

rev 1.0

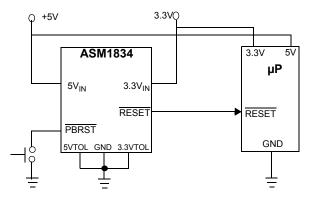
Dual 5V and 3.3V µP Power Supply Supervisor with Manual Reset

General Description

The ASM1834 supervisors simultaneously monitor both 3.3V and 5V power sources and generate reset signals when either supply is out of tolerance. When an out-of-tolerance is detected, the output-reset signal of the affected supply becomes active and resets the system microprocessor/ microcontroller. On power-up and after the supply voltage returns to an in-tolerance condition, the reset signal remains active for approximately 350ms. this allows the power supply and system microprocessor to stabilize.

Tolerance levels are independently selectable for both supplies. Tolerance options are 5% and 10% percent for the 5V supply and 10% and 20% percent for the 3.3V supply.

The ASM1834 and ASM1834D have push-pull reset output stages. The ASM1834A reset outputs are open drain devices that can both be connected to either 5V or 3.3V supply. The ASM1834 and ASM1834A have active LOW reset outputs. The ASM1834D has active HIGH reset outputs.


All devices can generate reset signals through an internally debounced pushbutton reset input that affects both reset outputs.

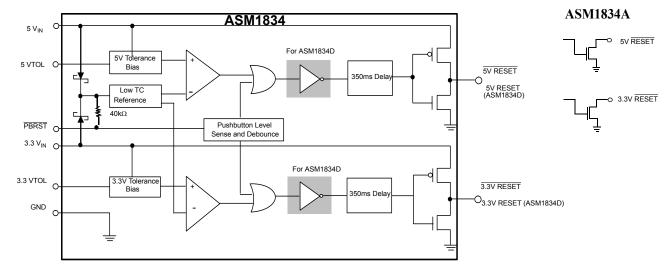
All devices operate over the extended industrial temperature range. Devices are available in 8-pin DIP, surface mount 8-pin SO and 8-Pin MicroSO packages. Die are also available.

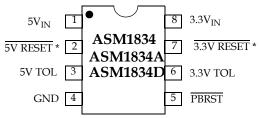
Key Features

- Monitor 5V and 3.3V supplies simultaneously
- 5V and 3.3V power-on reset
- 350ms reset time
- Debounced pushbutton reset input
- Push-pull CMOS output
 ASM1834, ASM1834D
 Eliminates external pull-up resistors
 Active LOW (ASM1834), HIGH (ASM1834D)
- Open Drain Output
 •ASM1834A
 •Active LOW
- Selectable 5V and 3.3V trip point tolerance
- Internal power drawn from highest input voltage, 5V or 3.3V
- Precision temperature-compensated voltage reference and comparator
- Low cost surface mount SO, compact MicroSO and DIP packages.
- Wide operating temperature, -40°C to +85°C

Typical Operating Circuit

ApplicationsMicroprocessors


- PDAs, Hand-held PCs
- Embedded Controllers
- Telecommunication Systems
- Power Supplies
- Wireless / Cellular Systems
- Networking Hardware


ASM1834A/D

rev 1.0

Block Diagram

Pin Configuration

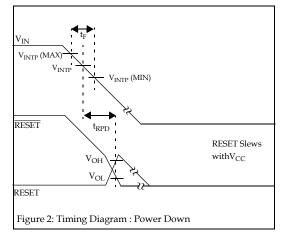
* AS1834D reset outputs are active HIGH (5V RESET and 3.3V RESET) Outputs are open-drain for AS1834A.

Pin Description

Pin #	Pin Name	Function
1	5V _{IN}	5V power supply input.
2	5V RESET 5V RESET	5V reset output (Active LOW, ASM1834, ASM1834A. Open drain outputs for ASM1834A). 5V reset output (Active HIGH, AS1834D).
3	5V TOL	5V input tolerance select: 10% tolerance for 5VTOL= $5V_{IN}$ and 5% tolerance for 5VTOL = GND
4	GND	Ground.
5	PBRST	Debounced manual pushbutton reset input (40k Ω internal pull-up).
6	3.3V TOL	3.3V input tolerance select: 20% tolerance for 3.3VTOL = $3.3V_{IN}$ and 10% tolerance for 3.3VTOL=GND.
7	3.3V RESET 3.3V RESET	3.3V reset output (Active LOW, ASM1834, ASM1834A. Open drain outputs for ASM1834A). 3.3V reset output (Active HIGH, AS1834D).
8	3.3V _{IN}	3.3V power supply input.

ASM1834A/D

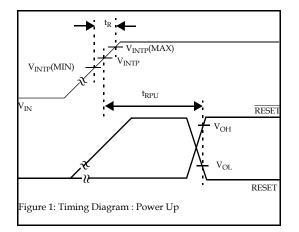
rev 1.0


Detailed Description

Operation Power Monitor

The ASM1834 supervisors simultaneously detect out-oftolerance power supply conditions on both 3.3V and 5V power supplies. If the voltages at 5VIN or 3.3VIN are outside the tolerance band, the reset for the falling supply voltage becomes active. When the monitored supply returns to an intolerance state, the reset remains active for approximately 350ms before returning to the inactive state.

On power-up, the reset signals are kept active for approximately 350ms after the power supply voltages have reached the selected tolerance. This allows the power supply and microprocessor to stabilize before the reset is removed.

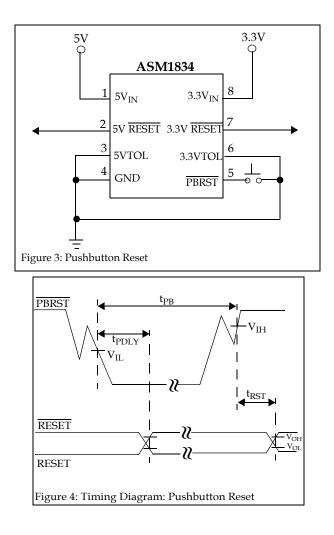

All supply current for the ASM1834 devices is drawn from the input (5V_{IN} or $3.3V_{IN}$) with the highest voltage level. The outputs draw current from their input supplies $5V_{IN}$ and $3.3V_{IN}$.

Reset Signal Polarity and Output Stage Structure

The ASM1834 and the ASM1834A supervisors have active LOW reset signals. The ASM1834D reset outputs are active HIGH.

The ASM1834 and the ASM1834D have CMOS push-pull output satges. The ASM1834A has open drain reset outputs.

Part #	RESET Polarity	Output Stage Configuration
ASM1834	LOW	Push-Pull
ASM1834EMA	LOW	Push-Pull
ASM1834S	LOW	Push-Pull
ASM1834A	LOW	Open Drain
ASM1834AEMA	LOW	Open Drain
ASM1834AS	LOW	Open Drain
ASM1834D	HIGH	Push-Pull
ASM1834DEMA	HIGH	Push-Pull
ASM1834DS	HIGH	Push-Pull

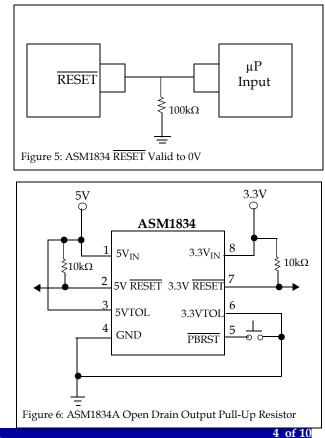

ASM1834A/D

rev 1.0

Manual Reset Operation

Push-button switch input, $\overrightarrow{\mathsf{PBRST}}$, allows the user to override the internal trip point detection circuits and issue reset signals. The pushbutton input is debounced and is pulled HIGH through an internal 40k Ω resistor.

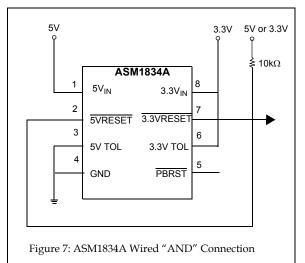
When at least one of the reset outputs is not asserted, a push button initiated reset signal can be issued by holding PBRST LOW for at least 2ms. When PBRST is held LOW, both resets become active and remain active for approximately 350ms after PBRST returns HIGH. (See figures 3 and 4).



Reset Output Signal

Reset output signals are valid as long as either voltage at $5V_{IN}$ or $3.3V_{IN}$ is above 1.2V. In addition, the ASM1834 has push-pull outputs that can remain valid below a 1.2V input level. To sink current below 1.2V, a resistor should be connected from the reset output to ground. This resistor guarantees a valid reset signal down to 0V. A 100k Ω value is suggested.

The AS1834A open drain reset outputs require pull-up resistors and must be low enough in value to pull the output into a HIGH state. Resistor value is not critical in most applications and a value of $10k\Omega$ is suggested. (See Figures 5 and 6).


The ASM1834A open drain reset outputs can be connected to the same potential through a single pull-up resistor. In this configuration a failure on either supply will generate an active LOW reset. If the inputs are pulled-up to different voltages, the reset outputs (pin 2 and pin 7) cannot be connected to form a wired "AND" (see figure 7).

ASM1834A/D

rev 1.0

Trip Point Tolerance Selection

The 3.3VTOL and 5VTOL inputs allow independent sel;ection of the reset trip points. If 5VTOL is connected to the 5V supply input, a 10% tolerance is selected. If 5VTOL is grounded, a 5% tolerance is selected.

If 3.3VTOL is connected to the 3.3V supply input, a 20% tolerance is selected. If 3.3VTOL is grounded, a 10% tolerance is selected. (Refer table below). The 3.3VTOL and 5VTOL tolerance select inputs should be tied to the ground or to the respective input supply voltage pin, $3.3V_{IN}$ or $5V_{IN}$.

	3.3V Input				5V Input			
Tolerance Select	3.3V TRIP Point (V)		5V TRIP Point (V)		(V)			
	Tolerance	MIN	NOM	МАХ	Tolerance	MIN	NOM	МАХ
5VTOL = 5V _{IN}	-	-	-	-	10%	4.25	4.38	4.49
5VTOL = GND	-	-	-	-	5%	4.5	4.63	4.75
3.3VTOL = 3.3V _{IN}	20%	2.47	2.55	2.64	-	-	-	-
3.3VTOL = GND	10%	2.80	2.88	2.97	-	-	-	-

rev 1.0

Absolute Maximum Ratings

Parameter	Min	Мах	Unit				
Voltage on VCC	-0.5	7	V				
Voltage on 5V RESET	-0.5	+5V _{IN} + 0.5V	V				
Voltage on 3.3V RESET	-0.5	+3.3V _{IN} + 0.5V	V				
Voltage on PBRST and reset outputs	-0.5	(+5V _{IN} + 0.5V) or (+3.3V _{IN} + 0.5V) whichever is greater					
Operating Temperature Range	-40	+85	°C				
Soldering Temperature (for 10 sec)	-	260	°C				
Storage Temperature	-55	+125	°C				
Note: 1. Voltages are measured with respect to ground 2. These are stress ratings only and functional implication is not implied. Exposure to absolute maximum							

Recomended DC Operating Conditions

ratings for extended periods may affect device reliability.

Recomended DC operating condition over the operating temperature range of -40°C to +85°C. All voltages are referenced to ground.

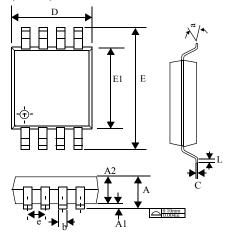
Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
5V Supply Voltage	5V _{IN}		1.2		5.5	V
3.3V Supply Voltage	3.3V _{IN}		1.2		5.5	
PBRST Input High Level	V _{IH}	Both $3.3V_{IN}$ and $5V_{IN} >= 2.7V$	2		V _{INMAX} + 0.3	V
PBRST Input High Level	V _{IH}	Both $3.3V_{IN}$ and $5V_{IN} \leq 2.7V$	V _{INMAX} - 0.4			V
PBRST Input Low Level	V _{IL}		-0.3		0.5	V

rev 1.0

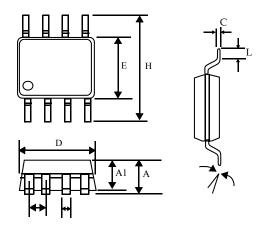
DC Electrical Characteristics

Unless otherwise noted, V_{IN} = 1.2V to 53.5V and specifications are over the operating temperature range of -40°C to 85°C. Recomended DC operating condition over the operating temperature range of -40°C to +85°C. All voltages are referenced to ground.

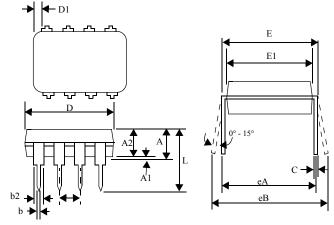
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Output Current	I _{OH}	Output = 2.4V. Either 3.3V _{IN} or 5.5V _{IN} >=2.7V (ASM1834/1834D only)		350		μΑ
Output Current	I _{OL}	Output = 0.4V. Either 3.3V _{IN} or 5.5V _{IN} >=2.7V (ASM1834/1834D only)	10			mA
Output Voltage	V _{OH}			V _{IN} - 0.1V		V
Input Leakage	Ι _{ΙL}		-1.0		+1.0	μA
5V Operating Current	I _{CC}	3.3V _{IN} and 5V _{IN} <=5.5V, RESET out- puts open.		16	30	μA
3.3V Operating Current		3.3V _{IN} and 5V _{IN} <=3.6V, RESET out- puts open.		12	25	μA
5V Trip Point	V _{INTP}	5VTOL = GND	4.50	4.63	4.75	V
5V Trip Point	V _{INTP}	5VTOL = 5V _{IN}	4.25	4.38	4.49	V
3.3V Trip Point	V _{INTP}	3.3VTOL = GND	2.80	2.88	2.97	V
3.3V Trip Point	V _{INTP}	3.3VTOL = 3.3V _{IN}	2.47	2.55	2.64	V
Output Capacitance	C _{OUT}				10	pF
PBRST Manual Reset Minimum Low Time	t _{PB}		2			ms
PBRST Stable LOW to reset Active	t _{PDLY}				2	ms
Reset Active Time	t _{RST}		200	350	500	ms
V _{CC} Slew Rate	t _F	V _{INTP} (MAX) to V _{INTP} (MIN)	300			μs
V _{CC} Slew Rate	t _R	V _{INTP} (MIN) to V _{INTP} (MAX)	0			ns
V _{CC} Detect to RESET or RESET	t _{RPU}	t _{rise} = 5µs		350	500	ms
V _{CC} Detect Noise Immunity	t _{RPD}				2	μs



ASM1834A/D


rev 1.0

Package Information


MicroSO (8-Pin)

SO (8-Pin)

Plastic DIP (8-Pin)

	Incl	hes	Millimeteres		
	Min Max		Min	Max	
		MicroSO (8-	Pin)		
А	-	0.0433	-	0.10	
A1	0.0020	0.0059	0.050	0.15	
A2	0.0295	0.0374	0.75	0.95	
b	0.0098	0.0157	0.25	0.40	
С	0.0051	0.0091	0.13	0.23	
D	0.1142	0.1220	2.90	3.10	
е	0.0256	6 BSC	0.65	BSC	
Е	0.193	BSC	4.90	BSC	
E1	0.1142	0.1220	2.90	3.10	
L	0.0157	0.0276	0.40	0.70	
а	0°	6°	0°	6°	
		SO (8-Pir	1)		
А	0.053	0.069	1.35	1.75	
A1	0.004	0.010	0.10	0.25	
В	0.013	0.020	0.33	0.51	
С	0.007	0.010	0.19	0.25	
е	0.0	50	1.27		
Е	0.150	0.157	3.80	4.00	
н	0.228	0.244	5.80	6.20	
L	0.016	0.050	0.40	1.27	
D	0.189	0.197	4.80	2.00	
		Plastic DIP (8	3-Pin)		
А	-	0.210	-	5.33	
A1	0.015	-	0.38	-	
A2	0.115	0.195	2.92	4.95	
b	0.014	0.022	0.36	0.56	
b2	0.045	0.070	1.14	1.78	
b3	0.030	0.045	0.80	1.14	
D	0.355	0.400	9.02	10.16	
D1	0.005	-	0.13	-	
Е	0.300	0.325	7.62	8.26	
E1	0.240	0.280	6.10	7.11	
е	0.100	-	2.54		
eA	0.300	-	7.62		
eВ	-	0.430	-	10.92	
eC	-	0.060			
L	0.115	0.150	2.92	3.81	

rev 1.0 Ordering Information

Part Number	Reset Polarity	Operating Temperature Range	Output Stage	Package
ASM1834	LOW	-40°C TO 85°C	Push-Pull	8-DIP
ASM1834EMA	LOW	-40°C TO 85°C	Push-Pull	MicroSO
ASM1834S	LOW	-40°C TO 85°C	Push-Pull	8-SO
ASM1834/D	LOW	25°C	Push-Pull	DICE
ASM1834A	LOW	-40°C TO 85°C	Open Drain	8-DIP
AS1834AEMA	LOW	-40°C TO 85°C	Open Drain	MicroSO
ASM1834AS	LOW	-40°C TO 85°C	Open Drain	8-SO
ASM1834A/D	LOW	25°C	Open Drain	DICE
ASM1834D	HIGH	-40°C TO 85°C	Push-Pull	8-DIP
ASM1834DEMA	HIGH	-40°C TO 85°C	Push-Pull	MicroSO
ASM1834DS	HIGH	-40°C TO 85°C	Push-Pull	8-SO
ASM1834D/D	HIGH	25°C	Push-Pull	DICE

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel: 408 - 855 - 4900 Fax: 408 - 855 - 4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM1834A/D Document Version: 1.0

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale. The purchase of products from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not assume or failance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failuance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance produ