

TO-220-3L Plastic-Encapsulate MOSFETS

CJP75N75 N-Channel Power MOSFET

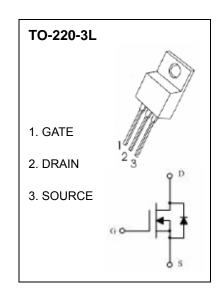
DESCRIPTION

The CJP75N75 uses advanced trench technology and design to provide excellent $R_{DS(on)}$ with low gate charge. Good stability and uniformity with high E_{AS} . This device is suitable for use in PWM, load switching and general purpose applications.

FEATURE

- Advanced trench process technology
- Special designed for convertors and power controls
- High density cell design for ultra low R_{DS(on)}
- Fully characterized avalanche voltage and current
- Fast switching
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

APPLICATION


- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

Maximum ratings (T_a=25℃ unless otherwise noted)

Parameter	Symbol	Value	Unit	
Drain-Source voltage		75	V	
Gate-Source Voltage	V_{GS}	±20]	
Continuous Drain Current	I _D	75	A	
Pulsed Drain Current (note 1)	I _{DM}	300	^	
Power Dissipation (note 2 , T _a =25°C)	P _D	1.8	W	
Maximum Power Dissipation (note 3 , T _c =25°C)	FD	160	W	
Single Pulsed Avalanche Energy (note 4)	E _{AS}	550	mJ	
Thermal Resistance from Junction to Ambient	R _{θJA}	69.4	°C/W	
Junction Temperature	tion Temperature T _j		°C.	
Storage Temperature	T _{stg}	-55 ~+150	C	

Notes 1. Repetitive Rating: Pulse width limited by maximum junction temperature

- 2. This test is performed with no heat sink at T_a =25°C
- 3. This test is performed with infinite heat sink at T_c=25°C
- 4. E_{AS} condition: T_i =25°C, V_{DD} =37.5V, V_{GS} =10V,L=0.5mH, R_q =25 Ω .

Electrical characteristics (T_a=25°C unless otherwise noted)

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Static characteristics						
Drain-source breakdown voltage	BVDSS	V _G S =0, I _D =250µA	75			V
Gate-threshold voltage (note 1)	VGS(th)	V _{DS} =V _{GS} , I _D =250μA	2		4	
Gate-body leakage current	I _{GSS}	V _{DS} =0, V _{GS} =±20V			±100	nA
Zero gate voltage drain current	I _{DSS}	V _{DS} =75V, V _{GS} =0			1	μA
Drain-source on-state resistance (note 1)	RDS(on)	V _G S =10V, I _D =40A			8	mΩ
Forward transconductance (note 1)	$g_{\scriptscriptstyle{FS}}$	V _{DS} =10V, I _D =40A		60		S
Dynamic characteristics (note 2)						
Input capacitance	C _{iss}			3100		pF
Output capacitance	Coss	V _{DS} =25V,V _{GS} =0,f =1MHz		310		
Reverse transfer capacitance	C_{rss}			260		
Switching characteristics (note 2)						
Turn-on delay time	t _{d(on)}			18.2		ns ns
Rise time	tr	V_{DD} =30V, I_D =2A, R_L =15 Ω ,		15.6		
Turn-off delay time	td(off)	V_{GS} =10V, R_{G} =2.5 Ω		70.5		
Fall Time	t f			13.8		
Total gate charge	Qg			100		nC
Gate-source charge	Q_{gs}	V _{DS} =30V,V _{GS} =10V,I _D =30A		18		
Gate-drain charge	Q_{gd}			27		
Source-Drain Diode characteristics				•		
Diode forward current	Is				75	Α
Diode pulsed forward current	I _{SM}				300	Α
Diode Forward voltage (note 1)	V _{SD}	V _{GS} =0, I _S =40A			1.2	V
Diode reverse recovery time (note 2)	t _{rr}	L =75A di/dt=100A/up			33	ns
Diode reverse recovery charge (note 2)	Q _{rr}	I _F =75A,di/dt=100A/μs			54	nC

Notes: 1. Pulse Test: Pulse Width≤300µs, duty cycle ≤2%.

^{2.} These parameters have no way to verify.