FEATURES

Latch-up proof

8 kV human body model (HBM) ESD rating
Low on resistance (13.5Ω)
$\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$ dual-supply operation
9 V to 40 V single-supply operation
48 V supply maximum ratings
Fully specified at $\pm 15 \mathrm{~V}, \pm 20 \mathrm{~V},+12 \mathrm{~V}$, and +36 V
$V_{s s}$ to $V_{D D}$ analog signal range

APPLICATIONS

Relay replacement

Automatic test equipment
Data acquisition

Instrumentation

Avionics

Audio and video switching

Communication systems

GENERAL DESCRIPTION

The ADG5408/ADG5409 are monolithic CMOS analog multiplexers comprising eight single channels and four differential channels, respectively. The ADG5408 switches one of eight inputs to a common output, as determined by the 3-bit binary address lines, A0, A1, and A2. The ADG5409 switches one of four differential inputs to a common differential output, as determined by the 2-bit binary address lines, A0 and A1.
An EN input on both devices enables or disables the device. When EN is disabled, all channels switch off. The on-resistance profile is very flat over the full analog input range, which ensures good linearity and low distortion when switching audio signals. High switching speed also makes the parts suitable for video signal switching.
Each switch conducts equally well in both directions when on, and each switch has an input signal range that extends to the power supplies. In the off condition, signal levels up to the supplies are blocked.

Figure 1.

The ADG5408/ADG5409 do not have V_{L} pins; rather, the logic power supply is generated internally by an on-chip voltage generator.

PRODUCT HIGHLIGHTS

1. Trench isolation guards against latch-up. A dielectric trench separates the P and N channel transistors thereby preventing latch-up even under severe overvoltage conditions.
2. Low Ron.
3. Dual-supply operation. For applications where the analog signal is bipolar, the ADG5408/ADG5409 can be operated from dual supplies up to $\pm 22 \mathrm{~V}$.
4. Single-supply operation. For applications where the analog signal is unipolar, the ADG5408/ADG5409 can be operated from a single rail power supply up to 40 V .
5. 3 V logic compatible digital inputs: $\mathrm{V}_{\mathrm{INH}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{INL}}=0.8 \mathrm{~V}$.
6. No V_{L} logic power supply required.

Rev. C
Document Feedback
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result fromits use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781.329.4700 ©2010-2013 Analog Devices, Inc. All rights reserved. Technical Support

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagrams. 1
General Description 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
± 20 V Dual Supply 4
12 V Single Supply. 5
36 V Single Supply 6
Continuous Current per Channel, Sx or D 8
REVISION HISTORY
3/13-Rev. B to Rev. C
Changes to Table 5 and Table 6. 8
Changed ADG5408 Peak Current from 370 mA to 435 mA ;Changed ADG5409 Peak Current from 275 mA to 300 mA ;Changed Reflow Soldering Peak Temperature, Pb Free from$260(+0 /-5)^{\circ} \mathrm{C}$ to As per JEDEC J-STD-020; Table 7 9
Changes to Figure 25, Figure 26, and Figure 29 16
5/12—Rev. A to Rev. B
Removed Automotive Information (Throughout). 1
Changes to Ordering Guide 22
Deleted Automotive Products Section 22
6/11-Rev. 0 to Rev. A
Change to Features Section 1
Change to Iss Parameter, Table 2 5
Changes to Figure 3 10
Changes to Figure 5 11
Updated Outline Dimensions 21
Changes to Ordering Guide 21
Added Automotive Products Section 21
7/10-Revision 0: Initial Version
Absolute Maximum Ratings 9
ESD Caution 9
Pin Configurations and Function Descriptions 10
Typical Performance Characteristics 12
Test Circuits 16
Terminology 18
Trench Isolation 19
Applications Information 20
Outline Dimensions 21
Ordering Guide 22

SPECIFICATIONS

+15 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%$, GND $=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range		18	$V_{\text {DD }}$ to $V_{S S}$	V	$\begin{aligned} & V_{S}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{5 S}=-13.5 \mathrm{~V} \end{aligned}$
On Resistance, Ron	13.5		22	$\Omega \text { typ }$	
	15				
On-Resistance Match Between Channels, Δ Ron	0.3			Ω typ	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
			1.4		$\mathrm{V}_{\mathrm{s}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
On-Resistance Flatness, Rflat (on)	0.8	1.3		Ω max	
	1.8			Ω typ	
	2.2	2.6	3	Ω max	
LEAKAGE CURRENTS					$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$
Source Off Leakage, Is (Off)	± 0.05	± 1	± 7	nA typ nA max	$\mathrm{V}_{S}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}$; see Figure 29
Drain Off Leakage, I_{D} (Off)	± 0.25				
	± 0.1	± 4		nA typ	$\mathrm{V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V}$; see Figure 29
	± 0.4			nA max	
Channel On Leakage, $\mathrm{ID}_{\mathrm{D}}(\mathrm{On})$, Is (On)	± 0.1		± 30	nA typ nA max	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V}$; see Figure 25
	± 0.4	± 4	± 30		
DIGITAL INPUTS	0.0023		2.00.8± 0.1	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
Input High Voltage, V VINH					
Input Low Voltage, $\mathrm{V}_{1 N L}$					
Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\mathrm{INH}}$					
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$					
DYNAMIC CHARACTERISTICS ${ }^{1}$					
Transition Time, ttransition	170			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	217	258	292	ns max	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$; see Figure 32
ton (EN)	140			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	175	213	242	ns max	$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 34
toff (EN)	130			ns typ	$\mathrm{RL}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$
	161	183	198	ns max	$\mathrm{V}_{\mathrm{S}}=10 \mathrm{~V}$; see Figure 34
Break-Before-Make Time Delay, to	50			ns typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, C_{L}=35 \mathrm{pF}$
			16	ns min	$\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{52}=10 \mathrm{~V}$; see Figure 33
Charge Injection, Qin	115			pC typ	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \\ & \text { see Figure } 35 \end{aligned}$
Off Isolation	-60			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 28
Channel-to-Channel Crosstalk	-60			dB typ	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see }$ Figure 27
Total Harmonic Distortion + Noise	0.01			\% typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, 15 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} \text {; } \\ & \text { see Figure } 30 \end{aligned}$
-3 dB Bandwidth					$\mathrm{R}_{\mathrm{L}}=50 \Omega, C_{L}=5 \mathrm{pF}$; see Figure 31
ADG5408	50			MHz typ	
ADG5409	87			MHz typ	
Insertion Loss	0.9			dB typ	$\begin{aligned} & \mathrm{RL}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; } \\ & \text { Figure } 31 \end{aligned}$
C_{5} (Off)	15			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$C_{\text {d }}$ (Off)					
ADG5408	102			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5409	50			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
$\begin{gathered} \hline C_{D}(O n), C_{S}(O n) \\ \text { ADG5408 } \\ \text { ADG5409 } \end{gathered}$	$\begin{aligned} & 133 \\ & 81 \end{aligned}$			pF typ pF typ	$\begin{aligned} & V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz} \end{aligned}$
POWER REQUIREMENTS ldo Iss $\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\mathrm{SS}}$	$\begin{aligned} & 45 \\ & 55 \\ & 0.001 \end{aligned}$		70 1 $\pm 9 / \pm 22$	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max $V \min / V \max$	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V}$ Digital inputs $=0 \mathrm{~V}$ or V_{DD} Digital inputs $=0 V$ or $V_{D D}$ $\mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

± 20 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance, Ron On-Resistance Match Between Channels, Δ Ron On-Resistance Flatness, Rflat (on)	$\begin{aligned} & 12.5 \\ & 14 \\ & 0.3 \\ & 0.8 \\ & 2.3 \\ & 2.7 \end{aligned}$	17 1.3 3.1	$V_{D D}$ to $V_{S S}$ 21 1.4 3.5	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & V_{S}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \text {; see Figure } 26 \\ & \mathrm{~V}_{\mathrm{DD}}=+18 \mathrm{~V}, \mathrm{~V}_{S S}=-18 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, ID (Off) Channel On Leakage, $I_{D}(O n)$, Is (On)	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \pm 0.15 \\ & \pm 0.4 \\ & \pm 0.15 \\ & \pm 0.4 \end{aligned}$	± 1 ± 4 ± 4	± 7 ± 30 ± 30	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+22 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-22 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 29 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 15 \mathrm{~V} \text {; see Figure } 29 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 15 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current, linl or IINH^{\prime} Digital Input Capacitance, $\mathrm{CIN}_{\mathrm{IN}}$	$\begin{aligned} & 0.002 \\ & 3 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	\checkmark min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ Transition Time, ttransition ton (EN) toff (EN) Break-Before-Make Time Delay, t_{D} Charge Injection, Qins Off Isolation Channel-to-Channel Crosstalk	$\begin{aligned} & 160 \\ & 207 \\ & 140 \\ & 165 \\ & 133 \\ & 153 \\ & 38 \\ & 155 \\ & \\ & -60 \\ & -60 \end{aligned}$	$\begin{aligned} & 237 \\ & 194 \\ & 174 \end{aligned}$	$\begin{aligned} & 262 \\ & 218 \\ & 189 \\ & 11 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 32 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 34 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}$; see Figure 34 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=10 \mathrm{~V}$; see Figure 33 $V_{S}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{s}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$; see Figure 35 $R \mathrm{~L}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$; see Figure 28 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ;$ see Figure 27

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
Total Harmonic Distortion + Noise	0.012			\% typ	$\begin{aligned} & \mathrm{R} \mathrm{~L}=1 \mathrm{k} \Omega, 20 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \\ & \text { see Figure } 30 \end{aligned}$
-3 dB Bandwidth					$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 31
ADG5408	50			MHz typ	
ADG5409	88			MHz typ	
Insertion Loss	0.8			dB typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} ; \\ & \text { see Figure } 31 \end{aligned}$
C_{5} (Off)	17			pF typ	$V_{S}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
C_{D} (Off)					
ADG5408	98			pF typ	$V_{\text {S }}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5409	48			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
$\mathrm{C}_{\mathrm{D}}(\mathrm{On}), \mathrm{C}_{\text {S }}(\mathrm{On})$					
ADG5408	128			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
ADG5409	80			pF typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$
POWER REQUIREMENTS					$\mathrm{V}_{\mathrm{DD}}=+22 \mathrm{~V}, \mathrm{~V}_{S S}=-22 \mathrm{~V}$
ldo	50			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
	70		110	$\mu \mathrm{A}$ max	
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{DD}
			1	$\mu \mathrm{A}$ max	
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 9 / \pm 22$	V min/V max	$\mathrm{GND}=0 \mathrm{~V}$

${ }^{1}$ Guaranteed by design; not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V_{DD}	V	
On Resistance, Ron	26			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 26
On-Resistance Match Between Channels, Δ Ron	30	36	42	Ω max	$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
	0.3			$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
On-Resistance Flatness, Rflat (on)	1	1.5	1.6	Ω max	
	5.5			$\Omega \operatorname{typ}$	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	6.5	8	12	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)	± 0.02		± 7	nA typ	$\mathrm{V}_{\mathrm{DD}}=13.2 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
					$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see }$ Figure 29
	± 0.25	± 1		nA max	
Drain Off Leakage, ID (Off)	± 0.05			nA typ	$\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=10 \mathrm{~V} / 1 \mathrm{~V} \text {; see }$ Figure 29
Channel On Leakage, $\mathrm{ID}_{\mathrm{D}}(\mathrm{On})$, Is (On)	± 0.4	± 4	± 30	$n A$ max	
	± 0.05			nA typ	$\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} / 10 \mathrm{~V}$; see Figure 25
	± 0.4	± 4	± 30	nA max	
DIGITAL INPUTS	0.002				
Input High Voltage, V ${ }_{\text {INH }}$			2.0	V min	
Input Low Voltage, $\mathrm{V}_{\text {INL }}$			0.8	\checkmark max	
Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{l}_{\mathrm{INH}}$				$\mu \mathrm{A}$ typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or $\mathrm{V}_{\text {DD }}$
			± 0.1	$\mu \mathrm{A}$ max	
Digital Input Capacitance, $\mathrm{Cl}_{\text {IN }}$	3			pF typ	

${ }^{1}$ Guaranteed by design; not subject to production test.

36 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 4.

Parameter	$25^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range On Resistance, Ron	14.5		0 V to V D	$\begin{aligned} & \text { V } \\ & \Omega \text { typ } \end{aligned}$	
					$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V} \text { to } 30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA} \text {; see }$ Figure 26
	16	19	23	$\begin{aligned} & \Omega \text { max } \\ & \Omega \text { typ } \end{aligned}$	$\mathrm{V}_{\mathrm{DD}}=32.4 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
On-Resistance Match Between Channels, Δ Ron	0.3				$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	0.8	1.3	1.4	Ω max	
On-Resistance Flatness, Rflat (on)	3.5			Ω typ	$\mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ to $30 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}=-10 \mathrm{~mA}$
	4.3	5.5	6.5	Ω max	
LEAKAGE CURRENTS Source Off Leakage, Is (Off)	± 0.1				$\mathrm{V}_{\text {DD }}=39.6 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
					$\mathrm{V}_{\mathrm{s}}=1 \mathrm{~V} / 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=30 \mathrm{~V} / 1 \mathrm{~V} \text {; see }$ Figure 29
	± 0.25	± 1	± 7	$n A$ max	

ADG5408/ADG5409

[^0]
CONTINUOUS CURRENT PER CHANNEL, Sx OR D

Table 5. ADG5408

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR D				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	120	78	50	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	207	113	60	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{S S}=-20 \mathrm{~V}$				
TSSOP ($\left.\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	127	81	51	mA maximum
LFCSP ($\theta_{\text {JA }}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	218	117	61	mA maximum
$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	97	66	44	mA maximum
LFCSP ($\theta_{\text {JA }}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	168	99	57	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	125	80	50	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	214	116	61	mA maximum

Table 6. ADG5409

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125{ }^{\circ} \mathrm{C}$	Unit
CONTINUOUS CURRENT, Sx OR D				
$\mathrm{V}_{\mathrm{DD}}=+15 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-15 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	90	62	43	mA maximum
LFCSP ($\theta_{\text {JA }}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	156	95	55	mA maximum
$\mathrm{V}_{\mathrm{DD}}=+20 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-20 \mathrm{~V}$				
TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	95	65	44	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	165	98	56	mA maximum
$V_{\text {DD }}=12 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	71	51	35	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	126	81	50	mA maximum
$\mathrm{V}_{\mathrm{DD}}=36 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$				
TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	92	64	43	mA maximum
LFCSP ($\theta_{\mathrm{JA}}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$)	161	97	56	mA maximum

ADG5408/ADG5409

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Table 7.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{\text {SS }}$	48 V
$V_{\text {DD }}$ to GND	-0.3 V to +48 V
$V_{\text {ss }}$ to GND	+0.3 V to -48 V
Analog Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	$\mathrm{V}_{S S}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Peak Current, Sx or D Pins ADG5408	435 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
ADG5409	300 mA (pulsed at $1 \mathrm{~ms}, 10 \%$ duty cycle maximum)
Continuous Current, Sx or D ${ }^{2}$	Data + 15\%
Temperature Range	
Operating	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Thermal Impedance, θ_{JA}	
16-Lead TSSOP (4-Layer Board)	$112.6^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP (4-Layer Board)	$30.4{ }^{\circ} \mathrm{C} / \mathrm{W}$
Reflow Soldering Peak Temperature, Pb Free	As per JEDEC J-STD-020

${ }^{1}$ Overvoltages at the $A x, E N, S x$, and D pins are clamped by internal diodes. Limit current to the maximum ratings given.
${ }^{2}$ See Table 5.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating can be applied at any one time.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. ADG5408 Pin Configuration (TSSOP)

Figure 3. ADG5408 Pin Configuration (LFCSP)

Table 8. ADG5408 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	1	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
4	2	S1	Source Terminal 1. This pin can be an input or an output.
5	3	S2	Source Terminal 2. This pin can be an input or an output.
6	4	S3	Source Terminal 3. This pin can be an input or an output.
7	5	S4	Source Terminal 4. This pin can be an input or an output.
8	6	D	Drain Terminal. This pin can be an input or an output.
9	7	S8	Source Terminal 8. This pin can be an input or an output.
10	8	S7	Source Terminal 7. This pin can be an input or an output.
11	9	S6	Source Terminal 6. This pin can be an input or an output.
12	10	S5	Source Terminal 5. This pin can be an input or an output.
13	11	VD	Most Positive Power Supply Potential.
14	12	GND	Ground (0V) Reference.
15	13	A2	Logic Control Input.
16	14	A1	Logic Control Input.
	EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{s}.

Table 9. ADG5408 Truth Table

A2	A1	A0	EN	On Switch
X	X	X	0	None
0	0	0	1	1
0	0	1	1	3
0	1	0	1	4
0	1	1	1	5
1	0	1	6	
1	0	1	7	8
1	1	1	1	
1	1	1	1	

Figure 4. ADG5409 Pin Configuration (TSSOP)

Figure 5. ADG5409 Pin Configuration (LFCSP)

Table 10. ADG5409 Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	15	A0	Logic Control Input.
2	16	EN	Active High Digital Input. When low, the device is disabled and all switches are off. When high, Ax logic inputs determine on switches.
3	1	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
4	2	S1A	Source Terminal 1A. This pin can be an input or an output.
5	3	S2A	Source Terminal 2A. This pin can be an input or an output.
6	4	S3A	Source Terminal 3A. This pin can be an input or an output.
7	5	S4A	Source Terminal 4A. This pin can be an input or an output.
8	6	DA	Drain Terminal A. This pin can be an input or an output.
9	7	DB	Drain Terminal B. This pin can be an input or an output.
10	8	S4B	Source Terminal 4B. This pin can be an input or an output.
11	9	S3B	Source Terminal 3B. This pin can be an input or an output.
12	10	S2B	Source Terminal 2B. This pin can be an input or an output.
13	11	S1B	Source Terminal 1B. This pin can be an input or an output.
14	12	VD	Most Positive Power Supply Potential.
15	13	GND	Ground (0 V) Reference.
16	14	A1	Logic Control Input.
	EP	Exposed Pad	The exposed pad is connected internally. For increased reliability of the solder joints and maximum thermal capability, it is recommended that the pad be soldered to the substrate, V_{s}.

Table 11. ADG5409 Truth Table

A1	A0	EN	On Switch Pair
X	X	0	None
0	0	1	1
0	1	1	2
1	0	1	3
1	1	1	4

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. Ron as a Function of V_{S}, V_{D} (Dual Supply)

Figure 7. Ron as a Function of V_{S}, V_{D} (Dual Supply)

Figure 8. Ron as a Function of V_{S}, V_{D} (Single Supply)

Figure 9. Ron as a Function of $V_{s,} V_{D}$ (Single Supply)

Figure 10. Ron as a Function of $V_{s}\left(V_{D}\right)$ for Different Temperatures, ± 15 V Dual Supply

Figure 11. Ron as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, ± 20 V Dual Supply

Figure 12. Ron as a Function of $V_{S}\left(V_{D}\right)$ for Different Temperatures, 12 V Single Supply

Figure 13. Ron as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, 36 V Single Supply

Figure 14. Leakage Currents vs. Temperature, ± 15 V Dual Supply

Figure 15. Leakage Currents vs. Temperature, ± 20 V Dual Supply

Figure 16. Leakage Currents vs. Temperature, 12 V Single Supply

Figure 17. Leakage Currents vs. Temperature, 36 V Single Supply

Figure 18. Off Isolation vs. Frequency, ± 15 V Dual Supply

Figure 19. Crosstalk vs. Frequency, ± 15 V Dual Supply

Figure 20. Charge Injection vs. Source Voltage

Figure 21. ACPSRR vs. Frequency, ± 15 V Dual Supply

Figure 22. THD + Nvs. Frequency

Figure 23. Bandwidth

Figure 24. $t_{\text {transition }}$ Times vs. Temperature

TEST CIRCUITS

Figure 25. On Leakage

Figure 29. Off Leakage

Figure 30. THD + Noise Figure

Figure 31. Bandwidth

Figure 28. Off Isolation

Figure 32. Address to Output Switching Times, $t_{\text {TRANSITION }}$

Figure 33. Break-Before-Make Delay, t_{D}

Figure 34. Enable Delay, toN (EN), toff (EN)

Figure 35. Charge Injection
Rev. C|Page 17 of 24

ADG5408/ADG5409

TERMINOLOGY

IdD
IdD represents the positive supply current.
Iss
Iss represents the negative supply current.
V_{D}, V_{s}
V_{D} and V_{S} represent the analog voltage on Terminal D and
Terminal S, respectively.
Ron
$\mathrm{R}_{\text {ON }}$ is the ohmic resistance between Terminal D and
Terminal S.

$\Delta \mathbf{R}_{\text {on }}$

$\Delta R_{\text {ON }}$ represents the difference between the $R_{\text {ON }}$ of any two channels.
$\mathbf{R}_{\text {flat (ON) }}$
The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range is represented by $\mathrm{R}_{\mathrm{FLAT} \text { (ON) }}$.

Is (Off)
Is (Off) is the source leakage current with the switch off.
I_{D} (Off)
I_{D} (Off) is the drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}(\mathrm{On}), \mathrm{I}_{\mathrm{s}}(\mathbf{O n})$
$\mathrm{I}_{\mathrm{D}}(\mathrm{On})$ and $\mathrm{Is}_{\mathrm{s}}(\mathrm{On})$ represent the channel leakage currents with the switch on.
VinL
$\mathrm{V}_{\text {INL }}$ is the maximum input voltage for Logic 0 .
$V_{\text {INH }}$
$\mathrm{V}_{\text {INH }}$ is the minimum input voltage for Logic 1.
Inth, In
IINL and IINH represent the low and high input currents of the digital inputs.

C_{D} (Off)

C_{D} (Off) represents the off switch drain capacitance, which is measured with reference to ground.
C_{s} (Off)
C_{s} (Off) represents the off switch source capacitance, which is measured with reference to ground.
C_{D} (On), $\mathrm{C}_{\mathrm{s}}(\mathrm{On})$
$C_{D}(\mathrm{On})$ and $C_{s}(\mathrm{On})$ represent on switch capacitances, which are measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
C_{IN} represents digital input capacitance.
ton (EN)
$t_{\text {toN }}$ (EN) represents the delay time between the 50% and 90% points of the digital input and switch on condition.
$t_{\text {Off }}$ (EN)
toff (EN) represents the delay time between the 50% and 90% points of the digital input and switch off condition.
$\mathbf{t}_{\text {transition }}$
Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.
t_{D}
t_{D} represents the off time measured between the 80% point of both switches when switching from one address state to another.

Off Isolation

Off isolation is a measure of unwanted signal coupling through an off channel.

Charge Injection

Charge injection is a measure of the glitch impulse transferred from the digital input to the analog output during switching.

Crosstalk

Crosstalk is a measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

Bandwidth is the frequency at which the output is attenuated by 3 dB .

On Response

On response is the frequency response of the on switch.
Total Harmonic Distortion + Noise (THD + N)
The ratio of the harmonic amplitude plus noise of the signal to the fundamental is represented by THD + N.

AC Power Supply Rejection Ratio (ACPSRR)

ACPSRR is a measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

TRENCH ISOLATION

In the ADG5408/ADG5409, an insulating oxide layer (trench) is placed between the NMOS and the PMOS transistors of each CMOS switch. Parasitic junctions, which occur between the transistors in junction isolated switches, are eliminated, and the result is a completely latch-up proof switch.
In junction isolation, the N and P wells of the PMOS and NMOS transistors form a diode that is reverse-biased under normal operation. However, during overvoltage conditions, this diode can become forward-biased. A silicon controlled rectifier (SCR) type circuit is formed by the two transistors causing a significant amplification of the current that, in turn, leads to latch-up. With trench isolation, this diode is removed, and the result is a latch-up proof switch.

Figure 36. Trench Isolation

ADG5408/ADG5409

APPLICATIONS INFORMATION

The ADG54xx family switches and multiplexers provide a robust solution for instrumentation, industrial, aerospace, and other harsh environments that are prone to latch-up, which is an undesirable high current state that can lead to device failure and persist until the power supply is turned off. The ADG5408/ ADG5409 high voltage switches allow single-supply operation
from 9 V to 40 V and dual-supply operation from $\pm 9 \mathrm{~V}$ to $\pm 22 \mathrm{~V}$. The ADG5408/ADG5409 (as well as select devices within the same family) achieve an 8 kV human body model ESD rating that provides a robust solution eliminating the need for separate protect circuitry designs in some applications.

OUTLINE DIMENSIONS

Figure 37. 16-Lead Thin Shrink Small Outline Package [TSSOP] ($R U-16$)
Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WGGC.
Figure 38. 16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Very Thin Quad (CP-16-17)
Dimensions shown in millimeters

ADG5408/ADG5409

ORDERING GUIDE

Model 1	Temperature Range	Package Description	Package Option
ADG5408BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5408BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5408BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17
ADG5409BRUZ	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5409BRUZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG5409BCPZ-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16-Lead Lead Frame Chip Scale Package [LFCSP_WQ]	CP-16-17

[^1]NOTES

NOTES

[^0]: ${ }^{1}$ Guaranteed by design; not subject to production test

[^1]: ${ }^{1} \mathrm{Z}=$ RoHS Compliant Part.

