# N-Channel Power MOSFET 500 V, 3.3 $\Omega$

#### **Features**

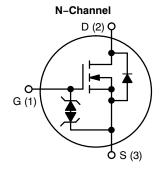
- Low ON Resistance
- Low Gate Charge
- ESD Diode-Protected Gate
- 100% Avalanche Tested
- These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant

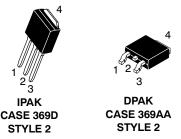
# **ABSOLUTE MAXIMUM RATINGS** ( $T_C = 25^{\circ}C$ unless otherwise noted)

| Rating                                                             | Symbol                            | Value        | Unit |  |
|--------------------------------------------------------------------|-----------------------------------|--------------|------|--|
| Drain-to-Source Voltage                                            | V <sub>DSS</sub>                  | 500          | ٧    |  |
| Continuous Drain Current R <sub>0JC</sub>                          | I <sub>D</sub>                    | 2.6          | Α    |  |
| Continuous Drain Current R <sub>0</sub> JC, T <sub>A</sub> = 100°C | I <sub>D</sub>                    | 1.7          | Α    |  |
| Pulsed Drain Current, V <sub>GS</sub> @ 10 V                       | I <sub>DM</sub>                   | 10           | Α    |  |
| Power Dissipation $R_{\theta JC}$                                  | P <sub>D</sub>                    | 58           | W    |  |
| Gate-to-Source Voltage                                             | V <sub>GS</sub>                   | ±30          | V    |  |
| Single Pulse Avalanche Energy, I <sub>D</sub> = 2.6 A              | E <sub>AS</sub>                   | 120          | mJ   |  |
| ESD (HBM) (JESD22-A114)                                            | V <sub>esd</sub>                  | 2000         | ٧    |  |
| Peak Diode Recovery                                                | dv/dt                             | 4.5 (Note 1) | V/ns |  |
| Continuous Source Current (Body Diode)                             | I <sub>S</sub>                    | 2.6          | А    |  |
| Maximum Temperature for Soldering Leads                            | TL                                | 260          | °C   |  |
| Operating Junction and Storage Temperature Range                   | T <sub>J</sub> , T <sub>stg</sub> | -55 to 150   | °C   |  |

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1


1.  $I_D \le 2.6 \text{ A}$ ,  $di/dt \le 200 \text{ A/}\mu\text{s}$ ,  $V_{DD} \le BV_{DSS}$ ,  $T_{.1} \le 150^{\circ}\text{C}$ .




# ON Semiconductor®

#### http://onsemi.com

| V <sub>DSS</sub> | R <sub>DS(on)</sub> (MAX) @ 1.15 A |
|------------------|------------------------------------|
| 500 V            | 3.3 Ω                              |



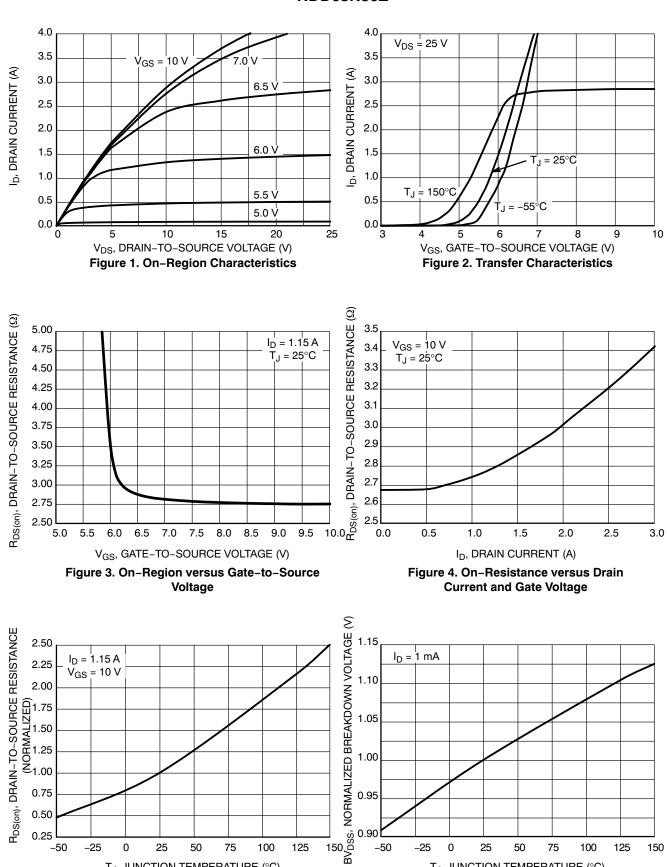


# MARKING AND ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 6 of this data sheet.

# THERMAL RESISTANCE

| Parameter                        |                                            |                | Value    | Unit |
|----------------------------------|--------------------------------------------|----------------|----------|------|
| Junction-to-Case (Drain)         | NDD03N50Z                                  | $R_{	heta JC}$ | 2.2      | °C/W |
| Junction-to-Ambient Steady State | (Note 3) NDD03N50Z<br>(Note 2) NDD03N50Z-1 | $R_{	heta JA}$ | 41<br>80 |      |


<sup>2.</sup> Insertion mounted

# **ELECTRICAL CHARACTERISTICS** ( $T_J = 25^{\circ}C$ unless otherwise noted)

| Characteristic                            | Symbol                                  | Test Conditions                                                                                                  |                                                | Min | Тур | Max  | Unit |
|-------------------------------------------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-----|-----|------|------|
| OFF CHARACTERISTICS                       | •                                       | •                                                                                                                |                                                |     | •   | •    | •    |
| Drain-to-Source Breakdown Voltage         | BV <sub>DSS</sub>                       | V <sub>GS</sub> = 0 V, I <sub>D</sub> = 1 mA                                                                     |                                                | 500 |     |      | V    |
| Breakdown Voltage Temperature Coefficient | ΔBV <sub>DSS</sub> /<br>ΔΤ <sub>J</sub> | Reference to 25°C,<br>I <sub>D</sub> = 1 mA                                                                      |                                                |     | 0.6 |      | V/°C |
| Drain-to-Source Leakage Current           | I <sub>DSS</sub>                        | V 500 V V 0 V                                                                                                    | 25°C                                           |     |     | 1.0  | μΑ   |
|                                           |                                         | $V_{DS} = 500 \text{ V}, V_{GS} = 0 \text{ V}$                                                                   | V <sub>DS</sub> = 500 V, V <sub>GS</sub> = 0 V |     |     | 50   | 1    |
| Gate-to-Source Forward Leakage            | I <sub>GSS</sub>                        | V <sub>GS</sub> = ±20 V                                                                                          | •                                              |     |     | ±10  | μА   |
| ON CHARACTERISTICS (Note 4)               |                                         |                                                                                                                  |                                                |     | •   |      | •    |
| Static Drain-to-Source<br>On-Resistance   | R <sub>DS(on)</sub>                     | V <sub>GS</sub> = 10 V, I <sub>D</sub> = 1.1                                                                     | 5 A                                            |     | 2.8 | 3.3  | Ω    |
| Gate Threshold Voltage                    | V <sub>GS(th)</sub>                     | $V_{DS} = V_{GS}$ , $I_D = 50$                                                                                   | μΑ                                             | 3.0 |     | 4.5  | V    |
| Forward Transconductance                  | 9FS                                     | V <sub>DS</sub> = 15 V, I <sub>D</sub> = 1.1                                                                     | 5 A                                            |     | 1.8 |      | S    |
| DYNAMIC CHARACTERISTICS                   | •                                       |                                                                                                                  |                                                |     | •   | •    | •    |
| Input Capacitance (Note 5)                | C <sub>iss</sub>                        |                                                                                                                  |                                                | 219 | 274 | 329  | pF   |
| Output Capacitance (Note 5)               | C <sub>oss</sub>                        | $V_{DS} = 25 \text{ V, } V_{GS} = 0 \text{ V,}$ $f = 1.0 \text{ MHz}$                                            |                                                | 28  | 38  | 50   |      |
| Reverse Transfer Capacitance (Note 5)     | C <sub>rss</sub>                        |                                                                                                                  |                                                | 6.0 | 8.0 | 10   | 1    |
| Total Gate Charge (Note 5)                | Qg                                      | V <sub>DD</sub> = 250 V, I <sub>D</sub> = 2.6 A,                                                                 |                                                | 5.0 | 10  | 16   | nC   |
| Gate-to-Source Charge (Note 5)            | Q <sub>gs</sub>                         |                                                                                                                  |                                                | 1.2 | 2.3 | 4.0  | 1    |
| Gate-to-Drain ("Miller") Charge (Note 5)  | Q <sub>gd</sub>                         | V <sub>GS</sub> = 10 V                                                                                           |                                                |     | 5.5 | 8.0  | 1    |
| Plateau Voltage                           | V <sub>GP</sub>                         | 1                                                                                                                |                                                |     | 6.4 |      | V    |
| Gate Resistance                           | $R_g$                                   |                                                                                                                  |                                                | 1.5 | 4.5 | 13.5 | Ω    |
| RESISTIVE SWITCHING CHARACTERISTI         | cs                                      |                                                                                                                  |                                                |     | •   |      | -    |
| Turn-On Delay Time                        | t <sub>d(on)</sub>                      |                                                                                                                  |                                                |     | 9.0 |      | ns   |
| Rise Time                                 | t <sub>r</sub>                          | $V_{DD}$ = 250 V, $I_{D}$ = 2.6 A, $V_{GS}$ = 10 V, $R_{G}$ = 5 $\Omega$                                         |                                                |     | 7.0 |      |      |
| Turn-Off Delay Time                       | t <sub>d(off)</sub>                     |                                                                                                                  |                                                |     | 15  |      | 1    |
| Fall Time                                 | t <sub>f</sub>                          |                                                                                                                  |                                                |     | 7.0 |      |      |
| SOURCE-DRAIN DIODE CHARACTERIST           | ICS (T <sub>C</sub> = 25                | °C unless otherwise noted)                                                                                       |                                                |     |     |      |      |
| Diode Forward Voltage                     | V <sub>SD</sub>                         | I <sub>S</sub> = 2.6 A, V <sub>GS</sub> = 0 V                                                                    |                                                |     |     | 1.6  | V    |
| Reverse Recovery Time                     | t <sub>rr</sub>                         | $V_{GS} = 0 \text{ V}, V_{DD} = 30 \text{ V}$ $I_{S} = 2.6 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s}$ |                                                |     | 240 |      | ns   |
| Reverse Recovery Charge                   | Q <sub>rr</sub>                         |                                                                                                                  |                                                |     | 0.7 |      | μС   |

Pulse Width ≤ 380 μs, Duty Cycle ≤ 2%.
 Guaranteed by design.

<sup>3.</sup> Surface mounted on FR4 board using 1" sq. pad size, (Cu area = 1.127 in sq [2 oz] including traces).



T<sub>J</sub>, JUNCTION TEMPERATURE (°C) Figure 5. On-Resistance Variation with **Temperature** 

50

75

100

125

25

0.75

0.50

0.25

-50

-25

TJ, JUNCTION TEMPERATURE (°C) Figure 6. BV<sub>DSS</sub> Variation with Temperature

50

75

100

125

150

25

0.95

0.90

-50

-25

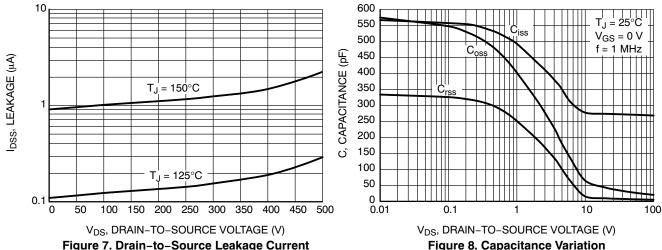



Figure 7. Drain-to-Source Leakage Current versus Voltage



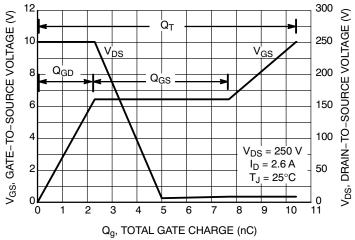



Figure 9. Gate-to-Source Voltage and Drain-to-Source Voltage versus Total Charge




Figure 10. Resistive Switching Time Variation versus Gate Resistance

Figure 11. Diode Forward Voltage versus Current

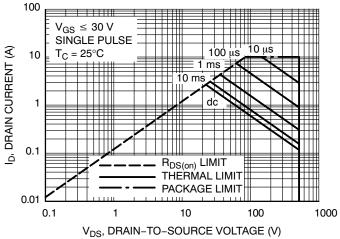



Figure 12. Maximum Rated Forward Biased Safe Operating Area NDD03N50Z

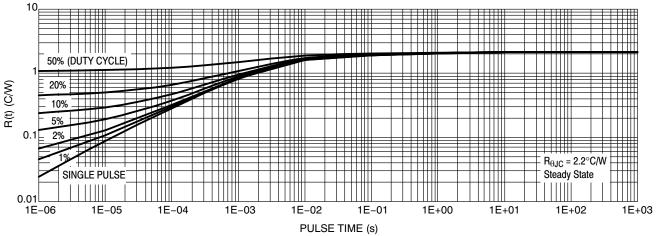
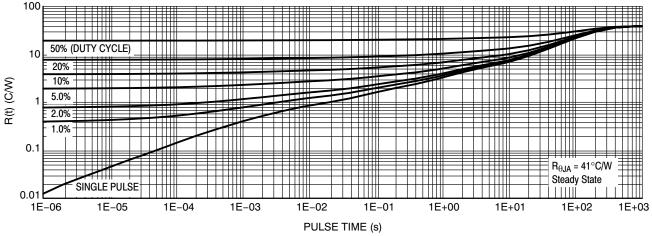
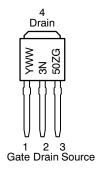
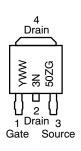



Figure 13. Thermal Impedance (Junction-to-Case) for NDD03N50Z





Figure 14. Thermal Impedance (Junction-to-Ambient) for NDD03N50Z


# **ORDERING INFORMATION**

| Order Number | Package           | Shipping <sup>†</sup> |
|--------------|-------------------|-----------------------|
| NDD03N50Z-1G | IPAK<br>(Pb-Free) | 75 Units / Rail       |
| NDD03N50ZT4G | DPAK<br>(Pb-Free) | 2500 / Tape & Reel    |

<sup>†</sup>For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

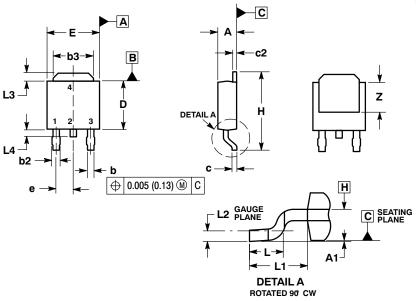
# **MARKING DIAGRAMS**





A = Location Code

Y = Year


WW = Work Week

G = Pb-Free Package

#### PACKAGE DIMENSIONS

# **DPAK (SINGLE GUAGE)**

CASE 369AA-01 **ISSUE B** 



#### NOTES:

- NOTES:

  1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

  2. CONTROLLING DIMENSION: INCHES.

  3. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS b3, L3 and Z.

  4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.006 INCHES PER SIDE.

  5. DIMENSIONS D AND E ARE DETERMINED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

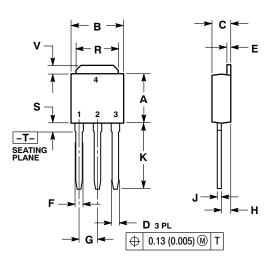
  6. DATUMS A AND B ARE DETERMINED AT DATUM PLANE H.

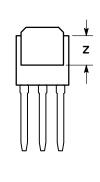
|            | INCHES    |       | MILLIMETERS |       |  |
|------------|-----------|-------|-------------|-------|--|
| DIM        | MIN       | MAX   | MIN         | MAX   |  |
| Α          | 0.086     | 0.094 | 2.18        | 2.38  |  |
| <b>A</b> 1 | 0.000     | 0.005 | 0.00        | 0.13  |  |
| b          | 0.025     | 0.035 | 0.63        | 0.89  |  |
| b2         | 0.030     | 0.045 | 0.76        | 1.14  |  |
| b3         | 0.180     | 0.215 | 4.57        | 5.46  |  |
| U          | 0.018     | 0.024 | 0.46        | 0.61  |  |
| c2         | 0.018     | 0.024 | 0.46        | 0.61  |  |
| D          | 0.235     | 0.245 | 5.97        | 6.22  |  |
| Е          | 0.250     | 0.265 | 6.35        | 6.73  |  |
| е          | 0.090     | BSC   | 2.29 BSC    |       |  |
| Н          | 0.370     | 0.410 | 9.40        | 10.41 |  |
| L          | 0.055     | 0.070 | 1.40        | 1.78  |  |
| L1         | 0.108     | REF   | 2.74 REF    |       |  |
| L2         | 0.020 BSC |       | 0.51        | BSC   |  |
| L3         | 0.035     | 0.050 | 0.89        | 1.27  |  |
| L4         |           | 0.040 |             | 1.01  |  |
| Z          | 0.155     |       | 3.93        |       |  |

# **SOLDERING FOOTPRINT\***

#### 6.20 3.00 0.244 0.118 2.58 0.102 5.80 1.60 6.17 0.228 0.063 0.243

 $\left(\frac{\text{mm}}{\text{inches}}\right)$ SCALE 3:1


STYLE 2:


PIN 1. GATE
2. DRAIN
3. SOURCE
4. DRAIN

<sup>\*</sup>For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

#### PACKAGE DIMENSIONS

#### **IPAK** CASE 369D-01 ISSUE B





- NOTES:
  1. DIMENSIONING AND TOLERANCING PER
- ANSI Y14.5M, 1982.
  2. CONTROLLING DIMENSION: INCH.

|     | INCHES |       | MILLIMETER |      |
|-----|--------|-------|------------|------|
| DIM | MIN    | MAX   | MIN        | MAX  |
| Α   | 0.235  | 0.245 | 5.97       | 6.35 |
| В   | 0.250  | 0.265 | 6.35       | 6.73 |
| С   | 0.086  | 0.094 | 2.19       | 2.38 |
| D   | 0.027  | 0.035 | 0.69       | 0.88 |
| E   | 0.018  | 0.023 | 0.46       | 0.58 |
| F   | 0.037  | 0.045 | 0.94       | 1.14 |
| G   | 0.090  | BSC   | 2.29 BSC   |      |
| Н   | 0.034  | 0.040 | 0.87       | 1.01 |
| J   | 0.018  | 0.023 | 0.46       | 0.58 |
| K   | 0.350  | 0.380 | 8.89       | 9.65 |
| R   | 0.180  | 0.215 | 4.45       | 5.45 |
| S   | 0.025  | 0.040 | 0.63       | 1.01 |
| V   | 0.035  | 0.050 | 0.89       | 1.27 |
| Z   | 0.155  |       | 3.93       |      |

STYLE 2: PIN 1. GATE

2 DRAIN

- 3. SOURCE
- 4. DRAIN

ON Semiconductor and 📖 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

# **PUBLICATION ORDERING INFORMATION**

#### LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone**: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative