Features

* Meet RoHS, Green Product.
* Side looking special for LCD backlight.
* Ultra bright InGaN White Chip LED.
* Package in 8mm tape on 7" diameter reels.
* Compatible with automatic placement equipment.
* Compatible with infrared reflow solder process.
* EIA STD package.
* I.C. compatible.

Package Dimensions

Part No.	Lens	Emitted Color	Pin Assignment
LTW-326DSKS-5A	Green	InGaN White	C 2
		AlInGaP Yellow	C 1

Notes:

1. All dimensions are in millimeters (inches).
2. Tolerance is $\pm 0.10 \mathrm{~mm}$ (.004") unless otherwise noted.

Property of Lite-On Only

Absolute Maximum Ratings At $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$

Parameter	LTW-326DSKS-5A		Unit
	White	Yellow	
Power Dissipation	72	48	mW
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	100	80	mA
DC Forward Current	20	20	mA
Reverse Voltage	5	5	V
Operating Temperature Range		$-20^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$	
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		
Infrared Soldering Condition	$260^{\circ} \mathrm{C} \mathrm{For} 10$ Seconds		

Note : Operating the LED (in an application) under reverse bias condition might result in damage or failure of the component Suggest IR Reflow Condition :

TIME

Electrical Optical	Characteristics		$\mathrm{Ta}=25^{\circ} \mathrm{C}$			
Parameter	Symbol		LTW-326DSKS-5A		Unit	Test Condition
			White	Yellow		
Luminous Intensity	IV	MIN.	28.0	7.1	mcd	$\mathrm{IF}=5 \mathrm{~mA}$ Note 1, 2, 5
		TYP.	-	-		
		MAX.	112.0	71.0		
Viewing Angle	201/2	TYP.	130	130	deg	Fig. 6
Peak Emission Wavelength	$\lambda \mathrm{P}$	TYP.		591	nm	Measurement @Peak (Fig.2)
Dominant Wavelength	$\lambda \mathrm{d}$	TYP.		590	nm	$\mathrm{IF}=5 \mathrm{~mA}$ Note 7
Spectral Line Half-Width	$\Delta \lambda$	TYP.		15	nm	
Chromaticity Coordinates	x	TYP..	0.3		V	$\begin{gathered} \mathrm{IF}=5 \mathrm{~mA} \\ \text { Note } 3,5 \\ \text { Fig. } 1 \end{gathered}$
	y		0.3			
Forward Voltage	VF	TYP.	2.55	2.0	V	$\mathrm{IF}=5 \mathrm{~mA}$
		MAX.	3.15	2.4		
Reverse Current	IR	MAX.	10	10	$\mu \mathrm{A}$	$\mathrm{VR}=5 \mathrm{~V}$

Note : 1. Luminous intensity is measured with a light sensor and filter combination that approximates the CIE eye-response curve.
2. Iv classification code is marked on each packing bag.
3. The chromaticity coordinates (x, y) is derived from the 1931 CIE chromaticity diagram.
4. Caution in ESD:

Static Electricity and surge damages the LED. It is recommend to use a wrist band or anti-electrostatic glove when handling the LED. All devices, equipment and machinery must be properly grounded.
5. Tester

CAS140B is for the chromaticity coordinates (x, y) \& Iv.
6. The chromaticity coordinates (x, y) guarantee should be added ± 0.01 tolerance.

Fig. 1 RELATIVE INTENSITY VS. WAVELENGTH

Fig. 2 Forward Current vs. Forward Voltage

Fig. 3 Forward Current Derating Curve

Fig. 5 Luminous Intensity vs.
Fig. 5 Luminous Intensity vs.
Ambient Temperature

Fig. 4 Relative Luminous Intensity vs. Forward Current

Fig. 6 Spatial Distribution

Typical Electrical / Optical Characteristics Curves

$\left(25^{\circ} \mathrm{C}\right.$ Ambient Temperature Unless Otherwise Noted)

Fig. 1 RELATIVE INTENSITY VS. WAVELENGTH

Fig. 2 FORWARD CURRENT VS. FORWARD VOLTAGE

Ambient Temperature TA $\left({ }^{\circ} \mathrm{C}\right)$
Fig. 3 FORWARD CURRENT DERATING CURVE

Fig. 6 SPATIAL DISTRIBUTION

Fig. 4 RELATIVE LUMINOUS
INTENSITY VS. FORWARD CURRENT

Bin Code List

VF Spec. Table(White)

VF Bin	Forward Voltage (V) at IF $=5 \mathrm{~mA}$	
	Min.	Max.
A	2.55	2.75
B	2.75	2.95
C	2.95	3.15

Tolerance on each Forward Voltage bin is $+/-0.1$ volt
IV Spec. Table(White)

IV Bin	Luminous Intensity (mcd) at IF = 5mA	
	Min.	Max.
N	28.0	45.0
P	45.0	71.0
Q	71.0	112.0

Tolerance on each Luminous Intensity bin is +/- 15%.
IV Spec. Table(Yellow)

IV Bin	Luminous Intensity (mcd) at IF = 5mA	
	Min.	Max.
K	7.10	11.2
L	11.2	18.0
M	18.0	28.0
N	28.0	45.0
P	45.0	71.0

Tolerance on each Luminous Intensity bin is +/- 15%.

Property of Lite-On Only

Bin Code List

Hue Spec. Table

Hue Bin	Color bin limits at IF = 5mA				
	CIE 1931Chromaticity coordinates				
S 1	x	0.274	0.274	0.294	0.294
	y	0.226	0.258	0.286	0.254
S 2	x	0.274	0.274	0.294	0.294
	y	0.258	0.291	0.319	0.286
S 3	x	0.294	0.294	0.314	0.314
	y	0.254	0.286	0.315	0.282
S 4	x	0.294	0.294	0.314	0.314
	y	0.286	0.319	0.347	0.315
S 5	x	0.314	0.314	0.334	0.334
	y	0.282	0.315	0.343	0.311
S 6	x	0.314	0.314	0.334	0.334
	y	0.315	0.347	0.376	0.343

Tolerance on each Hue (x, y) bin is $+/-0.01$.

Cleaning

Do not use unspecified chemical liquid to clean LED they could harm the package.
If clean is necessary, immerse the LED in ethyl alcohol or in isopropyl alcohol at normal temperature for less one minute.

Suggest Soldering Pad Dimensions

Package Dimensions Of Tape And Reel

Notes:

1. All dimensions are in millimeters (inches).

Package Dimensions of Reel

Notes:

1. Empty component pockets sealed with top cover tape.
2.7 inch reel- 3000 pieces per reel.
2. Minimum packing quantity is 500 pcs for remainders.
3. The maximum number of consecutive missing lamps is two.
4. In accordance with ANSI/EIA 481-1-A-1994 specifications.

Property of Lite-On Only

CAUTIONS

1. Application

The LEDs described here are intended to be used for ordinary electronic equipment (such as office equipment, communication equipment and household applications).Consult Liteon's Sales in advance for information on applications in which exceptional reliability is required, particularly when the failure or malfunction of the LEDs may directly jeopardize life or health (such as in aviation, transportation, traffic control equipment, medical and life support systems and safety devices).

2. Storage

The package is sealed:
The LEDs should be stored at $30^{\circ} \mathrm{C}$ or less and 90% RH or less. And the LEDs are limited to use within one year, while the LEDs is packed in moisture-proof package with the desiccants inside.
The package is opened:
The storage ambient for the LEDs should not exceed $30^{\circ} \mathrm{C}$ temperature or 60% relative humidity. It is recommended that LEDs out of their original packaging are IR-reflowed within one week.
For extended storage out of their original packaging, it is recommended that the LEDs be stored in a sealed container with appropriate desiccant, or in a desiccators with nitrogen ambient.
LEDs stored out of their original packaging for more than one week should be baked at about 60 deg C for at least 20 hours before solder assembly.

3. Cleaning

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED if necessary.

4. Soldering

Recommended soldering conditions:

Reflow soldering		Soldering iron	
Pre-heat	$150 \sim 200^{\circ} \mathrm{C}$	Temperature	$300^{\circ} \mathrm{C}$ Max.
Pre-heat time	$120 \mathrm{sec} . \mathrm{Max}$.	Soldering time	3 sec. Max. Peak temperature Soldering time
$260^{\circ} \mathrm{C}$ Max.			
10 sec. Max.(Max. two times)			

Soldering notes:

Because different board designs use different number and types of devices, solder pastes, reflow ovens, and circuit boards, no single temperature profile works for all possible combinations.
However, you can successfully mount your packages to the PCB by following the proper guidelines and PCB-specific characterization.
LITE-ON Runs both component-level verification using in-house KYRAMX98 reflow chambers and board-level assembly.
The results of this testing are verified through post-reflow reliability testing.
Profiles used at LITE-ON are based on JEDEC standards to ensure that all packages can be successfully and reliably surface mounted.
Figure on page3 shows a sample temperature profile compliant to JEDEC standards.
You can use this example as a generic target to set up your reflow process.
You should adhere to the JEDEC profile limits as well as specifications and recommendations from the solder paste manufacturer to avoid damaging the device and create a reliable solder joint.

5. Drive Method

An LED is a current-operated device. In order to ensure intensity uniformity on multiple LEDs connected in parallel in an application, it is recommended that a current limiting resistor be incorporated in the drive circuit, in series with each LED as shown in Circuit A below.

Circuit model B

(A) Recommended circuit.
(B) The brightness of each LED might appear different due to the differences in the I-V characteristics of those LEDs.

6. ESD (Electrostatic Discharge)

Static Electricity or power surge will damage the LED.
Suggestions to prevent ESD damage:

■ Use of a conductive wrist band or anti-electrostatic glove when handling these LEDs.

- All devices, equipment, and machinery must be properly grounded.

■ Work tables, storage racks, etc. should be properly grounded.

- Use ion blower to neutralize the static charge which might have built up on surface of the LED's plastic lens as a result of friction between LEDs during storage and handling.

ESD-damaged LEDs will exhibit abnormal characteristics such as high reverse leakage current, low forward voltage, or " no lightup " at low currents.

To verify for ESD damage, check for " lightup " and Vf of the suspect LEDs at low currents.
The Vf of " good" LEDs should be $>2.0 \mathrm{~V} @ 0.1 \mathrm{~mA}$ for InGaN product and $>1.4 \mathrm{~V} @ 0.1 \mathrm{~mA}$ for AlInGaP product.

Property of Lite-On Only

7. Reliability Test

Classification	Test Item	Test Condition	Reference Standard
Endurance Test	Operation Life	Ta= Under Room Temperature As Per Data Sheet *Test Time $=500 \mathrm{HRS}(-24 \mathrm{HRS},+72 \mathrm{HRS})$.	MIL-STD-750D:1026 MIL-STD-883D:1005 JIS C 7021:B-1
	High Temperature High Humidity Storage	$\mathrm{Ta}=65 \pm 5^{\circ} \mathrm{C}, \mathrm{RH}=90 \sim 95 \%$ *Test Time $=240 \mathrm{HRS} \pm 2$ HRS	MIL-STD-202F:103B JIS C 7021:B-11
	High Temperature Storage	$\begin{aligned} & \mathrm{Ta}=105 \pm 5^{\circ} \mathrm{C} \\ & \text { *Test Time }=500 \mathrm{HRS}(-24 \mathrm{HRS},+72 \mathrm{HRS}) \end{aligned}$	MIL-STD-883D:1008 JIS C 7021:B-10
	Low Temperature Storage	$\begin{aligned} & \mathrm{Ta}=-55 \pm 5^{\circ} \mathrm{C} \\ & * \text { Test Time }=500 \mathrm{HRS}(-24 \mathrm{HRS},+72 \mathrm{H} \text { RS }) \end{aligned}$	JIS C 7021:B-12
Environmental Test	Temperature Cycling	$\begin{aligned} & 105^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \sim-55^{\circ} \mathrm{C} \sim 25^{\circ} \mathrm{C} \\ & 30 \text { mins } \quad \text { 5mins } \quad 30 \mathrm{mins} \quad 5 \mathrm{mins} \\ & 10 \text { Cycles } \end{aligned}$	MIL-STD-202F:107D MIL-STD-750D:1051 MIL-STD-883D:1010 JIS C 7021:A-4
	Thermal Shock	$\begin{aligned} & 85 \pm 5^{\circ} \mathrm{C} \sim-40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \\ & 10 \mathrm{mins} \quad 10 \mathrm{mins} \quad 10 \mathrm{Cycles} \end{aligned}$	MIL-STD-202F:107D MIL-STD-750D:1051 MIL-STD-883D:1011
	Solder Resistance	$\begin{aligned} & \text { T.sol }=260 \pm 5^{\circ} \mathrm{C} \\ & \text { Dwell Time }=10 \pm 1 \text { secs } \end{aligned}$	MIL-STD-202F:210A MIL-STD-750D:2031 JIS C 7021:A-1
	IR-Reflow	Ramp-up rate $\left(217^{\circ} \mathrm{C}\right.$ to Peak) $+3^{\circ} \mathrm{C} /$ second max Temp. maintain at $175(\pm 25)^{\circ} \mathrm{C} \quad 180$ seconds max Temp. maintain above $217^{\circ} \mathrm{C} \quad 60-150$ seconds Peak temperature range $260^{\circ} \mathrm{C}+0 /-5^{\circ} \mathrm{C}$ Time within $5^{\circ} \mathrm{C}$ of actual Peak Temperature (tp) 10-30 seconds Ramp-down rate $+6^{\circ} \mathrm{C} /$ second max	MIL-STD-750D:2031.2 J-STD-020D
	Solderability	T.sol $=235 \pm 5^{\circ} \mathrm{C}$ Immersion time $2 \pm 0.5 \mathrm{sec}$ Immersion rate $25 \pm 2.5 \mathrm{~mm} / \mathrm{sec}$ Coverage $\geqq 95 \%$ of the dipped surface	MIL-STD-202F:208D MIL-STD-750D:2026 MIL-STD-883D:2003 IEC 68 Part 2-20 JIS C 7021:A-2

8. Others

The appearance and specifications of the product may be modified for improvement without prior notice.

9. Suggested Checking List

Training and Certification

1. Everyone working in a static-safe area is ESD-certified?
2. Training records kept and re-certification dates monitored?

Static-Safe Workstation \& Work Areas

1. Static-safe workstation or work-areas have ESD signs?
2. All surfaces and objects at all static-safe workstation and within 1 ft measure less than 100 V ?
3. All ionizer activated, positioned towards the units?
4. Each work surface mats grounding is good?

Personnel Grounding

1. Every person (including visitors) handling ESD sensitive (ESDS) items wears wrist strap, heel strap or conductive shoes with conductive flooring?
2. If conductive footwear used, conductive flooring also present where operator stand or walk?
3. Garments, hairs or anything closer than 1 ft to ESD items measure less than $100 \mathrm{~V} *$?
4. Every wrist strap or heel strap/conductive shoes checked daily and result recorded for all DLs?
5. All wrist strap or heel strap checkers calibration up to date?

Note: $* 50 \mathrm{~V}$ for Blue LED.

Device Handling

1. Every ESDS items identified by EIA-471 labels on item or packaging?
2. All ESDS items completely inside properly closed static-shielding containers when not at static-safe workstation?
3. No static charge generators (e.g. plastics) inside shielding containers with ESDS items?
4. All flexible conductive and dissipative package materials inspected before reuse or recycles?

Others

1. Audit result reported to entity ESD control coordinator?
2. Corrective action from previous audits completed?
3. Are audit records complete and on file?
