
TOSHIBA

TOSHIBA CORPORATION

Semiconductor Company

Preface

Thank you very much for making use of Toshiba microcomputer LSIs. Before use this LSI, refer the section, "Points of Note and Restrictions". Especially, take care below cautions.

CAUTION

How to release the HALT mode

Usually, interrupts can release all halts status. However, the interrupts = (NMI, INTO), which can release the HALT mode may not be able to do so if they are input during the period CPU is shifting to the HALT mode (for about 3 clocks of X1) with IDLE or STOP mode. (In this case, an interrupt request is kept on hold internally.)

If another interrupt is generated after it has shifted to HALT mode completely, halt status can be released without difficultly. The priority of this interrupt is compare with that of the interrupt kept on hold internally, and the interrupt with higher priority is handled first followed by the other interrupt.

Document Change Notification

The purpose of this notification is to inform customers about the launch of the Pb free version of the device. The introduction of a Pb-free replacement affects the datasheet. Please understand that this notification is intended as a substitute for a revision of the datasheet.

Changes to the datasheet may include the following, though not all of them may apply to this particular device.

1. Part number

Example: $TMPxxxxxxF \rightarrow TMPxxxxxxFG$

All references to the previous part number were left unchanged in body text. The new part number is indicated on the prelims pages (cover page and this notification).

2. Package code and package dimensions

Example: LQFP100-P-1414-0.50C \Rightarrow LQFP100-P-1414-0.50F

All references to the previous package code and package dimensions were left unchanged in body text. The new ones are indicated on the prelims pages.

3. Addition of notes on lead solderability

Now that the device is Pb free, notes on lead solderability have been added.

Ι

4. RESTRICTIONS ON PRODUCT USE

The previous (obsolete) provision might be left unchanged on page 1 of body text. A new replacement is included on the next page.

5. Publication date of the datasheet

The publication date at the lower right corner of the prelims pages applies to the new device.

1. Part number

Previous Part Number (in Body Text)	New Part Number		
TMP96PM40F	TMP96PM40FG		

2. Package code and dimensions

Previous Package Code (in Body Text)	New Package Code
QFP80-P-1420-0.80B	QFP80-P-1420-0.80B

^{*:} For the dimensions of the new package, see the attached Package Dimensions diagram.

3. Addition of notes on lead solderability

The following solderability test is conducted on the new device.

Solderability of lead free products

Test Parameter	Test Condition	Note
Solderability	Use of Sn-37Pb solder Bath Solder bath temperature = 230°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux Use of Sn-3.0Ag-0.5Cu solder bath Solder bath temperature = 245°C, Dipping time = 5 seconds The number of times = one, Use of R-type flux (use of lead free)	Pass: Solderability rate until forming

4. RESTRICTIONS ON PRODUCT USE

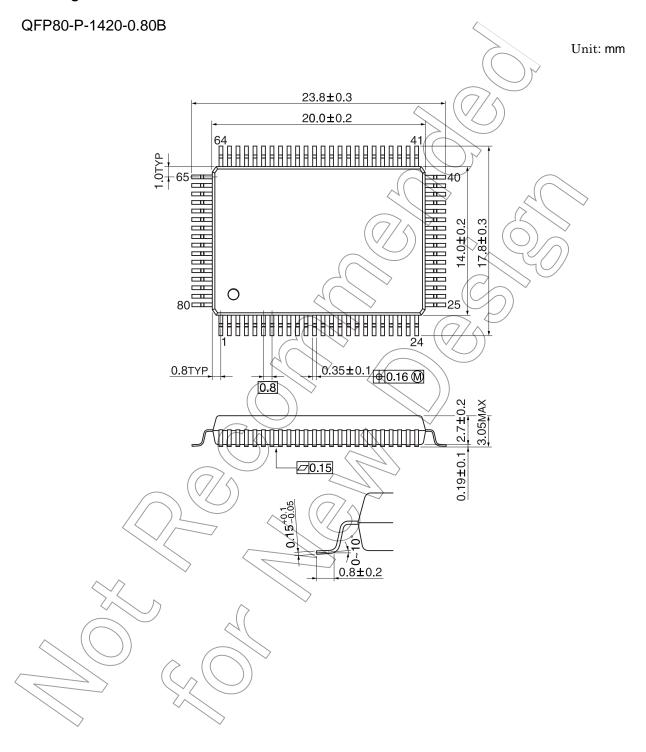
The following replaces the "RESTRICTIONS ON PRODUCT USE" on page 1 of body text.

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety
 in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such
 TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.


- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which
 manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility
 is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its
 use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third
 parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations that
 regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring
 as a result of noncompliance with applicable laws and regulations.
- For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance/Handling Precautions.

5. Publication date of the datasheet

The publication date of this datasheet is printed at the lower right corner of this notification.

(Annex)

Package Dimensions

III 2008-02-20

CMOS 16-bit Microcontrollers

TMP96PM40F

1. Outline and Device Characteristics

TMP96PM40F is high-speed advanced 16-bit microcontrollers developed for controlling medium to large-scale equipment. The TMP96C141BF does not have a ROM, the TMP96CM40F has a built-in ROM of 32K-byte, and the TMP96PM40 has a built-in OTP of 32K-byte.

It is possible to do write / verify of program data with using a adapter socket and general purpose EPROM writer (TC571000 mode).

TMP96PM40 is pin compatible with TMP96CM40 (mask ROM type). TMP96CM40F is housed in an 80-pin flat package.

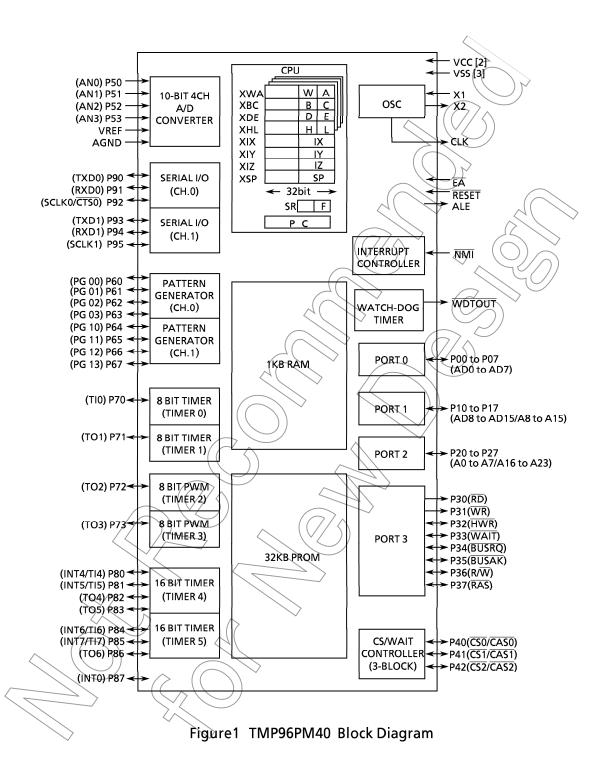
	name
TMP96PM40F OTP type 32 K x 8 bit 80-FP	BM1139A

For a discussion of how the reliability of microcontrollers can be predicted, please refer to Section 1.3 of the chapter entitled Quality and Reliability Assurance / Handling Precautions.

Quality and Reliability Assurance / Handling Precautions.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.

In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..


The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's

The products described in this document are subject to the foreign exchange and foreign trade laws

The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA CORPORATION for any infringements of intellectual property or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any intellectual property or other rights of TOSHIBA CORPORATION or others.

The information contained herein is subject to change without notice.

2003-03-31 96PM40-1

2. Pin Assignment and Functions

The assignment of input / output pins for TMP96PM40, their name and outline functions are described below.

2.1 Pin Assignment

Figure 2.1 shows pin assignment of TMP96PM40F.

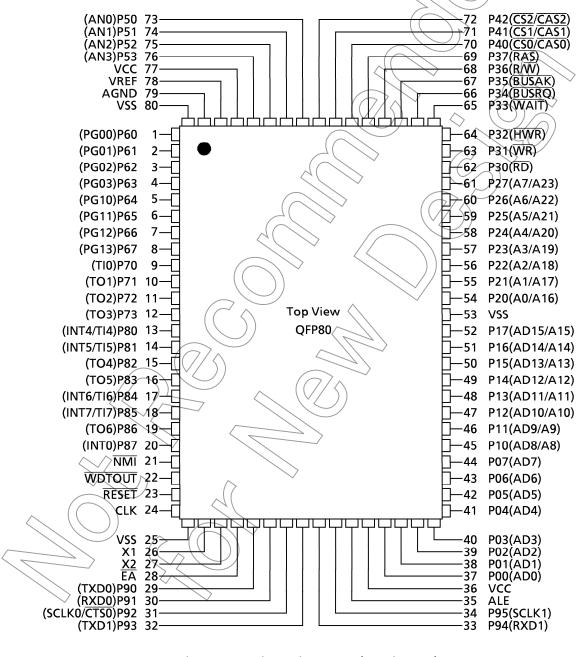


Figure 2.1 Pin Assignment (80-pin QFP)

2.2 Pin Names and Functions

TMP96PM40 has MCU mode and PROM mode.

The names of input/output pins and their functions are described below.

(1) MCU mode

Table 2.2 (1) Pin Names and Functions.

Pin name	Number of pins	I/O	Functions
P00 to P07 AD0 to AD7	8	I/O Tri-state	Port 0: I/O port that allows I/O to be selected on a bit basis Address/data (lower): 0 to 7 for address/data bus
P10 to P17 AD8 to AD15 A8 to A15	8	I/O Tri-state Output	Port 1: I/O port that allows I/O to be selected on a bit basis Address data (upper): 8 to 15 for address/data bus Address: 8 to 15 for address bus
P20 to P27 A0 to A7 A16 to A23	8	I/O Output Output	Port 2: I/O port that allows selection of I/O on a bit basis (with pull-down resistor) Address: 0 to 7 for address bus Address: 16 to 23 for address bus
P30 RD	1	Output Output	Port 30: Output port Read: Strobe signal for reading external memory
P31 WR	1	Output Output	Port 31: Output port Write: Strobe signal for writing data on pins AD0 to 7
P32 HWR	1	I/O Output	Port 32: I/O port (with pull-up resistor) High write: Strobe signal for writing data on pins AD8 to 15
P33 WAIT	1	I/O Input	Port 33: I/O port (with pull-up resistor) Wait: Pin used to request CPU bus wait
P34 BUSRQ	1	linput	Port34: I/O port (with pull-up resistor) Bus request; Signal used to request high impedance for AD0 to 15, A0 to 23, RD, WR, HWR, R/W, RAS, CSO, CS1, and CS2 pins. (For external DMAC)
P35 BUSAK	1	I/O Output	Port 35: 1/O port (with pull-up resistor) Bus acknowledge: Signal indicating that AD0 to 15, A0 to 23, RD, WR, HWR, R/W, RAS, CSO, CS1, and CS2 pins are at high impedance after receiving BUSRQ. (For external DMAC)
P36 R/W	1	I/Ø Output	Port 36: I/O port (with pull-up resistor) Read/write: 1 represents read or dummy cycle; 0, write cycle.
P37 RAS))	(I/O Output	Port 37: I/O port (with pull-up resistor) Row address strobe: Outputs RAS strobe for DRAM.
P40 CS0	1	I/O Output	Port 40: I/O port (with pull-up resistor) Chip select 0: Outputs 0 when address is within specified address area.
CASO		Output	Column address strobe 0: Outputs CAS strobe for DRAM when address is within specified address area.

Note: With the external DMA controller, this device's built-in memory or built-in I/O cannot be accessed using the \overline{BUSRQ} and \overline{BUSAK} pins.

96PM40-4 2003-03-31

Pin name	Number of pins	I/O	Functions
P41 CS1 CAS1	1	I/O Output Output	Port 41: I/O port (with pull-up resistor) Chip select 1: Outputs 0 if address is within specified address area. Column address strobe 1: Outputs CAS strobe for DRAM if address is within specified address area.
P42 CS2 CAS2	1	I/O Output Output	Port 42: I/O port (with pull-down resistor) (Note) Chip select 2: Outputs 0 if address is within specified address area. Column address strobe 2: Outputs CAS strobe for DRAM if address is within specified address area.
P50 to P53 AN0 to AN3	4	Input Input	Port 5: Input port Analog input: Input to A/D converter
VREF	1	Input	Pin for reference voltage input to A/D converter
AGND	1	Input	Ground pin for A/D converter
P60 to P63	4	1/0	Ports 60 to 63: I/O ports that allow selection of I/O on a bit basis (with pull-up resistor)
PG00 to PG03	_	Output	Pattern generator ports: 00 to 03
P64 to P67 PG10 to PG13	4	I/O Output	Ports 64 to 67: 1/0 ports that allow selection of I/O on a bit basis (with pull-up resistor) Pattern generator ports; 10 to 13
P70 TI0	1	I/O Input	Port 70: I/O port (with pull-up resistor) (Timer input 0: Timer 0 input
P71 TO1	1	I/O Output	Port 71: I/O port (with pull-up resistor) Timer output 1: Timer 0 or 1 output
P72 TO2	1	I/Q Output	Port 72: I/O port (with pull-up resistor) PWM output 2: 8-bit PWM timer 2 output
P73 TO3	1	l/Ø Output	Port 73: I/O port (with pull-up resistor) PWM output 3: 8-bit PWM timer 3 output
P80 TI4 INT4	___________________	I/O Input Input	Port 80: 1/Q port (with pull-up resistor) Timer input 4: Timer 4 count/capture trigger signal input Intercupt request pin 4: Interrupt request pin with programmable rising/falling edge
P81 TI5 INT5		I/O Input Input	Port 81: I/O port (with pull-up resistor) Timer input 5: Timer 4 count/capture trigger signal input Interrupt request pin 5: Interrupt request pin with rising edge
P82 TO4	1	Output	Port 82: I/O port (with pull-up resistor) Timer output 4: Timer 4 output pin
P83 TO5	1	I/O Output	Port 83: I/O port (with pull-up resistor) Timer output 5: Timer 4 output pin

Note: Case of the settable $\overline{\text{CS2}}$ or $\overline{\text{CAS2}}$; when TMP96PM40F is bus release, this pin is not added the internal pull-down resistor but is added the internal pull-up resistor.

Pin name	Number of pins	I/O	Functions
P84 TI6 INT6	1	I/O Input Input	Port 84: I/O port (with pull-up resistor) Timer input 6: Timer 5 count/capture trigger signal input Interrupt request pin 6: Interrupt request pin with programmable rising/falling edge
P85 TI7 INT7	1	I/O Input Input	Port 85: I/O port (with pull-up resistor) Timer input 7: Timer 5 count/capture trigger signal input Interrupt request pin 7: Interrupt request pin with rising edge
P86 TO6	1	I/O Output	Port 86: I/O port (with pull-up resistor) Timer output 6: Timer 5 output pin
P87 INT0	1	I/O Input	Port 87: I/O port (with pull-up resistor) Interrupt request pin 0: Interrupt request pin with programmable level/rising edge
P90 TXD0	1	I/O Output	Port 90: I/O port (with pull-up resistor) Serial send data 0
P91 RXD0	1	I/O Input	Port 91: I/O port (with pull-up resistor) Serial receive data 0
P92 CTS0 SCLK0	1	I/O Input I/O	Port 92: 1/O port (with pull-up resistor) Serial data send enable 0 (Clear to Send) Serial clock 1/O 0
P93 TXD1	1	I/O Output	Port 93: I/O port (with pull-up resistor) Serial send data 1
P94 RXD1	1	I/O Input	Port 94: I/O port (with pull-up resistor) Serial receive data 1
P95 SCLK1	1	1/0	Port 95: I/O port (with pull-up resistor) Serial clock I/O 1
WDTOUT	1	Output	Watchdog timer output pin
NMI	1	Input	Non-maskable interrupt request pin: Interrupt request pin with falling edge. Can also be operated at rising edge by program.
CLK	1	Output	Clock output: Outputs [X1 ÷ 4] clock. Pulled-up during reset.
ĒĀ	1	Input	External access: 0 should be inputted with TMP96C141B. 1, with TMP96CM40 / TMP96PM40.
ALE		Output /	Address latch enable
RESET	1	Input	Reset: Initializes LSI. (With pull-up resistor)
X1/X2	<u></u>	1/0	Oscillator connecting pin
VEC	2		Power supply pin (+ 5 V) (All Vcc pins should be connected with the power supply pin.)
VSS	3	V \	GND pin (0 V) (All Vss pins should be connected with GND (0 V).)

Note: Pull-up/pull-down resistor can be released from the pin by software (except the \overline{RESET} pin).

(2) PROMmode

Table 2.2 (2) Name and function of PROM mode

Pin function	Pin number	Input / Output	Function	Rin name (MCU mode)
A7 to A0	8	Input		P27 to P20
A15 to A8	8	Input	Memory address of program	P17 to P10
A16	1	Input		P33
D7 to D0	8	I/O	Memory data of pfogram	P07 to P00
CE	1	Input	Chip enable	P32
ŌĒ	1	Input	Output control	P30
PGM	1	Input	Program control	P31()
VPP	1	Power supply Power	12.75 V / 5 V (Power supply of program)	ĒA
vcc	2	supply	6.25 V / 5 V	SCC
VSS	3	Power supply	ov	VSS
Pin function	Pin number	Input / Output	Disposal of pin	
P34	1	Input	Fix to low level (security pin)	
RESET	1	Input	Fix to low level (PROM mode)	
CLK	1	Input	The to low level (FROM mode)	
ALE	1	Output	Open	
X1	1	Input	Crystal	
X2	1	Output	Crystal	
P95 to P94, VREF	3	Input	Fix to high level	
AGND	1	Input	0V	
P37 to P35	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			
P42 to P40				
P53/to P50				
P67 to P60		> ((
P73 to P70	36	1/0	open	
P87 to P80				
ПМ І,				
WDTOUT				
P93 to P90				

3. Operation

This section describes the hardware and basic operation of TMP96PM40 device. TMP96PM40 is exchanged mask ROM of TMP96CM40 for PROM. The other specifications and functions are the same as TMP96CM40.

Check the \[\begin{aligned} 7. Care Points and Restriction of TMP96C141B \] because of the Care described. Regarding the function of TMP96PM40 (not described), see the part of TMP96CM40 for ports functions and bus release functions, and see the part of TMP96C141B for other functions.

The operation modes are MCU mode and PROM mode.

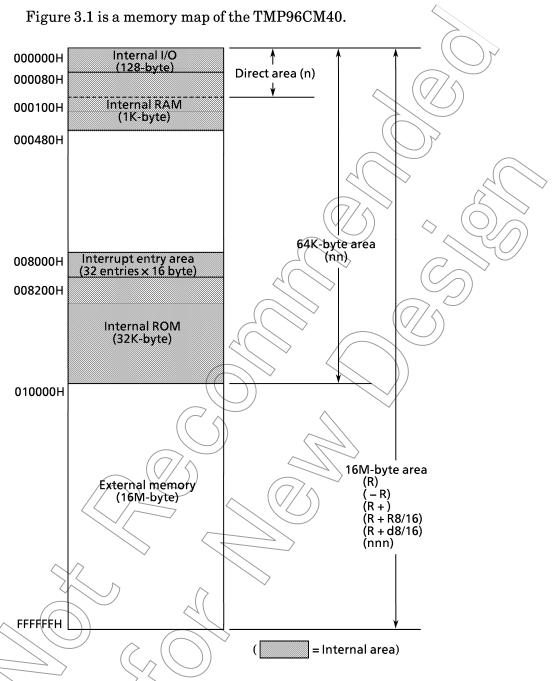
TMP96C141B/TMP96CM40/TMP96PM40 have much the same function but they are different from following points.

Parameter	TMP96C141B	ТМР96СМ40 ТМР96РМ40
Interrnal ROM	Not exist	Mask ROM32 Kbyte PROM32 Kbyte
P00 to P07, AD0 to AD7	Only AD0 to AD7	After reset P00 to P07
P10 to P17, AD8 to AD15, A8 to A15	Only AD8 to AD15	After reset P10 to P17
P30, RD	OnlyRD	After reset P30
P31, WR	Only WR	After reset P31
Pin state at the bus release	TMP96C141B see Table 3.5 (1)	TMP96CM40 see Table 3.3 (1)

3.1 MCU mode

(1) Mode-setting and function

The MCU mode is set by opening the CLK pin (Output status). In the MCU mode, the operation is same as that of TMP96CM40.


(2) Memory Map

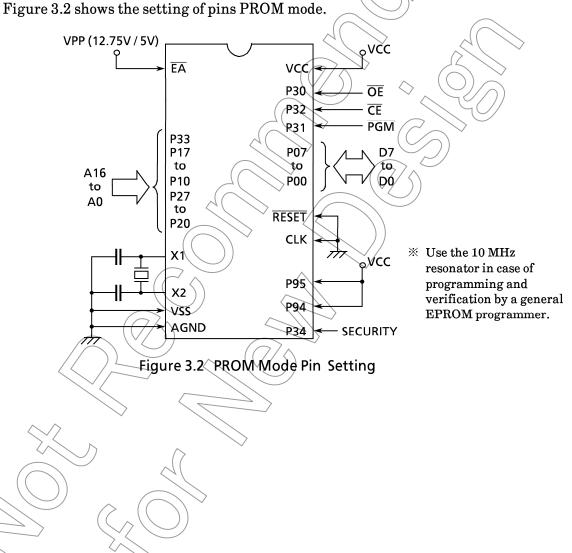
The memory map of TMP96PM40 is same as that of TMP96CM40.

Figure 3.1 shows the memory map of TMP96PM40, and the accessing area by the respective addressing mode.

96PM40-8 2003-03-31

Memory Map

Note: The start address after reset is 8000H. Resetting sets the stack pointer (XSP) on the system mode side to 100H.


Figure 3.1 Memory map

3.2 PROM Mode

(1) Mode setting and Function

PROM mode is set by setting the RESET and CLK pins to the "L" level. The programming and verification for the internal PROM is achieved by using a general EPROM programmer with the adaptor socket. The device selection (ROM Type) use following conditions. (Set ROM type to TC571000D)

Size: 1M bit (128 K×8 bit) VPP: 12.75 V TPW: 0.1 ms

(2) Programming Flow Chart

The programming mode is set by applying 12.5 V (programming voltage) to the VPP pin when the following pins are set as follows,

(VCC: 6.25 V, RESET: "L" level, CLK: "L" level).

After the address and data have been fixed, the data on the Data Bus is programmed when the $\overline{\text{CE}}$ pin is set to "L" level (0.1 ms pulse is required).

General programming procedure of an EPROM programmer is as follows,

- Write a data to a specified address for 0.1 ms.
- Verify the data. If the readout data does not match the expected data, another writing is performed until the correct data is written (Max. 25 times).

Then, verify the data and increment the address.

The verification for all data is done under the condition of Vpp Vcc 5 after all data were written.

Figure 3.3 shows the programming flow chart.

High Speed Program Writing.

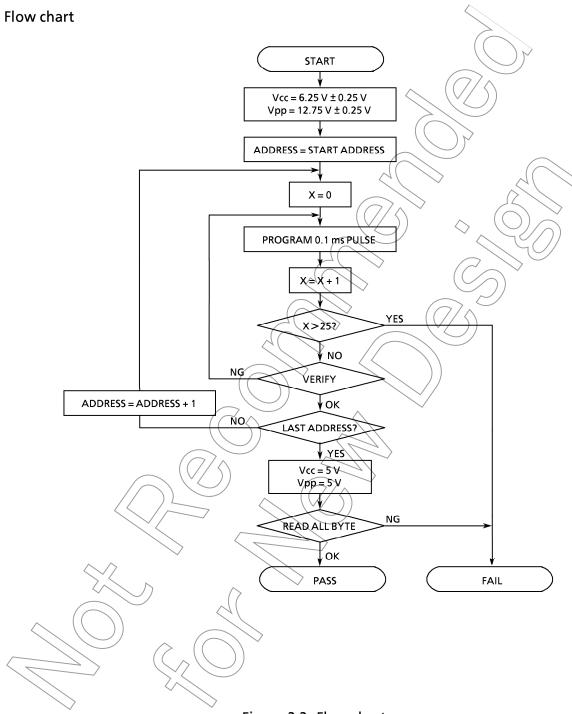
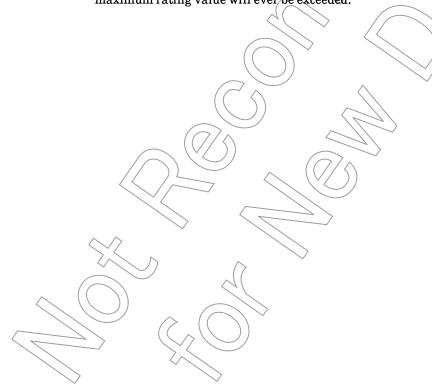


Figure 3.3 Flow chart

(3) Security Bit

The TMP96PM40 has a Security Bit in PROM cell.

If The Security Bit is programmed to "0", the content of the PROM is disable to be read in PROM mode.


96PM40-13 2003-03-31

4. Electrical Characteristics

4.1 Absolute Maximum Ratings (TMP96PM40)

Parameter	Symbol	Rating	Unit
Power Supply voltage	V cc	- 0.5 to 6.5	√
Input voltage	VIN	- 0.5 to Vcc + 0.5) v
Output Current (total)	ΣIOL	100	mA
Output Current (total)	ΣΙΟΗ	- 100	mA
Power Dissipation (Ta = 70° C)	PD	500	mW
Soldering Temperature (10 s)	T SOLDER	260	/c(\
Storage temperature	T STG	65 to 150	CC
Operating temperature	T OPR	40 to 85	

Note: The absolute maximum ratings are rated values which must not be exceeded during operation, even for an instant. Any one of the ratings must not be exceeded. If any absolute maximum rating is exceeded, a device may break down or its performance may be degraded, causing it to catch fire or explode resulting in injury to the user. Thus, when designing products which include this device, ensure that no absolute maximum rating value will ever be exceeded.

4.2 DC Characteristics (TMP96PM40)

Vcc = $5 \text{ V} \pm 10\%$, TA = -20 to 70% (4 to 20 MHz) TA = -40 to 85% (4 to 16 MHz) (Typical values are for Ta = 25% and Vcc = 5 V.)

Parameter	Symbol	Test Condition	Min	Max	Unit
Input Low Voltage (AD0 to 15) P2, P3, P4, P5, P6, P7, P8, P9 RESET,NMI,INT0(P87) EA X1	V IL V IL1 V IL2 V IL3 V IL4		-0.3 -0.3 -0.3 -0.3 -0.3	0.8 0.3 Vcc 0.25 Vcc 0.3 0.2 Vcc	>>>>
Input High Voltage (AD0 – 15) P2, P3, P4, P5, P6, P7, P8, P9 RESET, NMI, INTO (P87) EA X1	VIH VIH1 VIH2 VIH3 VIH4		2.2 0.7 Vcc 0.75 Vcc Vcc – 0.3 0.8 Vcc	Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3 Vcc + 0.3	> > > > > > > > > > > > > > > > > > >
Output Low Voltage	V OL	I OL = 1.6 mA	^ ((0.45	V
Output High Voltage	V OH V OH1 V OH2	OH = -400 μA OH = -100 μA OH = -20 μA	2.4 0.75 Vcc 0.9 Vcc		V V
Darlington Drive Current (8 Output Pins max.)	IDAR	V EXT = 1.5 V R EXT = 1.1 kΩ	-1.0	-3.5	mΑ
Input Leakage Current Output Leakage Current	I LI I LO	0.0≦Vin≦Vcc 0.2≦Vin≤Vcc – 0.2	0.02 (Typ) 0.05 (Typ)	±5 ±10	μ Α μ Α
Operating Current (RUN) IDLE STOP (Ta = −40 to 85°C) STOP (Ta = 0 to 50°C)	l cc	fc = 20 MHz 0.2 ≤ Vin ≤ Vcc - 0.2 0.2 ≤ Vin ≤ Vcc - 0.2	30 (Typ) 2.0 (Typ) 0.2 (Typ)	60 10 50 10	mA mA μA μA
Power Down Voltage (@ STOP, RAM Back up)	VSTOP	V IL2 = 0.2 Vcc, V IH2 = 0.8 Vcc	2 .0	6.0	٧
RESET Pull Up Resistor	R R\$T		50	150	kΩ
Pin Capacitance	CIO)	fc = 1 MHz		10	рF
Schmitt Width RESET, NMI, INTO (P87)	VTH		0.4	1.0 (Typ)	V
Programmable Pull Down Resistor	R KL	(7/4	10	80	$\mathbf{k}\Omega$
Programmable Pull Up Resistor	R KH		50	150	k Ω

Note: I-DAR is guaranteed for a total of up to 8 ports.

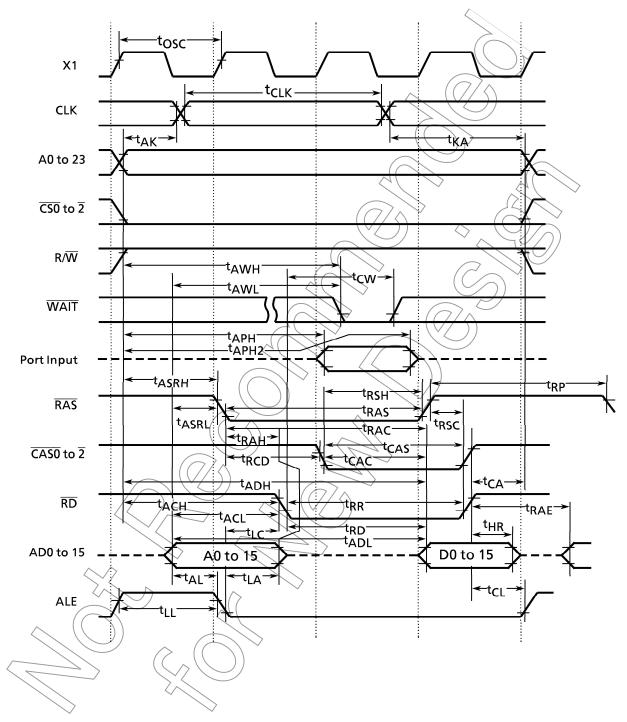
4.3 AC Electrical Characteristics (TMP96PM40)

Vcc = 5 V \pm 10% TA = -40 to 85°C (4 to 16 MHz), TA = -20 to 70°C (4 to 20 MHz)

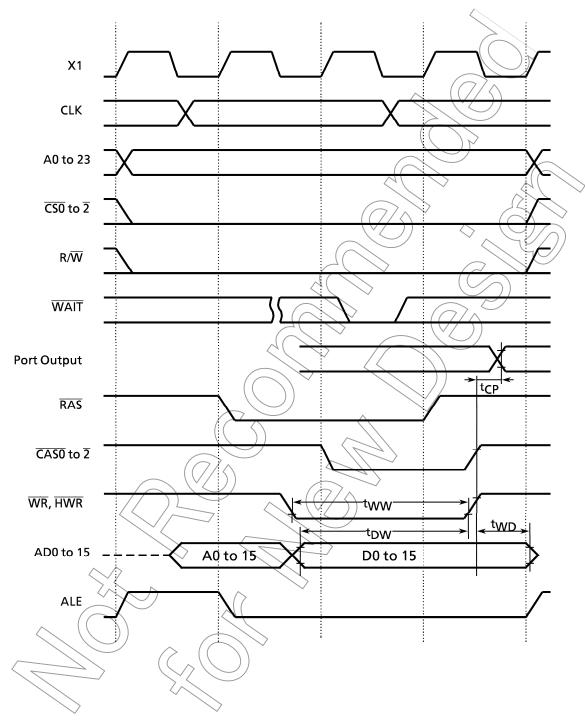
	Osc. Period (=x)	Symbol	Min	able		ЛHz		ЛHz	
	. ,		i iviiri	Max	Min	Max) Min	Max	Unit
	. ,	tosc	50	250	62.5		50		ns
	CLK width	t _{CLK}	2x - 40	^	85/	/^	60		ns
3 /	A0 to 23 Valid → CLK Hold	tAK	0.5x - 20		11/1		5		ns
	CLK Valid → A0 to 23 Hold	t _{KA}	1.5x - 70		24		5		ns
	A0 to 15 Valid → ALE fall	t _{AL}	0.5x - 15	((16.	>	10		ns
	ALE fall → A0 to 15 Hold	t _{LA}	0.5x - 15		16		10		ns
	ALE High width	t _{LL}	x – 40		23		10		ns
	ALE fall → RD/WR fall	tıc	0.5x - 30	4			(-5)		ns
	RD/WR rise → ALE rise	t _{CL}	0.5x - 20		11	/	5		ns
	A0 to 15 Valid $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{ACL}	x – 25	7/	38		25	\supset	ns
	A0 to 23 Valid $\rightarrow \overline{RD}/\overline{WR}$ fall	t _{ACH}	1.5x - 50	(//))	44>) 25		ns
12 F	RD/WR rise → A0 to 23 Hold	tcA	0.5x/ <u>-</u> 20		11		(5)))	ns
	A0 to 15 Valid \rightarrow D0 to 15 input	t _{ADL} *		3,0x - 55		133		95	ns
	A0 to 23 Valid \rightarrow D0 to 15 input	t _{ADH}		3.5x – 65	((154	\checkmark	110	ns
15 F	RDfall → D0 to 15 input	t _{RD}	4	2.0x – 50	0	7)5)		50	ns
	RD Low width	t _{RR}	2.0x - 40		85,		60		ns
17 F	RDrise → D0 to 15 Hold	tHR	0	((//0<		0		ns
18 F	RDrise → A0 to 15output	trae	x – 15		48)	35		ns
19 Ī	WR Low width	tww	2.0x - 40		85		60		ns
20 [D0 to 15 Valid → WRrise	-t _{DW}	2.0x - 50<		75		50		ns
21 V	WR rise →D0 to 15 Hold	twb	0.5x - 10		21		15		ns
22 /	A0 to 23 Valid \rightarrow WAIT input $\binom{1\text{WAIT}}{+\text{n mode}}$ A0 to 15 Valid \rightarrow WAIT input $\binom{1\text{WAIT}}{+\text{n mode}}$ RD/WR fall \rightarrow WAIT Hold $\binom{1\text{WAIT}}{+\text{n mode}}$	tAEH		3.5x - 90		129		85	ns
23 /	A0 to 15 Valid $\rightarrow \overline{\text{WAIT}}$ input $\binom{1W\text{AIT}}{\text{#n mode}}$	tAWL	^	3.0x - 80		108		70	ns
24 F	RD/\overline{WR} fall $\rightarrow \overline{WAIT}$ Hold $\binom{1WAIT}{+\ln mode}$	tcw	2.0x + 0		125		100		ns
25 /	A0 to 23 Valid → PORT input	t _{APH}	(_	2.5x - 120		36		5	ns
26 /	A0 to 23 Valid → PORT Høld	t _{APH2}	2.5x + 50		206		175		ns
27 Ī	WR rise → PORT Valid	t _{CP}	7	200		200		200	ns
28 /	A0 to 23 Valid → RAS fall	tasrh	1.0x - 40	7	23		10		ns
29 /	A0 to 15 Valid → RAS fall	∕ ^t ASRL	0.5x - 15		16		10		ns
30 F	RAS fall → D0 to 15 input	tRAC		2.5x - 70		86		55	ns
31 F	RAS fall → A0 to 15 Hold	trah	0.5x - 15		16		10		ns
32 F	RAS Low width	tras	2.0x - 40		85		60		ns
33 F	RAS High width	t _{RP}	2.0x - 40		85		60		ns
34 (CAS fall → RAS rise	t _{RSH}	1.0x - 35		28		15		ns
35 F	RAS rise → CAS rise	t _{RSC}	0.5x - 25		6		0		ns
	RAS fall → CAS fall	t _{RCD}	1.0x - 40		23		10		ns
37/0	CAS fall → D0 to 15 input	t _{CAC}		1.5x – 65		29		10	ns
38	SAS Low width	t _{CAS}	1.5x - 30		64		40		ns
/4									

^{*} t_{ADL} value is different from TMP96C141B/TMP96CM40.

AC Measuring Conditions


Output Level : High 2.2 V / Low 0.8 V , CL50 pF

(However CL = 100 pF for AD0 to AD15, A0 to A23, ALE, \overline{RD} , \overline{WR} , \overline{HWR} , R/\overline{W} , CLK, \overline{RAS} , $\overline{CAS0}$ to $\overline{CAS2}$)


• Input Level : High 2.4V / Low 0.45V (AD0 to AD15)

High 0.8Vcc/Low 0.2Vcc (Except for AD0 to AD15)

(1) Read Cycle

(2) Write Cycle

4.4 A/D Conversion Characteristics (TMP96PM40)

 $Vcc = 5 V \pm 10\%$ TA = -40 to 85°C (4 to 16 MHz) TA = -20 to 70°C (4 to 20 MHz)

Parameter		Symbol	Min	Тур.	Max	Unit
Analog reference voltage		V _{REF}	Vcc – 1.5		Vcc	
Analog reference voltage		A _{GND}	Vss		Vss	v
Analog input voltage range		V _{AIN}	Vss	~ (()	Vcc	
Anlog current for analog reference voltage		I _{REF}		0.5	1.5	mA
4 < 5 < 4 C DALL	Low change mode	Total		± 1.5	± 4.0	
4≦ fc≦ 16 MHz	High change mode	error(Quantize error of ± 0.5		¥3:0	± 6.0	
16 <fc≦20 mhz<="" td=""><td>Low change mode</td><td>LSB not included)</td><td>^(</td><td>±1.5</td><td>± 4.0</td><td>LSB</td></fc≦20>	Low change mode	LSB not included)	^(±1.5	± 4.0	LSB
	High change mode			± 4.0	± 8,0	

4.5 Serial Channel Timing – I/O Interface Mode

(1) SCLK Input Mode

 $Vcc = 5 V \pm 10\% TA = -40 \text{ to } 85^{\circ}C(4 \text{ to } 16 \text{ MHz})$ $TA = -20 \text{ to } 70^{\circ}C(4 \text{ to } 20 \text{ MHz})$

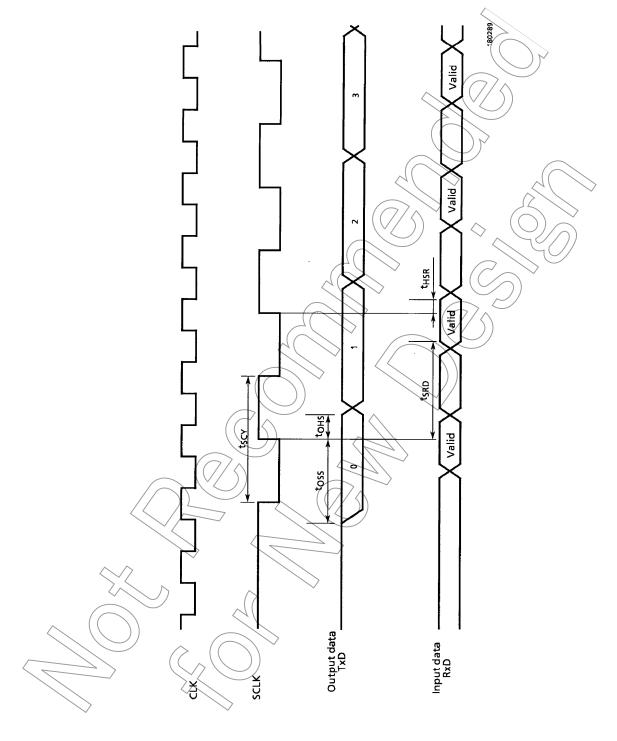
Davamatav	Cumple of	Variable		16 MHz		20 MHz		/
Parameter	Symbol	Min	Max	Min	Max	Μiη	Max	Unit
SCLK cycle	t _{SCY}	16X	\rightarrow	1		0.8		μ S
Output Data \rightarrow Rising edge of SCLK	toss	$t_{SCY}/2 - 5X - 50$	\triangleright	137	77^	100		ns
SCLK rising edge→ Output Data hold	t _{OHS}	5X - 100		212	$(\))$	150		ns
SCLK rising edge→Input Data hold	t _{HSR}	(0)		8		0		ns
SCLK rising edge→ effective data input	t _{SRD}		t _{SCY} - 5X - 100		587		450	ns

(2) SCLK Output Mode $Vcc = 5 V \pm 10\% TA = -40 \text{ to } 85^{\circ}\text{C} \text{ (4 to } 16 \text{ MHz)} TA = -20 \text{ to } 70^{\circ}\text{C} \text{ (4 to } 20 \text{ MHz)}$

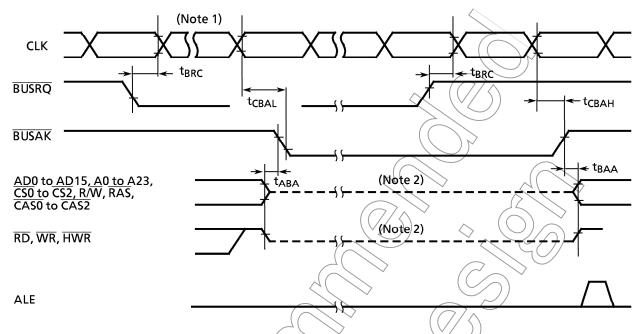
	1 1								
D		Variable		16 MHz		20 MHz		l l m l d	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
SCLK cycle (programmable)	t _{SCY}	16X	8192X	1	512	0.8	409.6	μ S	
Output Data → SCLK rising edge	toss	t _{SCY} – 2X – 150		725		550		ns	
SCLK rising edge→ Output Data hold	tons	2X - 80	7	45		20		ns	
SCLK rising edge→Input Data hold	t _{HSR}	o((//	\wedge	0		0		ns	
SCLK rising edge → effective data input	t _{SRD}		t _{SCY} – 2X – 150		725		550	ns	

4.6 Timer/Counter Input Clock (TIO, TI4, TI5, TI6, TI7)

 $Vcc = 5 V \pm 10\%$ TA = -40 to 85°C (4 to 16 MHz) TA = -20 to 70°C (4 to 20 MHz)


Powerton	Cumbal	Variable		16 MHz		20 MHz		Unit	
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit	
Clock Cycle	tvck	8X + 100		600		500		ns	
Low level clock Pulse width	tvcki	4X + 40		290		240		ns	
High level clock Pulse width	tvckh	4X + 40		290		240		ns	

4.7 Interrupt Operation


 $Vcc = 5 V \pm 10\%$ TA = -40 to 85°C (4 to 16 MHz) TA = -20 to 70°C (4 to 20 MHz)

Parameter	Symbol	Variable		16 MHz		20 MHz		Unit	
Farameter	Symbol	Min	Max	Min	Max	Min	Max	Onit	
NMI, INTO Low level Pulse width	t _{INTAL}	4X		250		200		ns	
NMI, INTO High level Pulse width	t _{INTAH}	4X		250		200		ns	
INT4 to INT7 Low level Pulse width	t _{INTBL}	8X + 100		600		500		ns	
INT4 to INT7 High level Pulse width	t _{INTBH}	8X + 100		600		500		ns	

4.8 Timing Chart for I/O Interface Mode

Timing Chart for Bus Request (BUSRQ) / BUS Acknowledge (BUSAK) 4.9

Parameter		Variable		16 MHz		20 MHz		Unit
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Unit
BUSRQ set-up time for CLK	t _{BRC}	120	\wedge	120		120		ns
CLK→BUSAK falling edge	t _{CBAL}	<	1.5x + 120		214		195	ns
CLK→BUSAK rising edge	t _{CBAH}		0.5x + 40		71		65	ns
Output Buffer is off to BUSAK	t _{ABA}		80	0	80	0	80	ns
BUSAK to Output Buffer is on.	tBAA		80	0	80	0	80	ns

Note 1: The Bus will be released after the WAIT request is inactive, when the BUSRQ is set to "0" during "Wait" cycle.

Note 2: This line only shows the output buffer is off-state.

They don't indicate the signal level is fixed.

After the bus is released, the signal level is kept dynamically before the bus is released by the external capacitance.

Therefore to fix the signal level by an external registance under the bus is released.

Therefore, to fix the signal level by an external resistance under the bus is releasing, the design must be carefully because of the level-fix will be delayed.

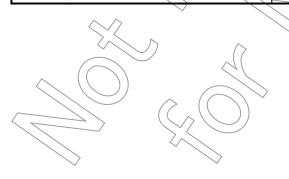
The internal programmable pull-up/pull-down resistance is switched active/non-active by the internal signal.

4.10 Read Operation (PROM Mode)

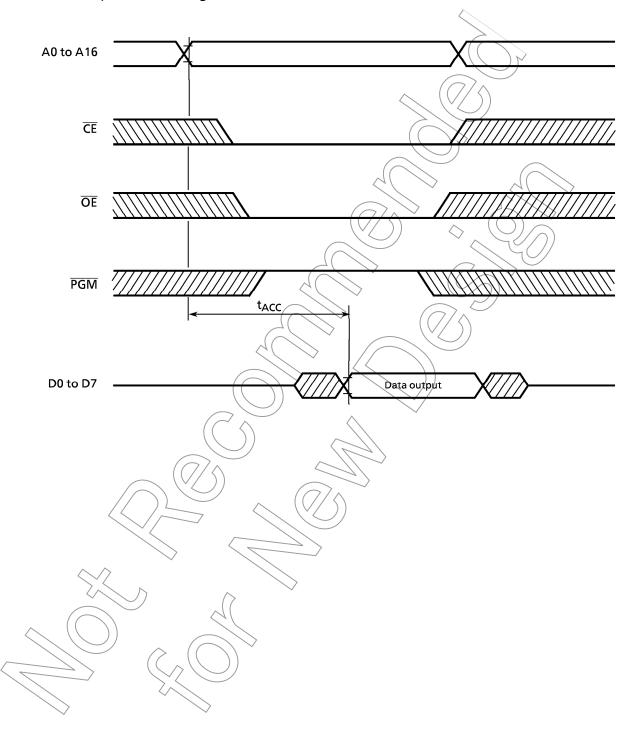
DC Characteristic, AC Characteristic

 $TA = -40 \text{ to } 85^{\circ}\text{C} / \text{Vcc} = 5 \text{ V} \pm 10\%$

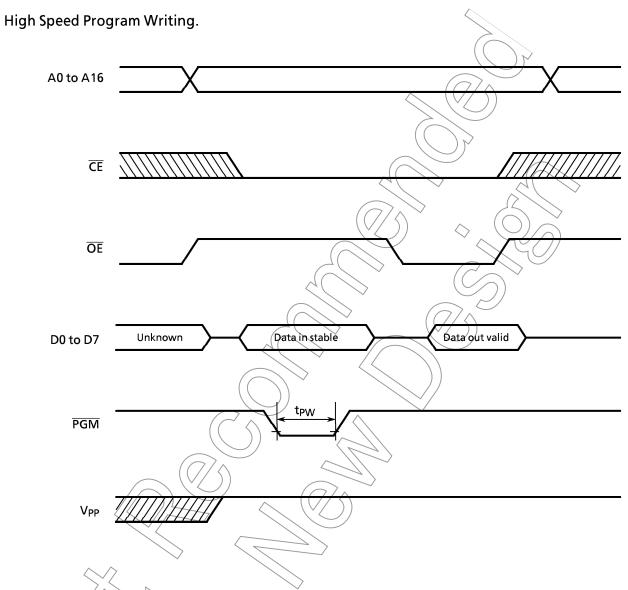
Parameter	Symbol	Condition	Min	Max	Unit
V _{PP} Read Voltage	V _{PP}	- <	4.5	5.5	٧
Input High Voltage (A0 to A16, \overline{CE} , \overline{OE} ,	V _{IH1}	-	0.7 × Vcc	V _{CC} + 0.3	V
PGM) Input Low Voltage (A0 to A16, CE, OE, PGM)	V _{IL1}	-	0.3	0.3×V _{CC}	V
Address to Output Delay	t _{ACC}	C _L = 50 _P F	→ -	2.25 TCYC + α	ns


TCYC = 400 ns (10 MHz Clock) $\alpha = 200 \text{ ns}$

4.11 Programming Operation (PROM Mode)

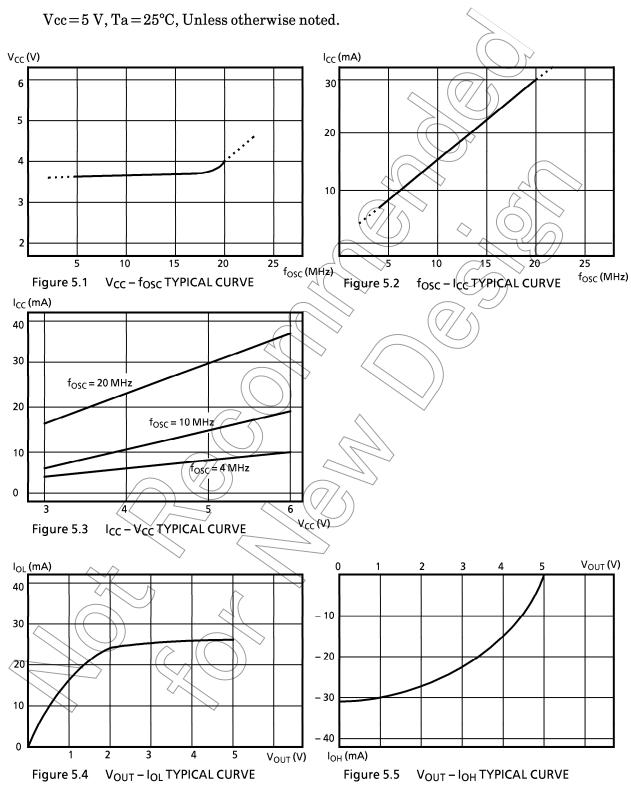

DC Characteristic, AC Characteristic

 $TA = 25 \pm 5 \% \text{ Vcc} = 6.25 \text{ V} \pm 0.25 \text{ V}$


Parameter	Symbol	Condition	Min	Тур.	Max	Unit
Programing Supply Voltage						
Input High Voltage (D0 to D7)	VPP		12.50	12.75	13.00	V
Input Low Voltage (D0 to D7)	V_{IH}	\ \	$0.2V_{CC} + 1.1$		V _{CC} + 0.3	V
Input High Voltage (A0 to A16, $\overline{CE}, \overline{OE},)$	V _{IL}		- 0.3		0.2V _{CC} -0.1	V
PGM)	V _{IH1}	~ \[\frac{1}{2} \]	0.7V _{CC}		V _{CC} + 0.3	V
Input Low Voltage (A0 to A16, CE, QE,	V _{IL1}	777	- 0.3		0.3V _{CC}	V
PGM)	Icc /	fc = 10 MHz	_		50	mΑ
V _{CC} Supply Current /)	UPP ((V _{PP} = 13.00 V	_		50	mΑ
V _{PP} Supply Current						
PGM Program Pulse Width	tpW	C _L = 50 _P F	0.095	0.1	0.105	ms

4.12 Read Operation Timing Chart (PROM Mode)

4.13 Programming Operation Timing Chart (PROM Mode)



Note 1: The power supply of V_{PP} (12.75 V) must be set power-on at the same time or the later time for a power supply of V_{CC} and must be clear power-on at the same time or early time for a power supply of V_{CC} .

Note 2: The pulling up/down device on condition of $V_{PP} = 12.75 \text{ V}$ suffer a damage for the device.

Note 3: The maximum spec of V_{PP} pin is 14.0 V. Be carefull a overshoot at the program writing.

4.14 Typical Characteristics

