mathrm{~V}$, $\mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=3 \mathrm{~V}$	-50		+50	mV	P
62	VTERM Gain Error	$\begin{aligned} & \text { TERM MODE, VTERM }=-0.3 \mathrm{~V} \\ & \text { to }+6.3 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=+3 \mathrm{~V} \end{aligned}$	-0.3		+0.3	$\%$ of $\mathrm{V}_{\text {SET }}$	P
63	VTERM Linearity Error	TERM MODE, VTERM $=-0.3 \mathrm{~V}$ to $+6.3 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=+3 \mathrm{~V}$	-5		+5	mV	P
64	Offset Temperature Coefficient	$\mathrm{VTERM}=0 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=3 \mathrm{~V}$		+0.5		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	N
70	Output Resistance DC	$\mathrm{I}_{\text {OUT }}=+30 \mathrm{~mA},-1 \mathrm{~mA}, \mathrm{VTERM}=$ $-0.3 \mathrm{~V}, \mathrm{VH}=3 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}$ $\mathrm{I}_{\text {OUT }}=-30 \mathrm{~mA},+1 \mathrm{~mA}, \mathrm{VTERM}=$ $+6.3 \mathrm{~V}, \mathrm{VH}=3 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}$ $\mathrm{I}_{\text {OUT }}= \pm 30 \mathrm{~mA}, \pm 1 \mathrm{~mA}, \mathrm{VTERM}=$ $+2.5 \mathrm{~V}, \mathrm{VH}=3 \mathrm{~V}, \mathrm{VL}=0 \mathrm{~V}$	+46		+50	Ω	N N P
72	PSRR, Drive, or TERM Mode	$+\mathrm{V}_{\mathrm{S}},-\mathrm{V}_{\mathrm{S}} \pm 1 \%$		17.8		mV / V	N
73	Static Current Limit	Output to -0.3 V, VTERM $=+6.3 \mathrm{~V}$	-120		-60	mA	P
74	Static Current Limit	Output to +6.3 V, VTERM $=-0.3 \mathrm{~V}$	+60		+120	mA	P
80	DYNAMIC PERFORMANCE, DRIVE (VH and VL)						
	Propagation Delay Time	Measured at $50 \%, \mathrm{VL}=0 \mathrm{~V}$, $\mathrm{VH}=3 \mathrm{~V}$, into 500Ω	1.25	1.4	1.55		P
81	Propagation Delay T.C.	Measured at $50 \%, \mathrm{VL}=0 \mathrm{~V}$, $\mathrm{VH}=3 \mathrm{~V}$, into 500Ω		2	200	ps $/{ }^{\circ} \mathrm{C}$	N
82	Delay Matching, Edge-to-Edge	Measured at $50 \%, \mathrm{VL}=0 \mathrm{~V}$, $\mathrm{VH}=3 \mathrm{~V}$, into 500Ω				ps	P
90	RISE AND FALL TIMES 200 mV Swing	$\begin{aligned} & \text { Measured } 20 \%-80 \%, \mathrm{VL}=-0.1 \mathrm{~V}, \\ & \mathrm{VH}=+0.1 \mathrm{~V} \text {, into } 50 \Omega \end{aligned}$	0.25			ns	N
91	1 V Swing	Measured $20 \%-80 \%$, VL $=0 \mathrm{~V}$, $\mathrm{VH}=1 \mathrm{~V}$, into 50Ω	0.3			ns	N
92	3 V Swing	$\text { Measured } 10 \%-90 \%, \mathrm{VL}=0 \mathrm{~V} \text {, }$ $\mathrm{VH}=3 \mathrm{~V} \text {, into } 50 \Omega$	0.8			ns	N
93	3 V Swing	Measured $10 \%-90 \%$, $\mathrm{VL}=0 \mathrm{~V}$, $\mathrm{VH}=3 \mathrm{~V}$, into 500Ω	0.450	0.8		ns	N
93A	3 V Swing	Measured $20 \%-80 \%$, VL $=0 \mathrm{~V}$, $\mathrm{VH}=3 \mathrm{~V}$, into 500Ω		0.560	0.670	ns	P
94	5 V Swing	Measured $10 \%-90 \%$, $\mathrm{VL}=0 \mathrm{~V}$, $\mathrm{VH}=5 \mathrm{~V}$, into 500Ω		1.2	1.5	ns	N
$\begin{aligned} & 100 \\ & 101 \\ & 102 \\ & 110 \end{aligned}$	RISE AND FALL TIME TEMPERATURE COEFFICIENT						
	1 V Swing	(per test 91)		± 2		ps $/{ }^{\circ} \mathrm{C}$	N
	3 V Swing	(per test 92)		± 2		ps $/{ }^{\circ} \mathrm{C}$	N
	5 V Swing	(per test 94)		± 4		ps/ ${ }^{\circ} \mathrm{C}$	N
	Overshoot and Preshoot	VL, VH $=-0.1 \mathrm{~V},+0.1 \mathrm{~V}$, Driver Terminated into 50Ω			$0+50$	$\begin{aligned} & \% \text { of Step } \\ & +\mathrm{mV} \end{aligned}$	N
		$\mathrm{VL}, \mathrm{VH}=0.0 \mathrm{~V}, 3 \mathrm{~V}$, Driver Terminated into 50Ω	$-6.0-50$		$+6.0+50$	$\begin{aligned} & \% \text { of Step } \\ & +\mathrm{mV} \end{aligned}$	N
120 121	SETTING TIME to 15 mV to 4 mV	$\mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=0.5 \mathrm{~V}$, Driver Terminated into 50Ω $\mathrm{VL}=0 \mathrm{~V}, \mathrm{VH}=0.5 \mathrm{~V}$		50 10		ns	N N

(continued)

DRIVER ${ }^{1}$
(continued)

COMPARATOR ${ }^{1}$

(continued)

active Load ${ }^{1}$

Spec No.	Parameter	Conditions	Min	Typ ${ }^{2}$	Max	Unit	$\begin{aligned} & \text { Spec }^{3} \\ & \text { Perf } \end{aligned}$
	BIAS CURRENT	$\mathrm{VIOH}=0 \mathrm{~V}, 4 \mathrm{~V}$					
303	VIOL Current Program Range, IOL $=0 \mathrm{~mA}$ to 40 mA	VDUT $=-0.5 \mathrm{~V},+5.2 \mathrm{~V}$	0		4.0	V	P
304	IOH, VIOL Input	$\mathrm{VIOL}=0 \mathrm{~V}, 4 \mathrm{~V}$ and	-300	+300		$\mu \mathrm{A}$	P
305	IOXRTN Range	$\begin{aligned} & \mathrm{IOL}=+40 \mathrm{~mA}, \mathrm{IOH}=-40 \mathrm{~mA} \\ & \text { VDUT }=-0.5 \mathrm{~V},+6.5 \mathrm{~V} \end{aligned}$		-0.5,		V	N
310	VDUT Range	$\begin{aligned} & \mathrm{IOL}=+40 \mathrm{~mA}, \mathrm{IOH}=-40 \mathrm{~mA}, \\ & \|\mathrm{VDUT}-\mathrm{VCOM}\|>1.3 \mathrm{~V} \end{aligned}$	-0.5		+6.5	V	P
311	VDUT Range, $\mathrm{IOH}=$ 0 mA to -40 mA	VDUT - VCOM $>1.3 \mathrm{~V}$	0.8		6.5	V	P
312	VDUT Range, $\mathrm{IOL}=$ 0 mA to +40 mA	VCOM - VDUT > 1.3 V	-0.5		+5.2	V	P
320	OUTPUT CHARACTERISTICS Accuracy Gain Error, Load Current, Normal Range Calculated at 1 mA and 40 mA points ${ }^{2}$	IOL, $\mathrm{IOH}=25 \mu \mathrm{~A}-40 \mathrm{~mA}$, $\mathrm{VCOM}=0 \mathrm{~V}, \mathrm{VDUT}= \pm 2 \mathrm{~V}$ and $\mathrm{IOL}=25 \mu \mathrm{~A}$ to $40 \mathrm{~mA}, \mathrm{VCOM}=$ +6.5 V , VDUT $=+5.2 \mathrm{~V}$ and $\mathrm{IOH}=25 \mu \mathrm{~A}$ to $40 \mathrm{~mA}, \mathrm{VCOM}=$ $-0.5 \mathrm{~V}, \mathrm{VDUT}=+0.8 \mathrm{~V}$	-0.35		+0.35	$\% \mathrm{I}_{\mathrm{SET}}$	P
321	Load Offset	Calculated from Intercept of 1 mA and 40 mA Points	-300		+300		
$\begin{aligned} & 322 \\ & 323 \end{aligned}$	Load Nonlinearity Output Current Temperature	IOL, IOH from $25 \mu \mathrm{~A}$ to 40 mA Measured at $\mathrm{IOH}, \mathrm{IOL}=200 \mu \mathrm{~A}$	-80	$< \pm 3$	+80	$\mu \mathrm{A}$ $\mu \mathrm{A} /{ }^{\circ} \mathrm{C}$	$\begin{aligned} & \mathrm{P} \\ & \mathrm{~N} \end{aligned}$
324	COEFFICIENT IOH Extended Range	Driver Inhibited, $\mathrm{IOH}=1 \mathrm{~mA}$, Change in IOH from VTT = 0 V to $\mathrm{VTT}=-1.0 \mathrm{~V}$	2			\%	P
	VCOM BUFFER						
330 331	VCOM Buffer Bias Current	V $\mathrm{VCOL}, \mathrm{MH}=0 \mathrm{~V}$	-50		+50	mV	P
332	VCOM Buffer Gain Error	IOL, $\mathrm{IOH}=40 \mathrm{~mA}, \mathrm{VCOM}=$			+4	$\begin{aligned} & \mu \mathrm{A} \\ & \% \end{aligned}$	$\begin{aligned} & P \\ & P \end{aligned}$
333	VCOM Buffer Linearity Error	$\begin{aligned} & -0.5 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \\ & \mathrm{IOL}, \mathrm{IOH}=40 \mathrm{~mA}, \mathrm{VCOMI}= \\ & -0.5 \mathrm{~V} \text { to }+6.5 \mathrm{~V} \end{aligned}$	-10		$+10$	mV	P
	DYNAMIC PERFORMANCE						
340	Propagation Delay $\pm \mathrm{I}_{\text {MAX }}$ to INHIBIT	$\begin{aligned} & \mathrm{VTT}=+2 \mathrm{~V}, \mathrm{VCOM}=+4 / 0 \mathrm{~V}, \\ & \mathrm{IOL}=+20 \mathrm{~mA}, \mathrm{IOH}=-20 \mathrm{~mA} \end{aligned}$		1.3	2.0	ns	P
341	INHIBIT to $\pm \mathrm{I}_{\text {MAX }}$	$\begin{aligned} & \mathrm{VTT}=+2 \mathrm{~V}, \mathrm{VCOM}=+4 / 0 \mathrm{~V}, \\ & \mathrm{IOL}=+20 \mathrm{~mA}, \mathrm{IOH}=-20 \mathrm{~mA} \end{aligned}$	1.2	1.8	2.4	ns	P
342	Propagation Delay Matching	$\begin{aligned} & \text { Matching = (Test } 340 \text { Value) } \\ & \text { (Test } 341 \text { Value) } \end{aligned}$	-1.0		+1.0	ns	P
350	I/O Spike	$\begin{aligned} & \mathrm{VCOM}=0 \mathrm{~V}, \mathrm{IOL}=+20 \mathrm{~mA}, \\ & \mathrm{IOH}=-20 \mathrm{~mA} \end{aligned}$		250		mV	N
360	Settling Time to 15 mV	$\begin{aligned} & \mathrm{IOL}=+20 \mathrm{~mA}, \mathrm{IOH}=-20 \mathrm{~mA}, \\ & 50 \Omega \text { Load, to } \pm 15 \mathrm{mV} \end{aligned}$		50		ns	N
361	Settling Time to 4 mV	$\begin{aligned} & \mathrm{IOL}=+20 \mathrm{~mA}, \mathrm{IOH}=-20 \mathrm{~mA}, \\ & 50 \Omega \text { Load, to } \pm 4 \mathrm{mV} \end{aligned}$		10		$\mu \mathrm{s}$	N

DYNAMIC CLAMP PART

Spec No.	Parameter	Conditions	Min	Typ ${ }^{2}$	Max	Unit	Spec 3 Perf
400	Input Voltage VCH		2		7.5	V	P
401	Input Voltage VCL		-1.5		+4	V	P
402	Input Bias Current VCH/VCL	Over range spec \#401, 402	-250		+250	$\mu \mathrm{A}$	P
410	VCH, VCL Offset Error	$\mathrm{I}_{\mathrm{TEST}}=1 \mathrm{~mA}$	-250		+250	mV	P
411	VCH, VCL Gain Error	$\mathrm{I}_{\mathrm{TEST}}=1 \mathrm{~mA}$	0.96		1.01	V/V	P
420	Static Current Capability		50		75	mA	N
430	Incremental Resistance	11 mA to 21 mA	45	48	52	Ω	P
440	VCHP, VCLP Protection Diodes Vf @ 500μ		0.52		0.64	V	P
441	Protection Diodes Max Current	For information only			2	mA	N
	TOTAL FUNCTION POWER DOW						
500	PWRD Input Voltage		0		5	V	P
501	PWRD Bias Current	PWRD trip point $1.4 \mathrm{~V} \pm 0.15 \mathrm{~V}$	-250		+250	$\mu \mathrm{A}$	P
503	Power-Down Supply Reduction	$\mathrm{VIOH}=0 \mathrm{~V}, \mathrm{VIOL}=0 \mathrm{~V}$	35		60	\%	P
504	Power-Down Output						
	Leakage Current	$\begin{aligned} & \mathrm{VIOH}=0 \mathrm{~V}, \mathrm{VIOL}=0 \mathrm{~V} \\ & \mathrm{~V}_{\text {OUT }}=-0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{aligned}$	-20		+20	nA	P
505	Power-Down Output Leakage Current	$\begin{aligned} & \mathrm{VIOH}=0 \mathrm{~V}, \mathrm{VIOL}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=5.5 \mathrm{~V} \text { to } 6.5 \mathrm{~V} \end{aligned}$	-500		+500	nA	P
600	Output Leakage Current, $\mathrm{V}_{\text {OUT }}=-0.5 \mathrm{~V} \text { to }+6.5 \mathrm{~V}$		-1		+1	$\mu \mathrm{A}$	P
601	Output Leakage Current, $\mathrm{V}_{\text {Out }}=0 \mathrm{~V}$ to 5 V		-500		+500	nA	P
602	Output Leakage Current, $\mathrm{V}_{\text {OUT }}=-1 \mathrm{~V}$		-5		+5	$\mu \mathrm{A}$	P
605	Output Capacitance	Driver and Load INHIBITED		9.2		pF	N
606	Output Capacitance Term	Driver VTERM $=0 \mathrm{~V}$, Load INHIBITED		2.5		pF	N
	POWER SUPPLIES						
610	Total Supply Range			15		V	N
620	Positive Supply, VCC			+10.5		V	N
630	Negative Supply, VEE			-4.5		V	N
640	Positive Supply Current, VCC	$\begin{aligned} & \text { Driver }=\text { Inhibit, } \mathrm{I}_{\text {LOAD }} \text { program }= \\ & 40 \mathrm{~mA} \text {, Load }=\text { Active } \end{aligned}$		465	570	mA	P
650	Negative Supply Current, VEE	$\begin{aligned} & \text { Driver }=\text { Inhibit, } \mathrm{I}_{\text {LOAD }} \text { program }= \\ & 40 \mathrm{~mA} \text {, Load }=\text { Active } \end{aligned}$		475	600	mA	P
651	Comparator Supply Current Overhead, VCCO	Driver $=$ Inhibit, $\mathrm{I}_{\text {LOAD }}$ program $=$ 40 mA , Load $=$ Active ($\mathrm{I}_{\mathrm{VCCO}}-$ (comparator logic output currents))			45	mA	P
660	Total Power Dissipation	$\begin{aligned} & \text { Driver }=\text { Inhibit, } \mathrm{I}_{\text {LOAD }} \text { program }= \\ & 40 \mathrm{~mA} \text {, Load }=\text { Active } \end{aligned}$		7.2	7.9	W	P
661	Total Power Dissipation	$\begin{aligned} & \text { Driver }=\text { Inhibit, } \mathrm{I}_{\text {LOAD }} \text { program }= \\ & 0 \mathrm{~mA} \end{aligned}$		5.2	5.9	W	P
700	Temperature Sensor Gain Factor	$\mathrm{R}_{\text {LOAD }}=10 \mathrm{k} \Omega, \mathrm{V}_{\text {SOURCE }}=10.5 \mathrm{~V}$		1		$\mu \mathrm{A} / \mathrm{K}$	N

NOTES
${ }^{1}$ All temperature coefficients are measured at $\mathrm{T}_{\mathrm{J}}=75^{\circ} \mathrm{C}-95^{\circ} \mathrm{C}$. In test figures, voltmeter loading is $1 \mathrm{M} \Omega$ or greater, scope probe loading is $100 \mathrm{k} \Omega$ in parallel with 0.6 pF .
${ }^{2}$ Typical Values are not tested or guaranteed. Nominal values are generated from design or simulation analyses and/or limited bench evaluations and are not tested or guaranteed.
${ }^{3}$ Spec Perf: $\mathrm{N}=$ Nominal, $\mathrm{O}=$ Operating Condition, $\mathrm{T}=$ Typical, $\mathrm{P}=$ Production, Max Min
${ }^{4}$ VTERM Linearity over the following condition: VL $-6 \mathrm{~V}<\mathrm{VTERM}<\mathrm{VH}+6 \mathrm{~V}$
${ }^{5}$ All ac input values are referred to the source end of transmission line input.
${ }^{6}$ All ac tests are performed with Driver in VTERM mode except where noted.
${ }^{7}$ Rise time is calculated SQRT ($(\operatorname{comp}$ out rt$\left.){ }^{* *} 2-(\mathrm{comp} \mathrm{in} \mathrm{rt}){ }^{* *} 2\right)$
Specifications are subject to change without notice.
ABSOLUTE MAXIMUM RATINGS ${ }^{1}$POWER SUPPLY VOLTAGE
$V_{C C}$ to GND 11.3 V
$V_{E E}$ to GND -7 V
V_{CC} to V_{EE} 18 V
VCCO to GND 5.5 V
PWRGND, DRGND, GND_ROT, or HQGND $\pm 0.4 \mathrm{~V}$OUTPUTS
Vout Short Circuit Duration Indefinite ${ }^{2}$
$V_{\text {Out }}$, Inhibit Mode $+8.5 \mathrm{~V},-2 \mathrm{~V}$
$V_{\text {OUt }}$, Inhibit Mode
VHDCPL Do Not Connect Except for Cap to V_{CC}
VLDCPL Do Not Connect Except for Cap to $\mathrm{V}_{\mathrm{EE}}$$\mathrm{QH}, \mathrm{QHb}, \mathrm{QL}, \mathrm{QLB}$ Maximum $\mathrm{I}_{\text {OUT }}$:
Continuous 50 mA
Surge 100 mA
THERM $11 \mathrm{~V}, 0 \mathrm{~V}$
Driver output capacitance, maximum 10 pF
INPUTS
DATA, DATAb, IOD, IODb, RLD, RLDB ..$\left(\mathrm{V}_{\mathrm{CCO}}+1.5 \mathrm{~V}\right.$,$\left.\mathrm{V}_{\mathrm{CCO}}-4.5 \mathrm{~V}\right)$
INHL, INHLb, CMPD -0.4 V to +5.5 V
PWRD -0.4 V to +4.5 V
DATA to DATAb, IOD to IODb, RLD to RLDB ± 3 V
INHL to INHLb $\pm 6 \mathrm{~V}$
VH, VL, VTERM to GND (Rseries < 500Ω) . +7.5 V, -1.1 VVH to VL . +8 V, -3.5 V
(VH - VTERM) and (VTERM - VL) ± 8 V
Reflection Clamps High/Low $+8.5 \mathrm{~V},-2 \mathrm{~V}$
Protection Clamp Breakdown Voltage 12 V
Protection Clamps Current $\pm 5 \mathrm{~mA}$
Vout to HCOMP or LCOMP $\pm 7.8 \mathrm{~V}$
ENVIRONMENTAL
Operating Temperature (Junction) $175^{\circ} \mathrm{C}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec$)^{3}$ $260^{\circ} \mathrm{C}$
NOTES
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Absolute maximum limits apply individually, not in combination. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
${ }^{2}$ Output short circuit protection is guaranteed as long as proper heat sinking is employed to ensure compliance with the operating temperature limits.
${ }^{3}$ To ensure lead coplanarity (± 0.002 inches) and solderability, handling with bare hands should be avoided and the device should be stored in environments at $24^{\circ} \mathrm{C}$ $\pm 5^{\circ} \mathrm{C}\left(75^{\circ} \mathrm{F} \pm 10^{\circ} \mathrm{F}\right)$ with relative humidity not to exceed 65%.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD53522JSQ	$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$	100-Lead LQFP-EDQUAD with Integral Heat Slug	SQ-100

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD53522 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high-energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Table I. Driver Truth Table

DATA	DATAb	IOD	IODb	RLD	RLDb	Output State
0	1	1	0	X	X	VL
1	0	1	0	X	X	VH
X	X	0	1	0	1	INH and
X	X	0	1	1	0	CLAMP

Table II. Comparator Truth Table

V $_{\text {out }}$	Output States				
	QHb	QL	QLb		
> HCOMP	Q LCOMP	1	0	1	0
> HCOMP	< LCOMP	1	0	0	1
< HCOMP	> LCOMP	0	1	1	0
< HCOMP	< LCOMP	0	1	0	1

Table III. Active Load Truth Table

			Output States (including diode bridge)		
VDUT	INHL	INHLb	IOH	IOL	I(VOUT)
$<$ VCOM	0	1	V(IOHC) $\times+10 \mathrm{~mA}$	V(IOLC) $\times-10 \mathrm{~mA}$	IOL
$>$ VCOM	0	1	V(IOHC) $\times+10 \mathrm{~mA}$	V(IOLC) $\times-10 \mathrm{~mA}$	IOH
X	1	0	0	0	0
$-8-$					

PIN CONFIGURATION

NOTE
DIE IS MOUNTED TO THE BACK OF THE HEAT SLUG.
THE PACKAGE IS MOUNTED TO THE BOARD, HEAT SLUG UP.

PIN FUNCTION DESCRIPTIONS

Pin Number	Mnemonic	Description
1	PROT_HI1	Channel 1, output voltage sensing diode
2	IOXRTN1	Current return path for the active load for channel 1. Typically connected to a power ground.
3	VCH1	Analog input voltage that sets the reflection clamp high level of channel 1
4	VCL1	Analog input voltage that sets the reflection clamp low level of channel 1
5	VHDCPL1	Internal supply decoupling for the driver output stage of channel 1. This pin needs to be connected to V_{CC} through a 39 nF (minimum) capacitor.
6	OUT1	Input/output for the driver, window comparator, reflection clamp, and the active load of channel 1
7	VLDCPL1	Internal supply decoupling for the driver output stage of channel 1. This pin needs to be connected to V_{EE} through a 39 nF (minimum) capacitor.
8	PWRGND	Power ground 9

Pin Number	Mnemonic	Description
11	PWRGND	Power ground
12	PWRGND	Power ground
13	GND_ROT	Analog ground
14	PWRGND	Power ground
15	PWRGND	Power ground
16	DR_GND	Analog ground
17	PWRGND	Power ground
18	PWRGND	Power ground
19	VLDCPL2	Internal supply decoupling for the driver output stage of channel 2 . This pin needs to be connected to V_{EE} through a 39 nF (minimum) capacitor.
20	OUT2	Input/output for the driver, window comparator, reflection clamp, and the active load of channel 2
21	VHDCPL2	Internal supply decoupling for the driver output stage of channel 2 . This pin needs to be connected to V_{CC} through a 39 nF (minimum) capacitor.
22	VCL2	Analog input voltage that sets the reflection clamp high level of channel 2
23	VCH2	Analog input voltage that sets the reflection clamp high level of channel 2
24	IOXRTN2	Current return path for the active load for channel 2. Typically connected to a power ground.
25	PROT_HI2	Channel 2, output voltage sensing diode
26	PROT_LO2	Channel 2, output voltage sensing diode
27	PWRGND	Power ground
28	PWRGND	Power ground
29	VCOM_S2	Analog output voltage that represents a buffered VCOM1 input
30	THERMSTART	Temperature sensor startup pin. Normally not connected
31	IOLC2	Analog input voltage that programs the channel 2 active load source current
32	IOHC2	Analog input voltage that programs the channel 2 active load sink current
33	HQGND	Clean analog ground for the active load for channel 2
34	INHL2	One of two complementary inputs that control the inhibit mode for the active load bridge of channel 2
35	$\overline{\text { INHLB2 }}$	One of two complementary inputs that control the inhibit mode for the active load bridge of channel 2
36	$\mathrm{V}_{\text {EE }}$	Negative supply terminal
37	$\mathrm{V}_{\text {CC }}$	Positive supply terminal
38	PWRGND	Power ground
39	RLD2	One of two complementary inputs that control, in conjunction with IOD2 and IODB2, the operating mode of the channel 2 driver. Refer to the Driver Truth Table for specific conditions.
40	IOD2	One of two complementary inputs that control, in conjunction with RLD2 and RLDB2, the operating mode of the channel 2 driver. Refer to the Driver Truth Table for specific conditions.
41	$\overline{\text { IODB2 }}$	One of two complementary inputs that control, in conjunction with RLD2 and RLDB2, the operating mode of the channel 2 driver. Refer to the Driver Truth Table for specific conditions.
42	DATA2	One of two complementary input that determine the high and low state of the channel 2 driver. Driver output is high for DATA2 > DATAB2. Refer to the Driver Truth Table for specific conditions.
43	$\overline{\text { DATAB2 }}$	One of two complementary input that determine the high and low state of the channel 2 driver. Driver output is high for DATA2 > DATAB2. Refer to the Driver Truth Table for specific conditions.
44	PWRGND	Power ground
45	PWRGND	Power ground
46	VCOM2	Analog input voltage that establishes the commutation voltage for the active load diode bridge for channel 2
47	VH2	Analog input voltage that sets the Logic 1 level of the driver output limit for channel 2. Determines the driver output for DATA2 $>$ DATAB

Pin Number	Mnemonic	Description
48	VTERM2	Analog input voltage that sets the termination voltage level of the channel 2 driver when in VTERM mode
49	VL2	Analog input voltage that sets the Logic 0 level of the driver output limit for channel 2 . Determines the driver output for DATAB2
50	DATA2.	

Pin Number	Mnemonic	Description
85	$\overline{\text { IODB1 }}$	One of two complementary inputs that control, in conjunction with RLD1 and RLDB1, the operating mode of the channel 1 driver. Refer to the Driver Truth Table for specific conditions.
86	IOD1	One of two complementary inputs that control, in conjunction with RLD1 and RLDB1, the operating mode of the channel 1 driver. Refer to the Driver Truth Table for specific conditions.
87	RLD1	One of two complementary inputs that controls, in conjunction with IOD1 and IODB1, the operating mode of the channel 1 driver. Refer to the Driver Truth Table for specific conditions.
88	PWRGND	Power ground
89	V_{CC}	Positive supply terminal
90	$\mathrm{V}_{\text {EE }}$	Negative supply terminal
91	$\overline{\text { INHLB1 }}$	One of two complementary inputs that control the inhibit mode for the active load bridge of channel 1
92	INHL1	One of two complementary inputs that control the inhibit mode for the active load bridge of channel 1
93	HQGND	Clean analog ground for the active load for channel 1
94	IOHC1	Analog input voltage that programs the channel 1 active load sink current
95	IOLC1	Analog input voltage that programs the channel 1 active load source current
96	THERM	Temperature sensor output pin. A resistor (10 KW) should be connected between THERM and V_{CC}. The approximate die temperature can be determined by measuring the current through the resistor. The typical scale factor is $1 \mu \mathrm{~A} / \mathrm{K}$.
97	VCOM_S1	Analog output voltage that represents a buffered VCOM1 input
98	PWRGND	Power ground
99	PWRGND	Power ground
100	PROT_LO1	Channel 1 output voltage sensing diode

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
100-Lead LQFP-EDQUAD (SQ-100)

