

Preliminary User's Manual

NU85ET

32-Bit Microprocessor Core

Hardware

NU85ET NDU85ETV14

Document No. A15015EJ3V0UM00 (3rd edition) Date Published March 2002 N CP(N)

© NEC Corporation 2000 Printed in Japan [MEMO]

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

② HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

③ STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

- The information contained in this document is being issued in advance of the production cycle for the device. The parameters for the device may change before final production or NEC Corporation, at its own discretion, may withdraw the device prior to its production.
- Not all devices/types available in every country. Please check with local NEC representative for availability and additional information.
- No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
- NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property
 rights of third parties by or arising from use of a device described herein or any other liability arising from use
 of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other
 intellectual property rights of NEC Corporation or others.
- Descriptions of circuits, software, and other related information in this document are provided for illustrative purposes in semiconductor product operation and application examples. The incorporation of these circuits, software, and information in the design of the customer's equipment shall be done under the full responsibility of the customer. NEC Corporation assumes no responsibility for any losses incurred by the customer or third parties arising from the use of these circuits, software, and information.
- While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
- NEC devices are classified into the following three quality grades:

"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

- Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
- Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
- Specific: Aircraft, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.

The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)

Santa Clara, California Tel: 408-588-6000 800-366-9782 Fax: 408-588-6130 800-729-9288

NEC Electronics (Europe) GmbH

Duesseldorf, Germany Tel: 0211-65 03 01 Fax: 0211-65 03 327

• Branch The Netherlands Eindhoven, The Netherlands Tel: 040-244 58 45 Fax: 040-244 45 80

• Branch Sweden Taeby, Sweden Tel: 08-63 80 820 Fax: 08-63 80 388

NEC Electronics (France) S.A. Vélizy-Villacoublay, France Tel: 01-3067-58-00 Fax: 01-3067-58-99

NEC Electronics (France) S.A. Representación en España Madrid, Spain Tel: 091-504-27-87 Fax: 091-504-28-60

NEC Electronics Italiana S.R.L. Milano, Italy Tel: 02-66 75 41 Fax: 02-66 75 42 99

NEC Electronics (UK) Ltd. Milton Keynes, UK Tel: 01908-691-133 Fax: 01908-670-290

NEC Electronics Hong Kong Ltd. Hong Kong Tel: 2886-9318 Fax: 2886-9022/9044

NEC Electronics Hong Kong Ltd. Seoul Branch Seoul, Korea Tel: 02-528-0303 Fax: 02-528-4411

NEC Electronics Singapore Pte. Ltd.

Novena Square, Singapore Tel: 253-8311 Fax: 250-3583

NEC Electronics Taiwan Ltd. Taipei, Taiwan Tel: 02-2719-2377 Fax: 02-2719-5951

NEC do Brasil S.A.

Electron Devices Division Guarulhos-SP, Brasil Tel: 11-6462-6810 Fax: 11-6462-6829

J01.12

Major Revisions in This Edition

Pages	Description	
p.25	Addition of Notes in 2.1 List of Pin Functions	
p.28	Change of IDBR2 to IDBR0 and EXHLT to NEC reserved pins in 2.1 List of Pin Functions	
p.31	Addition of description in 2.2.2 (3) VAPREQ	
p.34	Addition of description in 2.2.2 (17) VMLAST, VSLAST	
p.34	Addition of description in 2.2.2 (18) VMAHLD, VSAHLD	
p.35	Addition of description in 2.2.2 (20) VBDC	
p.35	Addition of description in 2.2.2 (21) VBDV	
pp.35, 36	Addition of description in 2.2.3 (1) RESETZ Addition of Figure 2-2	
p.45	Change of IDBR2 to IDBR0 and EXHLT to NEC reserved pins in 2.2.11 (14)	
pp.51, 52	Addition of Notes in 2.3 Recommended Connection of Unused Pins	
p.141	Addition of 5.5 Precautions	
pp.144, 145	Addition of Remarks 4 and 5 in 6.2.1 Power save control register (PSC)	
p.148	Addition of Remark in Table 6-3 Operation After Setting Software STOP Mode in Interrupt Servicing Routine	
p.151	Addition of <4> and Remark in 6.6 (1) (b) When canceling software STOP mode	
p.153	Addition of Remark in 6.6 (2) (b) When canceling hardware STOP mode	
p.163	Addition of Caution in Figure 7-6 DMA Addressing Control Registers 0 to 3 (DADC0 to DADC3)	
p.165	Addition of Caution and descriptions in Figure 7-7 DMA Channel Control Registers 0 to 3 (DCHC0 to DCHC3)	
pp.177, 178	ddition of descriptions in 7.8.5 One-time transfer when executing single transfers using DMARQn gnal	
p.178	ddition of Figure 7-24 Example of Two-Cycle Transfer	
p.179	Addition of descriptions in 7.9.2 Flyby transfer	
p.179	Addition of Figure 7-25 Example of Flyby Transfer (Memory to I/O)	
p.181	Addition of Figure 7-27 Example of Terminal Count Signal Output (DMTCO3 to DMTCO0)	
p.184	Modification of Remark in Figure 7-29 DMA Transfer Forcible Termination Example	
p.209	Modification and Addition of descriptions in 7.15 (3) Intervals related to DMA transfer	
p.210	Addition of descriptions in 7.15 (4) CPU access during DMA transfer	
p.210	Addition of 7.15 (6) DMARQn signal retention and (7) VMLOCK signal	
p.214	Modification of Caution 1 and addition of Caution 2 in 8.2 Non-Maskable Interrupts (NMI)	
p.237	Modification of Figure 9-1 Peripheral Macro Connection Example	
p.238	Deletion of When NPB Peripheral Is Connected and modification in 9.4 (2) Test mode pins	
p.252	Addition of APPENDIX C REVISION HISTORY	

The mark \star shows major revised points.

PREFACE

- **Target Readers** This manual is intended for users who wish to understand the hardware functions of the NU85ET and NDU85ETV14, which are the CPU cores of a cell-based IC (CBIC), to design application systems using the NU85ET or NDU85ETV14.
- Purpose This manual is designed to help users understand the hardware functions of the NU85ET and NDU85ETV14 outlined in Organization below.
- **Organization** This manual describes the hardware functions of the NU85ET and NDU85ETV14. For details about the architecture and instruction functions, refer to the "V850E1 User's Manual Architecture (U14559E)."

The organization of each manual is as follows:

NU85ET User's Manual Hardware (This manual)

- Overview
- CPU function
- Peripheral I/O functions
- Test functions

- Register set
- Instruction format and instruction set
- Interrupts and exceptions

V850E1 User's Manual

Architecture (U14559E)

• Pipeline operation

How to Read This Manual

It is assumed that the readers of this manual have general knowledge of electricity, logic circuits, and microcontrollers.

To gain a general understanding of the hardware functions of the NU85ET and NDU85ETV14 \rightarrow Read this manual according to the **CONTENTS**.

- To confirm details of a function, etc. when the name is known
- \rightarrow Refer to **APPENDIX B INDEX**.

To learn about the details of an instruction function

 \rightarrow Refer to the V850E1 Architecture User's Manual (U14559E).

This document describes the NU85ET as the representative product. When using the NDU85ETV14, read NU85ET as NDU85ETV14.

Conventions Data significance: Higher digits on the left and lower digits on the right Active low representation: xxxZ (Z after pin or signal name) Note: Footnote for item marked with Note in the text Caution: Information requiring particular attention Remark: Supplementary information Numerical representation: Binary ... xxxx or xxxxB Decimal ... xxxx Hexadecimal ... xxxxH Prefix indicating the power of 2 (address space, memory capacity): $\dots 2^{10} = 1,024$ K (kilo) M (mega) ... $2^{20} = 1,024^2$ G (giga) ... $2^{30} = 1,024^{3}$ Word ... 32 bits Data type: Halfword ... 16 bits ... 8 bits Byte

This document describes the NU85ET as the representative product. When using the NDU85ETV14, read NU85ET as NDU85ETV14.

Related Documents

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

- V850E1 Architecture User's Manual (U14559E)
- Memory Controller NU85E, NU85ET User's Manual (A15019E)
- Instruction Cache, Data Cache NU85E, NU85ET User's Manual (A15241E)
- CB-10 Family VX Type NU85E, NU85ET Design Manual (A15401E)
- CB-10 Family VX Type Core Library CPU Core, Peripheral Design Manual (A15133E)
- CB-12 Family L Type Core Library CPU Core, Peripheral Design Manual (A15752E)

The related documents listed above are subject to change without notice. Be sure to use the latest version of each document for designing.

CONTENTS

CHAPT	ER 1 INTRODUCTION	17
1.1	Outline	17
1.2	Application System Example	18
1.3	Features	19
1.4	Symbol Diagram	21
1.5	Function Blocks	22
	1.5.1 Internal block diagram	22
	1.5.2 Internal units	23
1.6	Functional Differences Between NU85ET and NB85ET	24
CHAPT	ER 2 PIN FUNCTIONS	25
2.1	List of Pin Functions	25
2.2	Explanation of Pin Functions	
	2.2.1 NPB pins	
	2.2.2 VSB pins	
	2.2.3 System control pins	
	2.2.4 DMAC pins	
	2.2.5 INTC pins	
	2.2.6 VFB pins	
	2.2.7 VDB pins	
	2.2.8 Instruction cache pins	
	2.2.9 Data cache pins	40
	2.2.10 External INTC pins	42
	2.2.11 DCU pins	45
	2.2.12 Peripheral EVA chip mode pins	46
	2.2.13 Operation mode setting pins	47
	2.2.14 Test mode pins	
2.3	Recommended Connection of Unused Pins	51
2.4	Pin Status	53
CHAPT	ER 3 CPU	
3.1	Features	
3.2	Registers	58
	3.2.1 Program registers	
	3.2.2 System registers	
3.3	Address Space	
	3.3.1 Program area	65
	3.3.2 Data area	
3.4	Areas	68
	3.4.1 ROM area	68
	3.4.2 RAM area	71
	3.4.3 Peripheral I/O area	
	3.4.4 External memory area	
3.5	Peripheral I/O Registers	74

	3.5.1 NU85ET control registers	75
	3.5.2 Memory controller (MEMC) control registers	78
	3.5.3 Instruction cache control registers	79
	3.5.4 Data cache control registers	79
СНАРТ	ER 4 BCU	80
4.1	Features	
4.2	Memory Banks	
4.3	Programmable Chip Select Function	
4.4	Programmable Peripheral I/O Area Selection Function	
4.5	Bus Size Setting Function	
4.6	Endian Setting Function	
	4.6.1 Endian configuration register (BEC)	
	4.6.2 Usage restrictions concerning big endian format with NEC development tools	
4.7	Cache Configuration	96
4.8	BCU-Related Register Setting Examples	97
4.9	Data Transfer Using VSB	100
	4.9.1 Data transfer example	100
	4.9.2 Control signals output by bus master	101
	4.9.3 Read/write timing	
	4.9.4 VSB read/write timing example	117
	4.9.5 Reset timing	119
	4.9.6 Bus master transition timing	120
	4.9.7 Misalign access timing	122
СНАРТ	ER 5 BBR	124
5.1	Programmable Peripheral I/O Area	126
5.2	Wait Insertion Function	129
5.3	Retry Function	131
5.4	NPB Read/Write Timing	132
* 5.5	Precautions	141
СНАРТ	ER 6 STBC	142
6.1	Power Save Function	142
6.2	Control Registers	143
	6.2.1 Power save control register (PSC)	143
	6.2.2 Command register (PRCMD)	145
6.3	HALT Mode	146
6.4	Software STOP Mode	147
6.5	Hardware STOP Mode	
6.6	Clock Control in Software/Hardware STOP Mode	150
СНАРТ	ER 7 DMAC	155
7.1	Features	155
7.2	Configuration	156
7.3	Transfer Objects	157
7.4	DMA Channel Priorities	157
7.5	Control Registers	158

	7.5.1	DMA source address registers 0 to 3 (DSA0 to DSA3)	158
	7.5.2	DMA destination address registers 0 to 3 (DDA0 to DDA3)	
	7.5.3	DMA transfer count registers 0 to 3 (DBC0 to DBC3)	162
	7.5.4	DMA addressing control registers 0 to 3 (DADC0 to DADC3)	
	7.5.5	DMA channel control registers 0 to 3 (DCHC0 to DCHC3)	
	7.5.6	DMA disable status register (DDIS)	
	7.5.7	DMA restart register (DRST)	
7.6	Next	Address Setting Function	167
7.7	DMA	Bus State	168
	7.7.1	Bus state types	
	7.7.2	DMAC bus cycle state transitions	
7.8	Trans	fer Modes	171
	7.8.1	Single transfer mode	171
	7.8.2	Single-step transfer mode	
	7.8.3	Line transfer mode	174
	7.8.4	Block transfer mode	
	7.8.5	One-time transfer when executing single transfers using DMARQn signal	
7.9	Trans	fer Types	178
	7.9.1	Two-cycle transfer	
	7.9.2	Flyby transfer	
7.10	DMA	Transfer Start Factors	
7.11	Term	inal Count Output When DMA Transfer Is Complete	
7.12	Forci	ble Interruption	
7.13	Forci	ble Termination	
7.14	DMA	Transfer Timing Examples	
7.15	Preca	utions	209
CHAPTE	ER 8 IN	ITC	211
8.1	Featu	res	211
8.2	Non-I	Maskable Interrupts (NMI)	214
	8.2.1	Operation	217
	8.2.2	Restore	218
8.3	Mask	able Interrupts	219
	8.3.1	Operation	219
	8.3.2	Restore	221
	8.3.3	Maskable interrupt priorities	222
	8.3.4	Control registers	226
	8.3.5	Maskable interrupt status flag (ID)	229
8.4	0.4.	are Exceptions	230
	SOILM		
	Softw 8.4.1	Operation	
		•	230
8.5	8.4.1 8.4.2	Operation	230 231
8.5	8.4.1 8.4.2	Operation Restore	230 231 232
8.5	8.4.1 8.4.2 Exce l	Operation Restore otion Trap	230 231 232 232
8.5	8.4.1 8.4.2 Excej 8.5.1	Operation Restore Dion Trap Illegal opcode	230 231 232 232 233
8.5 8.6	8.4.1 8.4.2 Excej 8.5.1 8.5.2 8.5.3	Operation Restore Detion Trap Illegal opcode Operation	230 231 232 232 233 233

СНАРТЕ	R 9 TEST FUNCTION	235
9.1	Test Pins	235
	9.1.1 Test bus pins (TBI39 to TBI0 and TBO34 to TBO0)	235
	9.1.2 BUNRI and TEST pins	235
	9.1.3 BUNRIOUT pin	236
9.2	List of Test Interface Signals	236
9.3	Example of Connection of Peripheral Macro in Test Mode	237
9.4	Handling of Each Pin in Test Mode	238
CHAPTE	R 10 DCU	239
10.1	Outline of Functions	239
	10.1.1 Debug functions	239
	10.1.2 Trace functions	240
	10.1.3 Event functions	241
10.2	Connection with N-Wire Type IE (IE-70000-MC-NW-A)	242
	10.2.1 IE connector (target system side)	242
	10.2.2 Example of recommended circuit when connecting NU85ET	244
	10.2.3 Precautions when using N-Wire type IE	244
APPEN	DIX A ROM/RAM ACCESS TIMING	245
APPEND	DIX B INDEX	247
	DIX C REVISION HISTORY	252

LIST OF FIGURES (1/3)

Figure No.	Title	Page
2-1	Acknowledgement of RESETZ Signal	
2-2	Stopping VBCLK Oscillation by System Reset	
3-1	List of CPU Registers	59
3-1	Program Counter (PC)	
3-3	Interrupt Source Register (ECR)	
3-4	Program Status Word (PSW)	
3-5	Address Space	
3-6	Program Area	
3-7	Data Area (64 MB Mode)	
3-8	Data Area (256 MB Mode)	
3-9	ROM Area	
3-10	RAM Area	
3-11	Peripheral I/O Area	
-		-
4-1	Chip Area Select Control Register 0 (CSC0)	
4-2	Chip Area Select Control Register 1 (CSC1)	
4-3	CSC0 and CSC1 Register Setting Example (64 MB Mode)	
4-4	CSC0 and CSC1 Register Setting Example (256 MB Mode)	
4-5	Peripheral I/O Area and Programmable Peripheral I/O Area	
4-6	Peripheral I/O Area Select Control Register (BPC)	91
4-7	Bus Size Configuration Register (BSC)	
4-8	Endian Configuration Register (BEC)	93
4-9	Word Data Little Endian Format Example	94
4-10	Word Data Big Endian Format Example	94
4-11	Cache Configuration Register (BHC)	96
4-12	BPC, BSC, BEC, BHC Register Setting Example	97
4-13	Example of Data Transfer Using VSB	
4-14	Read/Write Timing of Bus Slave Connected to VSB	
4-15	VSB Timing Example	
4-16	Reset Timing	
4-17	Bus Master Transition Timing	
4-18	Misalign Access Timing	
5-1	NPB Connection Overview	
5-2	NU85ET and Peripheral Macro Connection Example	
5-3	Peripheral I/O Area and Programmable Peripheral I/O Area	
5-4	Peripheral I/O Area Select Control Register (BPC)	
5-5	BPC Register Setting Example	
5-6	NPB Strobe Wait Control Register (VSWC)	
5-7	Retry Function	
5-8	Halfword Access Timing	
5-9	Timing of Byte Access to Odd Address	
5-10	Timing of Byte Access to Even Address	
5-11	Read Modify Write Timing	

LIST OF FIGURES (2/3)

Figure No.	Title	<u>Page</u>
5-12	Retry Timing (Write)	134
5-13	Retry Timing (Read)	135
5-14	Read/Write Timing of Bus Slave Connected to NPB	136
5-15	NPB Write Timing (Example of Timing of Data Write to CSC0 and CSC1 Registers)	140
6-1	Power Save Function State Transition Diagram	142
6-2	Power Save Control Register (PSC)	143
6-3	Command Register (PRCMD)	145
6-4	Connection of NU85ET and Clock Controller	150
6-5	Software STOP Mode Set/Cancel Timing Example	152
6-6	Hardware STOP Mode Set/Cancel Timing Example	154
7-1	DMA Source Address Registers 0H to 3H (DSA0H to DSA3H)	158
7-2	DMA Source Address Registers 0L to 3L (DSA0L to DSA3L)	159
7-3	DMA Destination Address Registers 0H to 3H (DDA0H to DDA3H)	160
7-4	DMA Destination Address Registers 0L to 3L (DDA0L to DDA3L)	161
7-5	DMA Transfer Count Registers 0 to 3 (DBC0 to DBC3)	162
7-6	DMA Addressing Control Registers 0 to 3 (DADC0 to DADC3)	163
7-7	DMA Channel Control Registers 0 to 3 (DCHC0 to DCHC3)	165
7-8	DMA Disable Status Register (DDIS)	166
7-9	DMA Restart Register (DRST)	166
7-10	Buffer Register Configuration	167
7-11	DMAC Bus Cycle State Transition Diagram	170
7-12	Single Transfer Example 1	171
7-13	Single Transfer Example 2	171
7-14	Single Transfer Example 3	172
7-15	Single Transfer Example 4	172
7-16	Single-Step Transfer Example 1	173
7-17	Single-Step Transfer Example 2	173
7-18	Line Transfer Example 1	174
7-19	Line Transfer Example 2	174
7-20	Line Transfer Example 3	175
7-21	Line Transfer Example 4	175
7-22	Block Transfer Example	176
7-23	One-Time Transfer When Executing Single Transfers Using DMARQn Signal	177
7-24	Example of Two-Cycle Transfer	178
7-25	Example of Flyby Transfer (Memory to I/O)	179
7-26	Timing Example of Terminal Count Signals (DMTCO3 to DMTCO0)	181
7-27	Example of Terminal Count Signal Output (DMTCO3 to DMTCO0)	181
7-28	DMA Transfer Forcible Interruption Example	182
7-29	DMA Transfer Forcible Termination Example	183
7-30	Example of Two-Cycle Single Transfer Timing (Between External SRAMs Connected to NT85E500)	186
7-31	Example of Two-Cycle Single-Step Transfer Timing	
	(Between External SRAMs Connected to NT85E500)	188
7-32	Example of Two-Cycle Line Transfer Timing (Between External SRAMs Connected to NT85E500)	190

LIST OF FIGURES (3/3)

Figure No.	Title	Page
7-33	Example of Two-Cycle Block Transfer Timing (Between External SRAMs Connected to NT85	5E500)192
7-34	Example of Two-Cycle Single Transfer Timing	
	(from RAM Connected to VDB to SDRAM Connected to NT85E502)	
7-35	Example of Two-Cycle Single Transfer Timing	
	(from SDRAM Connected to NT85E502 to RAM Connected to VDB)	
7-36	Example of Flyby Single Transfer Timing	
	(from External SRAM to External I/O Connected to NT85E500)	
7-37	Example of Flyby Single-Step Transfer Timing	
	(from External SRAM to External I/O Connected to NT85E500)	200
7-38	Example of Flyby Single-Step Transfer Timing	
	(from External I/O to External SRAM Connected to NT85E500)	202
7-39	Example of Flyby Line Transfer Timing	
	(from External SRAM to External I/O Connected to NT85E500)	204
7-40	Example of Flyby Block Transfer Timing	
	(from External SRAM to External I/O Connected to NT85E500)	206
7-41	Example of Flyby Block Transfer Timing	
	(from External I/O to External SRAM Connected to NT85E500)	208
8-1	Example of Non-Maskable Interrupt Request Acknowledgement Operation	215
8-2	Non-Maskable Interrupt Processing Format	217
8-3	RETI Instruction Processing Format	218
8-4	Maskable Interrupt Processing Format	220
8-5	RETI Instruction Processing Format	221
8-6	Servicing Example in Which Another Interrupt Request Is Issued During Interrupt Servicing	223
8-7	Servicing Example for Simultaneously Issued Interrupt Requests	
8-8	Interrupt Control Registers 0 to 63 (PIC0 to PIC63)	226
8-9	Interrupt Mask Registers 0 to 3 (IMR0 to IMR3)	227
8-10	In-Service Priority Register (ISPR)	228
8-11	Program Status Word (PSW)	229
8-12	Software Exception Processing Format	230
8-13	RETI Instruction Processing Format	231
8-14	Illegal Opcode	
8-15	Exception Trap Processing Format	
8-16	Example of Pipeline Operation When Interrupt Request Is Acknowledged (Outline)	234
9-1	Peripheral Macro Connection Example	237
10-1	N-Wire Type IE Connection	242
10-2	IE Connector Pin Layout Diagram (Target System Side)	242
10-3	Example of Recommended Circuit for IE Connection (NU85ET)	244
A-1	ROM Access Timing	245
A-2	RAM Access Timing	246

LIST OF TABLES

Table No.	Title	Page
2-1	VMTTYP1 and VMTTYP0 Signals	
2-2	VMBENZ3 to VMBENZ0 and VSBENZ1 Signals	
2-3	VMSIZE1 and VMSIZE0 Signals	
2-4	VMCTYP2 to VMCTYP0 Signals	
2-5	VMSEQ2 to VMSEQ0 Signals	
2-6	IRAMWR3 to IRAMWR0 Signals	
2-7	IDDRRQ, IDDWRQ, IDSEQ4, and IDSEQ2 Signals	
2-8	EINTLV6 to EINTLV0 Signals	
2-9	List of Interrupts from External INTC	
2-10	IFIRA64, IFIRA32, and IFIRA16 Signals	
2-11	IFINSZ1 and IFINSZ0 Signals	
2-12	Pin Status in Each Operating Mode	53
3-1	List of Program Registers	
3-2	List of System Registers	61
3-3	Interrupt/Exception Table	69
3-4	RAM Area Size Settings	71
4-1	VMTTYP1 and VMTTYP0 Signals	
4-2	VMCTYP2 to VMCTYP0 Signals	
4-3	VMBENZ3 to VMBENZ0 Signals	
4-4	VMSIZE1 and VMSIZE0 Signals	
4-5	VMSEQ2 to VMSEQ0 Signals	
4-6	VMWAIT, VMAHLD, and VMLAST Signals	
4-7	VBDC and VBDV Signals	
5-1	Setting of Setup Wait, VPSTB Wait Lengths at Each Operation Frequency	130
6-1	Operation After HALT Mode Is Canceled by Interrupt Request	
6-2	Operation After Software STOP Mode Is Canceled by Interrupt Request	
6-3	Operation After Setting Software STOP Mode in Interrupt Servicing Routine	148
6-4	Status After Cancellation of Hardware STOP Mode	
7-1	Relationships Between Transfer Type and Transfer Object	
7-2	Relationships Between Wait Function and Transfer Object	157
8-1	Interrupt/Exception List	211
9-1	List of Test Mode Settings	235
10-1	IE Connector Pin Functions (Target System Side)	243

CHAPTER 1 INTRODUCTION

The NU85E Family consists of an on-chip 32-/16-bit RISC type, the V850E1 CPU, and peripheral I/Os, and is a group of CPU cores designed for embedding in ASICs. The V850E1 can execute almost all instructions in 1 clock through 5-stage pipeline control based on the RISC architecture. Furthermore, the NU85E Family also includes 2 types of external bus interfaces for connection to high- and low-speed peripheral I/Os, as well as functions to interface with ROM, RAM, an instruction cache, and a data cache. This product, the "NU85ET", is a CPU core that has peripheral I/O functions such as a DMA controller and an interrupt controller, as well as interface functions with an external interrupt controller and debug controller through which on-chip debugging can be realized using the NU85ET unit.

1.1 Outline

(1) V850E1 CPU

The NU85ET is equipped with the V850E1, which is a RISC-type CPU that utilizes a five-stage pipeline technique. Two-byte basic instructions and instructions for high-level language support increase the efficiency of object code generated by the C compiler and reduce the program size.

In addition, to increase the speed of multiplication processing, the NU85ET contains an on-chip high-speed hardware multiplier capable of executing 32-bit × 32-bit operations.

(2) Bus interfaces

The NU85ET provides the following two types of bus interfaces for connection with peripheral macros or user logic.

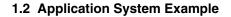
- V850E system bus (VSB)
- NEC peripheral I/O bus (NPB)

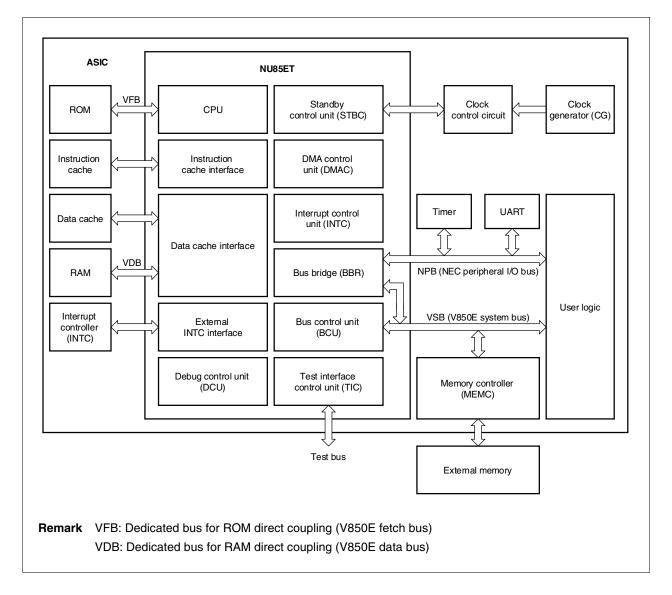
The VSB, which is synchronized with the system clock, is the bus to be used for connection with high-speed peripheral macros such as a memory controller (MEMC) or macros operating as the bus master (DMAC, DSP, etc.).

The NPB, which operates asynchronously to the system clock, is to be used for connection with relatively lowspeed peripheral macros such as a timer or asynchronous serial interface (UART).

A V850E fetch bus (VFB), which can be directly coupled with ROM, and a V850E data bus (VDB), which can be directly coupled with RAM, are also provided.

In addition, since the NU85ET contains on-chip dedicated interfaces for the instruction cache, data cache, and external interrupt controller, each macro can be directly coupled.


(3) On-chip peripheral I/O


The NU85ET contains an on-chip DMA control unit (DMAC) for controlling DMA transfers, an on-chip interrupt control unit (INTC) for controlling interrupt requests, and an on-chip standby control unit (STBC) for controlling the power save function.

(4) Debug control function

The NU85ET contains an on-chip debug control unit (DCU), that is comprised of three function units: a run control unit (RCU) for realizing communication using JTAG^{Note} and debug processing, a trace control unit (TRCU) for realizing trace functions, and a trigger event unit (TEU) for realizing event detection functions.

Note Although the specifications of JTAG serial communication are utilized, the boundary scan function is not supported.

Caution In this manual, representations related to the memory connected to the NU85ET are unified as follows.

- RAM: NU85ET direct-coupled RAM (connected to the VDB)
- ROM: NU85ET direct-coupled ROM (connected to the VFB)
- External memory: RAM or ROM connected via the memory controller (MEMC) (connected via the VSB)

1.3 Features

- Number of instructions 83
- General-purpose registers 32 bits × 32 registers
- Instruction set
 Upwardly compatible with V850 CPU Signed multiplication (32 bits × 32 bits → 64 bits)
 Saturated calculation instructions (with overflow/underflow detection function) 32-bit shift instructions: 1 clock
 Bit manipulation instructions
 Load/store instructions with long/short format
 Signed load instructions
- Memory space Program area: 64 MB linear address space
 Data area: 4 GB linear address space
 Memory bank division function: 2, 4, or 8 MB/bank

· External bus interface

VSB (V850E system bus)

- Address/data separated bus (28-bit address^{Note}/32-bit data bus)
- Data I/O separated bus
- 32-/16-/8-bit bus sizing function
- Bus hold function
- External wait function
- Endian switching function

NPB (NEC peripheral I/O bus)

- Address/data separated bus (14-bit address/16-bit data bus)
- Data I/O separated bus
- Programmable wait function
- Retry function

Note 14-bit address bus when functioning as bus slave

Interrupt/exception control functions

Non-maskable interrupts: 3 sources

Maskable interrupts^{Note}

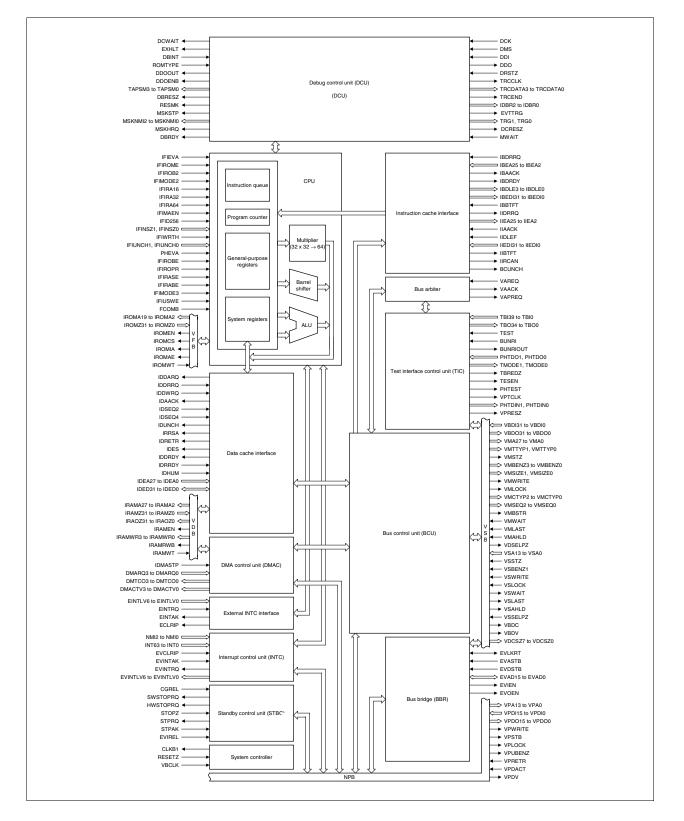
- When internal INTC is used: 64 sources
- When external INTC is used: 117 sources (max.)

Exceptions: 1 source

Eight levels of priorities can be set (maskable interrupts)

Note When the number of maskable interrupt sources required for the system exceeds 64, connect the interrupt controller (INTC) externally (a maximum of 117 sources of maskable interrupts can be supported).

- DMA control function


 4-channel configuration
 Transfer units: 8-bit, 16-bit, or 32-bit
 Maximum transfer count: 65,536 (2¹⁶)
 Transfer types: Flyby (1-cycle) transfer or 2-cycle transfer
 Transfer modes: Single transfer, single-step transfer, line transfer, or block transfer
 Terminal count output signals (DMTCO3 to DMTCO0)
- Power save function HALT mode
 Software STOP mode
 Hardware STOP mode
- Debug control function CPU break Trace (PC trace (branch trace), data access trace) Event detection (execution address, access address trace), access data, range (size comparison), four-stage sequential execution)

1.4 Symbol Diagram

. [
in —— in ——		IBDRRQ in EA (25:2) in
out		IBAACK out
out		IBDRDY out
in ——		DLE (3:0) out
in ——		DI (31:0) out IBBTFT in
in —— in ——		IBBTFT in IIDRRQ out
in ——		EA (25:2) out
in ——		IIAACK in in
in ——	IFIRA64	IIDLEF in
in ——		DI (31:0) in
in —— in ——C	IFID256 IFINSZ (1:0)	IIBTFT out IIRCAN out
in —		SCUNCH out
in ——		VAACK out
in ——		VAREQ in
in ——		/APREQ out
in —— in ——		DI (31:0) in IO (31:0) out
in ——		IA (27:0) out
in ——		YP (1:0) out
in ——		VMSTZ — out
in		NZ (3:0) O- out
out —— in ——		IZE (1:0) out MWRITE out
in —		/MLOCK out
out		TYP (2:0) out
in ——	IDSEQ2 VMSI	EQ (2:0) out
in ——		/MBSTR out
out —		VMWAIT in VMLAST in
out out		VMLAST —— in /MAHLD —— in
out —		DSELPZ O- out
out		SA (13:0) in
in ——	IDRRDY	VSSTZ D— in
in —— in ——		SBENZ1 D- in SWRITE - in
in/out		/SLOCK in
out		VSWAIT out
in —O		VSLAST out
out —		VSAHLD out
out out	IROMCS VS IROMIA	SSELPZ D- in VBDC - out
out —	IROMAE	VBDV out
in ——		SZ (7:0) — out
out		EVASTB in
in —O		EVDSTB in
out —C out —	IRAOZ (31:0) EVA IRAMEN EVA	AD (15:0) in/out EVIEN out
out		EVOEN out
out —		EVLKRT in/out
in ——		EVIREL in
in ——		EVCLRIP in EVINTAK in
in —— in ——		EVINTAK — in VINTRQ — out
in ——		rLV (6:0) out
out	DMTCO (3:0) F	RESETZ — in
out —		VBCLK in
out ——	VPA (13:0)	CLKB1 out
in —— out ——	VPDI (15:0) VPDO (15:0)	DCK in DMS in
out	VPWRITE	DDI in
out —	VPSTB	DDO out
out —		DRSTZ O- in
out —C in —	VPUBENZ TI VPRETR TRCDAT	TA (3:0) Out
in ——		RCEND out
out		BR (2:0) out
in ——		VTTRG out
out —		RG (1:0) out
out —— in ——C		ICRESZ D- out MWAIT - in
out —		
in —		EXHLT out
out —		DBINT in
out —		MTYPE in DOOUT out
out —C out —		DOOUT - out ISKHRQ - out
out —		DBRDY out
		VMI (2:0) out
	TBI TBO BUNRI PHTDO TMODE PHTDIN (39:0) (34:0) TEST BUNRI OUT (1:0) (1:0) TBREDZ TESEN PHTEST VPTCLK (1:0) V	/PRESZ
l		_
		 aut
	in out in in out in out out out out out out	out

1.5 Function Blocks

1.5.1 Internal block diagram

1.5.2 Internal units

(1) CPU

The CPU uses five-stage pipeline control to enable single-clock execution of address calculations, arithmetic and logic operations, data transfers, and almost all other instruction processing.

Other dedicated on-chip hardware, such as a hardware multiplier that enables high-speed processing of 32-bit \times 32-bit multiplication and a barrel shifter, help accelerate the processing of complex instructions (See **CHAPTER 3 CPU**).

(2) BCU

The bus control unit (BCU), which operates as a bus master on the VSB, controls the on-chip bus bridge (BBR), test interface control unit (TIC), and peripheral macros (bus slaves) such as the memory controller (MEMC) connected to the VSB (See **CHAPTER 4 BCU**).

(3) BBR

The bus bridge (BBR) converts signals for the VSB to signals for the NPB.

The BBR sets up the wait insertion function and retry function for peripheral macros connected to the NPB (See **CHAPTER 5 BBR**).

(4) STBC

The standby control unit (STBC) controls the external clock generator (CG) when the power save function (HALT mode, software STOP mode, or hardware STOP mode) is executed (See **CHAPTER 6 STBC**).

(5) DMAC

The DMA control unit (DMAC) is a four-channel control unit that controls data transfers between memory and peripheral macros or between memory and memory based on DMA transfer requests issued via the DMARQ3 to DMARQ0 pins or software triggers (See **CHAPTER 7 DMAC**).

(6) INTC

The interrupt control unit (INTC) processes various types of interrupt requests (See CHAPTER 8 INTC).

(7) TIC

The test interface control unit (TIC) is used for test function control. When the TIC is set to test mode, test control signals become effective (See **CHAPTER 9 TEST FUNCTION**).

(8) DCU

The debug control unit (DCU) is equipped with an RCU (run control unit), TRCU (trace control unit), and TEU (trigger event unit) (See **CHAPTER 10 DCU**).

(9) Bus arbiter

The bus arbiter receives bus control requests from multiple bus masters and arbitrates bus access rights.

1.6 Functional Differences Between NU85ET and NB85ET

	Item	NU85ET	NB85ET
VSB data bus (n = 31 to 0)		VBDIn (input), VBDOn (output)	VBDn (I/O)
VSB master/slave control pins		VMA27 to VMA0 (output)	VBA27 to VBA0 (I/O)
		VSA13 to VSA0 (input)	
		VMTTYP1, VMTTYP0 (output)	VBTTYP1, VBTTYP0 (I/O)
		VMSTZ (output)	VBSTZ (I/O)
		VSSTZ (input)	
		VMBENZ3 to VMBENZ0 (output)	VBBENZ3 to VBBENZ0 (I/O)
		VSBENZ1 (input)	
		VMSIZE1, VMSIZE0 (output)	VBSIZE1, VBSIZE0 (I/O)
		VMWRITE (output)	VBWRITE (I/O)
		VSWRITE (input)	
		VMLOCK (output)	VBLOCK (I/O)
		VSLOCK (input)	
		VMCTYP2 to VMCTYP0 (output)	VBCTYP2 to VBCTYP0 (I/O)
		VMSEQ2 to VMSEQ0 (output)	VBSEQ2 to VBSEQ0 (I/O)
		VMBSTR (output)	VBBSTR (I/O)
		VMWAIT (input)	VBWAIT (I/O)
		VSWAIT (output)	
		VMLAST (input)	VBLAST (I/O)
		VSLAST (output)	
		VMAHLD (input)	VBAHLD (I/O)
		VSAHLD (output)	
		VDSELPZ (output)	VDSELPZ (I/O)
		VSSELPZ (input)	
		VDCSZ7 to VDCSZ0 (output)	VDCSZ7 to VDCSZ0 (I/O)
NPB data bus ((n = 15 to 0)	VPDIn (input), VPDOn (output)	VPDn (I/O)
NPB data outpo	ut bus control output pin	VPDV	(None)
VSB data outpu	ut bus control output pin	VBDV	(None)
Bus access rig	ht request output pin	VAPREQ	(None)
Test mode stat	us output pin	BUNRIOUT	(None)
I/O timing	VBDn (n = 31 to 0)	VBDIn, VBDOn	VBDn
	VxTTYPn (n = 1, 0)	VMTTYPn	VBTTYPn
	VxWAIT, VxLAST, VxAHLD	VMWAIT, VMLAST, VMAHLD, VSWAIT, VSLAST, VSAHLD	VBWAIT, VBLAST, VBAHLD
Pin status at reset, duringVxA27 to VxA0, VxSIZE1, VxSIZE0, VxSEQ2 to VxSEQ0, VBD31 to VBD0		Low-level output (VMA27 to VMA0, VMSIZE1, VMSIZE0, VMSEQ2 to VMSEQ0, VBDO31 to VBDO0)	Undefined (VBA27 to VBA0, VBSIZE1, VBSIZE0, VBSEQ2 to VBSEQ0, VBD31 to VBD0)

CHAPTER 2 PIN FUNCTIONS

2.1 List of Pin Functions

 \star

* * *

 \star

	Pin Name	I/O	Function
NPB pins	VPA13 to VPA0	Output	Address output for peripheral macro connected to NPB
	VPDI15 to VPDI0 ^{Note}	Input	Data input from peripheral macro connected to NPB
	VPDO15 to VPDO0	Output	Data output to peripheral macro connected to NPB
	VPWRITE	Output	Write access strobe output
	VPSTB	Output	Data strobe output
	VPLOCK	Output	Bus lock output
	VPUBENZ	Output	Upper byte enable output
		Input	Retry request input from peripheral macro connected to NPB
	VPDACT	Input	Active level input from external address decoder
	VPDV	Output	Data output (VPDO15 to VPDO0) control output
VSB pins	VAREQ	Input	Bus access right request input from external bus master
	VAACK	Output	Bus access right acknowledge output
	VAPREQ	Output	Bus access right request output from internal bus master (CPU, DMAC)
	VBDI31 to VBDI0 ^{Note}	Input	Data input from macro connected to VSB
	VBDO31 to VBDO0	Output	Data output to macro connected to VSB
	VMA27 to VMA0	Output	Address output to macro connected to VSB
	VMTTYP1, VMTTYP0	Output	Bus transfer type output
	VMSTZ	Output	Transfer start output
	VMBENZ3 to VMBENZ0	Output	Byte enable output
	VMSIZE1, VMSIZE0	Output	Transfer size output
	VMWRITE	Output	Read/write status output
	VMLOCK	Output	Bus lock output
	VMCTYP2 to VMCTYP0	Output	Bus cycle status output
	VMSEQ2 to VMSEQ0	Output	Sequential status output
	VMBSTR	Output	Burst read status output
	VMWAIT ^{Note}	Input	Wait response input
	VMLAST ^{Note}	Input	Last response input
	VMAHLD ^{Note}	Input	Address hold response input
	VDSELPZ	Output	Peripheral I/O area access status output
	VSA13 to VSA0 ^{Note}	Input	Address input from macro connected to VSB
	VSSTZ	Input	Transfer start input
	VSBENZ1	Input	Byte enable input
	VSWRITE	Input	Read/write status input

Note Connected internally to bus holder.

	Pin Name	I/O	Function
VSB pins	VSLOCK	Input	Bus lock input
	VSWAIT	Output	Wait response output
	VSLAST	Output	Last response output
	VSAHLD	Output	Address hold response output
	VSSELPZ	Input	Peripheral I/O area access status input
	VBDC	Output	Data input (VBDI31 to VBDI0) control output
	VBDV	Output	Data output (VBDO31 to VBDO0) control output
	VDCSZ7 to VDCSZ0	Output	Chip select output
System control	RESETZ	Input	System reset input
pins	VBCLK	Input	Internal system clock input
	CLKB1	Output	Internal system clock output
	CGREL	Input	Clock generator release input
	SWSTOPRQ	Output	Software STOP mode request output to clock generator
	HWSTOPRQ	Output	Hardware STOP mode request output to clock generator
	STOPZ	Input	Hardware STOP mode request input
	STPRQ	Output	Hardware/software STOP mode request output to MEMC
	STPAK	Input	Acknowledge input for STPRQ input of MEMC
DMAC pins	IDMASTP	Input	DMA transfer termination input
	DMARQ3 to DMARQ0	Input	DMA transfer request input
	DMTCO3 to DMTCO0	Output	Terminal count (DMA transfer completion) output
	DMACTV3 to DMACTV0	Output	DMA acknowledge output
INTC pins	NMI2 to NMI0	Input	Non-maskable interrupt request (NMI) input
	INT63 to INT0	Input	Maskable interrupt request input
VFB pins	IROMA19 to IROMA2	Output	ROM address output
	IROMZ31 to IROMZ0	Input	ROM data input
	IROMEN	Output	ROM access enable output
	IROMWT	Input	ROM wait input
	IROMCS	Output	NEC reserved pins (leave open)
	IROMIA	Output	
	IROMAE	Output	
VDB pins	IRAMA27 to IRAMA2	Output	RAM address output
	IRAMZ31 to IRAMZ0	Input	RAM data input
	IRAOZ31 to IRAOZ0	Output	RAM data output
	IRAMEN	Output	RAM access enable output
	IRAMWR3 to IRAMWR0	Output	RAM write enable output
	IRAMRWB	Output	RAM read/write status output
	IRAMWT	Input	RAM wait input
Instruction	IBDRRQ	Input	Fetch request input from instruction cache
cache pins	IBEA25 to IBEA2	Input	Fetch address input from instruction cache

	Pin Name	I/O	Function
Instruction cache pins	IBAACK	Output	Address acknowledge output to instruction cache
	IBDRDY	Output	Data ready output to instruction cache
	IBDLE3 to IBDLE0	Output	Data latch enable output to instruction cache
	IBEDI31 to IBEDI0	Output	Data output to instruction cache
	IBBTFT	Input	NEC reserved pin (input low level)
	IIDRRQ	Output	Fetch request output to instruction cache
	IIEA25 to IIEA2	Output	Fetch address output to instruction cache
	IIAACK	Input	Address acknowledge input from instruction cache
	IIDLEF	Input	Data latch enable input from instruction cache
	IIEDI31 to IIEDI0	Input	Data input from instruction cache
	IIBTFT	Output	Branch target fetch status output to instruction cache
	IIRCAN	Output	Code cancel status output to instruction cache
	BCUNCH	Output	Uncache status output to instruction cache
Data cache	IDDARQ	Output	Read/write access request output to data cache
pins	IDAACK	Output	Acknowledge output
	IDDRRQ	Input	VSB read operation request input to BCU
	IDDWRQ	Input	VSB write operation request input to BCU
	IDSEQ4	Input	Read/write operation type setting input
	IDSEQ2	Input	Read/write operation type setting input
	IRRSA	Output	VDB hold status output
	IDRETR	Output	Read retry request output
	IDUNCH	Output	Uncache status output
	IDES	Output	NEC reserved pin ^{Note 1}
	IDDRDY	Output	Read data ready output
	IDRRDY	Input	Read data ready input from data cache
	IDHUM	Input	Hit under miss-hit read input
	IDEA27 to IDEA0	Input	Address input
	IDED31 to IDED0 ^{Note 2}	I/O	Data input/output
External INTC	EINTLV6 to EINTLV0	Input	Interrupt type input from external INTC
pins	EINTRQ	Input	Interrupt request input from external INTC
	EINTAK	Output	Interrupt acknowledge output to external INTC
	ECLRIP	Output	Interrupt servicing end output to external INTC
DCU pins	DCK	Input	DCU clock input
	DMS	Input	Debug mode select input
	DDI	Input	Debug data input
	DDO	Output	Debug data output
	DRSTZ	Input	DCU reset input

Notes 1. When using the data cache, always connect this pin to the IDES pin of the data cache. Leave open when unused.

2. Connected internally to bus holder.

	Pin Name	I/O	Function
DCU pins	TRCCLK	Output	Trace clock output
	TRCDATA3 to Outpu TRCDATA0		Trace data output
	TRCEND	Output	Trace processing end output
	EVTTRG	Output	Event trigger output
	MWAIT	Input	Wait insertion control input
	DCWAIT	Output	Wait insertion control output
	DBINT	Input	External debug interrupt input
	ROMTYPE	Input	NEC reserved pin (input low level)
	DCRESZ	Output	NEC reserved pin (leave open)
	IDBR2 to IDBR0	Output	
	EXHLT	Output	
	DDOOUT	Output	
	DDOENB	Output	
	TAPSM3 to TAPSM0	Output	
	TRG1, TRG0	Output	
	DBRESZ	Output	
	RESMK	Output	
	MSKSTP	Output	
	MSKNMI2 to MSKNMI0	Output	
	MSKHRQ	Output	
	DBRDY	Output	
Peripheral EVA	EVASTB	Input	Address strobe input
chip mode pins	EVDSTB	Input	Data strobe input
	EVAD15 to EVAD0 ^{№0te}	I/O	Address/data input/output
	EVIEN	Output	EVADn input enable output (n = 15 to 0)
	EVOEN	Output	EVADn output enable output (n = 15 to 0)
	EVLKRT ^{Note}	I/O	Lock/retry input/output
	EVIREL	Input	Standby release input
	EVCLRIP	Input	ISPR clear input
	EVINTAK	Input	Interrupt acknowledge input
	EVINTRQ	Output	Interrupt request output
	EVINTLV6 to EVINTLV0	Output	Interrupt vector output

Note Connected internally to bus holder.

	Pin Name	I/O	(5/s
Operation mode	IFIROME	Input	ROM mapping enable input
setting pins	IFIROB2	Input	ROM area location setting input
	IFIRA64	Input	RAM area size selection input
	IFIRA32	Input	RAM area size selection input
	IFIRA16	Input	RAM area size selection input
	IFIMAEN	Input	Misalign access setting input
	IFID256	Input	Data area setting input
	IFINSZ1, IFINSZ0	Input	VSB data bus size (initial value) selection input
	IFIWRTH	Input	Data cache write-back/write-through mode selection input
	IFIUNCH1	Input	Data cache setting input
	IFIUNCH0	Input	Instruction cache setting input
	PHEVA	Input	Peripheral EVA chip mode setting input
	IFIEVA	Input	External INTC/internal INTC selection input
	IFIROBE	Input	NEC reserved pins (input low level)
	IFIROPR	Input	
	IFIRASE	Input	
	IFIRABE	Input	
	IFIMODE3	Input	
	IFIMODE2	Input	
	IFIUSWE	Input	
	FCOMB	Input	
Test mode pins	TBI39 to TBI0	Input	Input test bus
	TBO34 to TBO0	Output	Output test bus
	TEST	Input	Test bus control input
	BUNRI	Input	Normal/test mode selection input
	BUNRIOUT	Output	Test mode status output
	PHTDO1, PHTDO0 ^{№0®}	Input	Peripheral macro test input
	TESEN	Output	Peripheral macro test enable output
	VPTCLK	Output	Peripheral macro test clock output
	PHTDIN1, PHTDIN0	Output	Peripheral macro test output
	VPRESZ	Output	Peripheral macro reset output
	PHTEST	Output	Peripheral test mode status output
	TMODE1, TMODE0	Output	NEC reserved pins (leave open)
	TBREDZ	Output	

Note Connected internally to bus holder.

2.2 Explanation of Pin Functions

2.2.1 NPB pins

(1) VPA13 to VPA0 (output)

These are pins from which addresses are output to peripheral macros connected to the NPB. They specify the lower 14 bits.

(2) VPDI15 to VPDI0 (input)

These are pins to which data is input from peripheral macros connected to the NPB.

(3) VPDO15 to VPDO0 (output)

These are pins from which data is output to peripheral macros connected to the NPB.

(4) VPWRITE (output)

This is the write access strobe output pin for the VPDO15 to VPDO0 signals. During writing, a high level is output.

(5) VPSTB (output)

This is the data strobe output pin.

(6) VPLOCK (output)

This is the bus lock output pin. If an interrupt request occurs while a read modify write access to the interrupt control register (PICn) is being executed, this pin outputs a bus lock signal to avoid loss of the interrupt request. It outputs a high level during a read modify write access.

Even when an interrupt request occurs, transfer to the PIFn flag of the PICn register is not performed while this signal is outputting a high level (n = 0 to 63).

(7) VPUBENZ (output)

This is the higher byte enable output pin. It outputs a low level during a halfword data access or a byte data access to an odd address.

It outputs a high level during a byte access to an even address.

(8) VPRETR (input)

This is the pin to which retry requests are input from peripheral macros connected to the NPB. If a high level is input to this pin and to the VPDACT pin at the falling edge of the VPSTB signal, the read/write operation is performed again.

(9) VPDACT (input)

This pin, which is an input pin for input from an external address decoder, is used to enable the retry function. When a high level is input, the retry function is enabled.

When a low level is input, any retry request by VPRETR input will be ignored.

(10) VPDV (output)

This is the data output (VPDO15 to VPDO0) control signal output pin. It outputs a high level during writing. To configure a bidirectional data bus, connect this pin to the 3-state buffer enable pin connected to the data bus for data output control.

2.2.2 VSB pins

(1) VAREQ (input)

This is the pin to which bus access right requests are input from an external bus master.

(2) VAACK (output)

This is an output pin for indicating that the bus access right request signal (VAREQ) from an external bus master has been acknowledged.

(3) VAPREQ (output)

This pin outputs bus access right requests from the internal bus master (CPU, DMAC) to the external bus master.

This pin is used when a bus master and a bus arbiter exist externally, to perform output to the external bus arbiter. This pin becomes active (1) when a bus access right request is generated, and it becomes inactive (0) when the bus cycle responding to the request has been generated. Its transition to active (1) during the CPU cycle indicates that there is a request from the DMA, and its transition to active (1) during the DMA cycle indicates that there is a request from the CPU.

(4) VBDI31 to VBDI0 (input)

These pins constitute a data input bus for macro connected to the VSB.

(5) VBDO31 to VBDO0 (output)

These pins constitute a data output bus for macro connected to the VSB.

(6) VMA27 to VMA0 (output), VSA13 to VSA0 (input)

These pins constitute an address bus for macro connected to the VSB. The NU85ET uses the VMA27 to VMA0 pins when it has the bus access right, and the VSA13 to VSA0 pins when it operates as a bus slave.

(7) VMTTYP1, VMTTYP0 (output)

These pins output the bus transfer type when the NU85ET has the bus access right.

VMTTYP1	VMTTYP0	Transfer Type
0	0	Address-only transfer (transfer without data processing)
1	0	Non-sequential transfer (single transfer or burst transfer)
1	1	Sequential transfer (transfer in which the address currently being transferred is related to the previously transferred address)
0	1	(Reserved for future function expansion)

Table 2-1. VMTTYP1 and VMTTYP0 Signals

Remark 0: Low level 1: High level

(8) VMSTZ (output), VSSTZ (input)

These are low-level active pins that indicate transfer start.

The NU85ET uses the VMSTZ pin when it has the bus access right, and the VSSTZ pin when it operates as a bus slave.

(9) VMBENZ3 to VMBENZ0 (output), VSBENZ1 (input)

These are low-level active pins that indicate the enabled byte data out of the four data bus (VBDI31 to VBDI0, VBDO31 to VBDO0) parts.

The NU85ET uses the VMBENZ3 to VMBENZ0 pins when it has the bus access right, and the VSBENZ1 pin for the bus bridge (BBR) to generate the VPUBENZ signal when it operates as a bus slave.

Active (Low Level) Signal	Enabled Byte Data
VMBENZ3	VBDI31 to VBDI24, VBDO31 to VBDO24
VMBENZ2	VBDI23 to VBDI16, VBDO23 to VBDO16
VMBENZ1, VSBENZ1	VBDI15 to VBDI8, VBDO15 to VBDO8
VMBENZ0	VBDI7 to VBDI0, VBDO7 to VBDO0

Table 2-2. VMBENZ3 to VMBENZ0 and VSBENZ1 Signals

(10) VMSIZE1, VMSIZE0 (output)

These are pins that output the data transfer size when the NU85ET has the bus access right.

VMSIZE1	VMSIZE0	Data Transfer Size
0	0	Byte (8 bits)
0	1	Halfword (16 bits)
1	0	Word (32 bits)

Table 2-3. VMSIZE1 and VMSIZE0 Signals

Remark 0: Low level 1: High level

1

1

(11) VMWRITE (output), VSWRITE (input)

These are pins that indicate the data transfer direction (read/write status). They become high level during write access.

(Reserved for future function expansion)

The NU85ET uses the VMWRITE pin when it has the bus access right, and the VSWRITE pin when it operates as a bus slave.

(12) VMLOCK (output), VSLOCK (input)

These pins are used to retain the bus access right. These pins are used to prohibit interruption through access from another bus master between the current transfer and the next transfer.

The NU85ET uses the VMLOCK pin when it has the bus access right, and the VSLOCK pin when it operates as a bus slave.

(13) VMCTYP2 to VMCTYP0 (output)

These are pins that output the current bus cycle status when the NU85ET has the bus access right.

VMCTYP2	VMCTYP1	VMCTYP0	Bus Cycle Status
0	0	0	Opcode fetch
0	0	1	Data access
0	1	0	Misalign access ^{Note}
0	1	1	Read modify write access
1	0	0	Opcode fetch of jump address due to branch instruction
1	1	0	DMA 2-cycle transfer
1	1	1	DMA flyby transfer
1	0	1	(Reserved for future function expansion)

Table 2-4. VMCTYP2 to VMCTYP0 Signals

Note Output only when a high level is input to the IFIMAEN pin (misalign access enabled).

Remark 0: Low level 1: High level

(14) VMSEQ2 to VMSEQ0 (output)

These are pins that output the sequential status indicating the transfer size during burst transfer when the NU85ET has the bus access right.

These pins indicate "burst transfer length" at the start of burst transfer, "continuous" during burst transfer, and "single transfer" at the end of burst transfer.

In the following cases, VSB changes to burst transfer and the sequential status indicates "continuous".

- VSB is 8 bits wide and 16-/32-bit data transfer was performed
- VSB is 16 bits wide and 32-bit data transfer was performed
- Refill from instruction/data cache
- 32-bit data transfer to peripheral macro connected to NPB (16-bit data bus width)

Table 2-5.	VMSEQ2 to	VMSEQ0 Signals
------------	-----------	----------------

VMSEQ2	VMSEQ1	VMSEQ0	Sequential Status
0	0	0	Single transfer
0	0	1	Continuous (indicates that the next transfer address is related to the current transfer address)^{\mbox{\tiny Note}}
0	1	0	Continuous 4 times (burst transfer length: 4)
0	1	1	Continuous 8 times (burst transfer length: 8)
1	0	0	Continuous 16 times (burst transfer length: 16)
1	0	1	Continuous 32 times (burst transfer length: 32)
1	1	0	Continuous 64 times (burst transfer length: 64)
1	1	1	Continuous 128 times (burst transfer length: 128)

Note This is output during continuous 2 times, or continuous 4, 8, 16, 32, 64, or 128 times transfer.

Remark 0: Low level 1: High level

(15) VMBSTR (output)

This pin outputs the burst read status indicating that the current transfer is opcode fetch from external ROM when the NU85ET has the bus access right and ROM connected as external memory (accessed via the VSB) is used. This pin operates with the same timing as the address bus.

(16) VMWAIT (input), VSWAIT (output)

These are wait response pins.

These signals are output to the bus master to request additional bus cycles when the selected bus slave has not completed data output preparations. When these signals become high level, the bus cycle changes to the wait status.

The NU85ET uses the VMWAIT pin when it has the bus access right, and the VSWAIT pin when it operates as a bus slave.

If a memory controller (MEMC) is connected to the NU85ET, a high level is output to the VMWAIT pin of the NU85ET from the MEMC while the VSB cycle occurs because the access cycle is always 2 or more clocks.

(17) VMLAST (input), VSLAST (output)

These are last response pins.

These pins are used when the bus decoder requires a decode cycle.

In the case of a system where several slave devices are connected externally and a bus decoder has been added to select slaves, decoding for bus slave selection is normally performed during non-sequential transfer. Thus even when attempts to change a slave device are made during sequential transfer such as burst transfer, the decode cycle for slave selection cannot be issued.

In such a case, the slave device outputs a last response indicating that the slave selection signal has changed to the bus master. When there is a last response from the slave device, the bus master makes the next bus cycle a non-sequential transfer to enable decode cycle issuance.

The NU85ET uses the VMLAST pin when it has the bus access right, and the VSLAST pin when it operates as a bus slave. The VSLAST pin, however, is fixed to low-level output and does not become active.

(18) VMAHLD (input), VSAHLD (output)

These are address hold response pins.

These signals are output to the bus master when the selected bus slave has completed data output preparations and requests the bus cycle. When this signal and the VxWAIT signal become high level, the bus cycle goes into the address hold status.

Since, in the address hold status, addresses do not change even during the data read and write cycles, there is no need to latch addresses and the circuit can thus be kept simple.

The NU85ET uses the VMAHLD pin when it has the bus access right, and the VSAHLD pin when it operates as a bus slave. The VSAHLD pin, however, is fixed to low-level output and does not become active.

If a memory controller (MEMC) is connected to the NU85ET, a high level is output to the NU85ET from the MEMC when an idle state is inserted.

(19) VDSELPZ (output), VSSELPZ (input)

These pins are used to output a low level to the bus slave when the bus master accesses a peripheral I/O area or programmable peripheral I/O area.

The NU85ET uses the VDSELPZ pin when it has the bus access right, and the VSSELPZ pin when it operates as a bus slave.

*

(20) VBDC (output)

*

This is data input (VBDI31 to VBDI0) control signal output pin. This pin outputs a high level during a read cycle and during DMA flyby transfer from the external memory to the I/O. When connecting a bus slave that has an I/O separated data bus and a bidirectional data bus, this pin is connected to the enable pin of the 3-state buffer connected to the data bus for data input control.

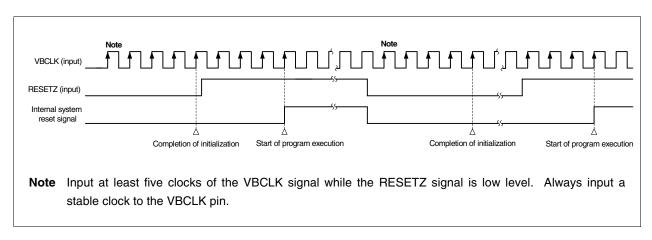
(21) VBDV (output)

This is data output (VBDO31 to VBDO0) control signal output pin. This pin outputs a high level during a write cycle and during DMA flyby transfer from the I/O to the external memory. When configuring a bidirectional data bus, this pin is connected to the enable pin of the 3-state buffer connected to the data bus for data output control.

(22) VDCSZ7 to VDCSZ0 (output)

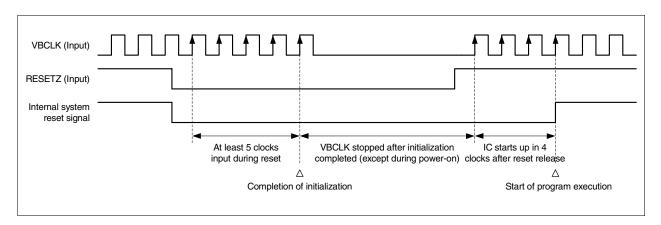
These are low-level active chip select output pins. For details, refer to **4.3** Programmable Chip Select Function.

2.2.3 System control pins


(1) RESETZ (input)

This is the clocked system reset input pin.

When the stable input clock rising edge is detected five times after a low level was input to this pin, the pin statuses and internal signals are completely initialized (The time required until the statuses of the internal signals and each pin are stabilized is 5 clocks or less depending on the pin. Noise elimination is not performed.). Also, when the input clock rising edge is detected four times after this signal has risen from low level to high level, the pipeline is cleared and program execution starts from memory address 0.


In addition to normal initialization and start operations, this pin is used to cancel the power save function.

Caution Be sure to input the RESETZ signal so that the setup and hold times referenced to the VBCLK signal are satisfied.

★ To stop VBCLK oscillation by system reset, input at least five VBCLK clocks after the system reset has become low level to completely initialize the status of the pins related to the CPU and the internal signals, then stop VBCLK oscillation. Unless this restriction is followed, the debugger may not start successfully.

Figure 2-2. Stopping VBCLK Oscillation by System Reset

(2) VBCLK (input)

*

This is the external clock input pin for the internal system clock. A 50% duty stable clock is input from an external clock control circuit.

(3) CLKB1 (output)

This is the internal system clock output pin.

(4) CGREL (input)

This is the release input pin for the external clock generator (CG). An active level (high level) is input upon the start of VBCLK input at least one clock after STOP mode is canceled and the oscillation stabilization time has been secured (it is not necessary to set CGREL input at the same time as VBCLK input).

(5) SWSTOPRQ (output)

This is the pin from which software STOP mode requests are output to the external clock generator (CG). When software STOP mode is set, this pin outputs a high-level signal.

VBCLK input from the CG is stopped by using this signal. When software STOP mode is canceled, this pin outputs a low-level signal.

(6) HWSTOPRQ (output)

This is the pin from which hardware STOP mode requests are output to the external clock generator (CG). When hardware STOP mode is set by STOPZ input, this pin outputs a high-level signal.

VBCLK input from the CG is stopped by using this signal. When hardware STOP mode is canceled, this pin outputs a low-level signal.

(7) STOPZ (input)

This is a hardware STOP mode request input pin. When a low-level signal is input, the NU85ET is set to hardware STOP mode.

(8) STPRQ (output)

This is the pin from which hardware/software STOP mode requests are output to the memory controller (MEMC).

(9) STPAK (input)

This is the pin to which acknowledge signals are input from the memory controller (MEMC) acknowledging the STPRQ signal.

2.2.4 DMAC pins

(1) IDMASTP (input)

This is the DMA transfer forcible interrupt input pin. Input an active level (high level) of two clocks in synchronization with the rising edge of the VBCLK signal.

To restart transfer, set (1) the EN bit of the DRST register after inputting a low level to this pin.

(2) DMARQ3 to DMARQ0 (input)

These are the DMA transfer request input pins.

Input an active level (high level) in synchronization with the rising edge of the VBCLK signal, and continue inputting until the corresponding DMACTVn signal becomes high level (n = 3 to 0).

(3) DMTCO3 to DMTCO0 (output)

These are the terminal count (DMA transfer completion) output pins. A one-clock high level is output from these pins when the final DMA transfer is performed. The high level is output in synchronization with the rising edge of the VBCLK signal.

(4) DMACTV3 to DMACTV0 (output)

These are the DMA acknowledge output pins. These pins become active (high-level output) during a 2-cycle transfer VSB read or VSB write cycle, or during a flyby transfer.

2.2.5 INTC pins

(1) NMI2 to NMI0 (input)

These are the non-maskable interrupt request (NMI) input pins. When a rising edge is input, a non-maskable interrupt is generated.

(2) INT63 to INT0 (input)

These are the maskable interrupt request input pins. When a rising edge is input, a maskable interrupt is generated.

2.2.6 VFB pins

(1) IROMA19 to IROMA2 (output)

These pins constitute a bus from which addresses are output to ROM.

(2) IROMZ31 to IROMZ0 (input)

These pins constitute a bus to which data is input from ROM.

(3) IROMEN (output)

This is the pin from which access enable signals are output to ROM. It changes in synchronization with the falling edge of the VBCLK signal.

(4) IROMWT (input)

This is the pin to which wait signals are input from ROM. A high level is input during the wait period.

(5) IROMCS, IROMIA, IROMAE (output)

These are NEC reserved pins. Leave them open.

2.2.7 VDB pins

(1) IRAMA27 to IRAMA2 (output)

These pins constitute a bus from which addresses are output to RAM. The IRAMA27 to IRAMA16 signals are output for the data cache. Therefore, they do not have to be decoded when RAM is connected.

(2) IRAMZ31 to IRAMZ0 (input)

These pins constitute a bus to which data is input from RAM.

(3) IRAOZ31 to IRAOZ0 (output)

These pins constitute a bus from which data is output to RAM.

(4) IRAMEN (output)

This is the pin from which access enable signals are output to RAM. It changes in synchronization with the falling edge of the VBCLK signal.

(5) IRAMWR3 to IRAMWR0 (output)

These are the pins from which write enable signals are output to RAM. They are high-level active pins that indicate the enabled byte data among the output data bus pins (IRAOZ31 to IRAOZ0).

Active (High-Level Output) Signal	Enabled Byte Data
IRAMWR0	IRAOZ7 to IRAOZ0
IRAMWR1	IRAOZ15 to IRAOZ8
IRAMWR2	IRAOZ23 to IRAOZ16
IRAMWR3	IRAOZ31 to IRAOZ24

Table 2-6. IRAMWR3 to IRAMWR0 Signals

(6) IRAMRWB (output)

This is the pin from which the read/write status is output to RAM. During reading, a high-level signal is output. During writing, a low-level signal is output.

(7) IRAMWT (input)

This is the pin to which wait signals are input from the data cache. A high level is input during the wait period.

2.2.8 Instruction cache pins

(1) IBDRRQ (input)

This is the pin to which fetch requests are input from the instruction cache. A request signal is input which fetches data from the external memory to the NU85ET.

(2) IBEA25 to IBEA2 (input)

These pins constitute a bus to which fetch addresses are input from the instruction cache. Upon a miss-hit, the address to be read is input from the instruction cache.

(3) IBAACK (output)

This is the pin from which address acknowledgements are output to the instruction cache. This signal is output when the NU85ET recognizes the IBEA25 to IBEA2 signals input from the instruction cache.

(4) IBDRDY (output)

This is the pin from which data ready signals are output to the instruction cache. Upon an instruction cache miss-hit, when the NU85ET has finished fetching the data to be read from the external memory, this signal is output to indicate that a refill for the instruction cache is ready.

(5) IBDLE3 to IBDLE0 (output)

These are the pins from which data latch enable signals are output to the instruction cache.

(6) IBEDI31 to IBEDI0 (output)

These pins constitute a bus from which data is output to the instruction cache. Upon an instruction cache miss-hit, the data to be refilled is output to the instruction cache.

(7) IBBTFT (input)

This is an NEC reserved pin. Always input a low level.

Note that the IBBTFT pin of the connected instruction cache should be left open when using the instruction cache.

(8) IIDRRQ (output)

This is the pin from which fetch requests are output to the instruction cache.

(9) IIEA25 to IIEA2 (output)

These pins constitute a bus from which fetch addresses are output to the instruction cache. The address to be fetched is output from the external memory simultaneous with the fetch request (IIDRRQ).

(10) IIAACK (input)

This is the pin to which address acknowledgements are input from the instruction cache. This signal is input to the NU85ET when the instruction cache recognizes the fetch address signals (IIEA25 to IIEA2) input from the NU85ET.

(11) IIDLEF (input)

This is the pin to which data latch enable signals are input from the instruction cache.

(12) IIEDI31 to IIEDI0 (input)

These pins constitute a bus to which data is input from the instruction cache. The data to be read is input from the instruction cache.

(13) IIBTFT (output)

This is the pin from which the branch target fetch status is output to the instruction cache. A high level is output when a jump destination address is fetched due to a branch instruction.

(14) IIRCAN (output)

This is the pin from which the code cancel status is output to the instruction cache. This signal cancels previous requests when data becomes unwanted due to a branch or interrupt after the NU85ET outputs a fetch request to the instruction cache.

(15) BCUNCH (output)

This is the pin from which the uncache status is output to the instruction cache. A low level is output when the area in which the instruction cache setting has been set to cache-enable using the cache configuration register (BHC) is accessed.

2.2.9 Data cache pins

(1) IDDARQ (output)

This is the pin from which read/write access requests are output to the data cache.

(2) IDAACK (output)

This is the pin from which acknowledgements are output to the data cache. This signal is output when the NU85ET recognizes the IDEA27 to IDEA0 signals input from the data cache.

(3) IDDRRQ, IDDWRQ, IDSEQ4, IDSEQ2 (input)

These are the pins to which the operation type settings are input from the data cache.

IDDRRQ	IDDWRQ	IDSEQ4	IDSEQ2	Operation Type
1	0	1	0	4-word sequential read
1	0	0	1	2-word sequential read
1	0	0	0	1-word read
0	1	1	0	4-word sequential write
0	1	0	1	2-word sequential write
0	1	0	0	1-word write
1	1	1	1	1-word write
1	1	1	0	1-halfword write
1	1	0	0	1-byte write
Other than	above			Setting prohibited

Table 2-7. IDDRRQ, IDDWRQ, IDSEQ4, and IDSEQ2 Signals

Remark 0: Low-level input 1: High-level input

(a) IDDRRQ (input)

This is a pin to which VSB read operation requests are input to the BCU.

(b) IDDWRQ (input)

This is a pin to which VSB write operation requests are input to the BCU.

(c) IDSEQ4 (input)

This is a pin to which the read/write operation type settings are input.

(d) IDSEQ2 (input)

This is a pin to which the read/write operation type settings are input.

(4) IRRSA (output)

This is the pin from which the VDB hold status is output to the data cache. An active level (high level) is output when the VDB is accessing RAM or is in the hold state.

(5) IDRETR (output)

This is the pin from which read retry requests are output to the data cache.

(6) IDUNCH (output)

This is the pin from which the uncache status is output to the data cache.

A low level is output when the area in which the data cache setting has been set to cache-enable using the cache configuration register (BHC) is accessed.

(7) IDES (output)

This is an NEC reserved pin.

When using the data cache, be sure to connect this pin to the IDES pin of the connected data cache. When not using the data cache, leave this pin open.

(8) IDDRDY (output)

This is the pin from which read data ready signals are output to the data cache. Upon a data cache miss-hit, when the NU85ET has finished fetching the data to be read from the external memory, this signal is output to indicate that a refill for the data cache is ready.

(9) IDRRDY (input)

This is the pin to which read data ready signals are input from the data cache.

(10) IDHUM (input)

This is the pin to which hit-under-miss-hit read signals are input from the data cache.

A high level is input in cases when a subsequent access is made to the data cache while the external memory is being accessed due to the generation of a miss-hit during a read operation, and the data that scored a hit on this subsequent access is input to the NU85ET ahead of the data from the external memory (hit-under-miss-hit).

(11) IDEA27 to IDEA0 (input)

These pins constitute a bus to which addresses are input from the data cache. The address to be accessed is input to the NU85ET upon a data cache miss-hit.

(12) IDED31 to IDED0 (input/output)

These pins constitute a data bus through which data is input/output from/to the data cache. Data for refilling the data cache and data written to the external memory in write back mode is exchanged.

2.2.10 External INTC pins

(1) EINTLV6 to EINTLV0 (input)

These are the pins to which the interrupt type is input from the external INTC. The input level of each signal indicates the handler address.

EINTLV6	EINTLV5	EINTLV4	EINTLV3	EINTLV2	EINTLV1	EINTLV0	Interrupt Type
0	0	0	0	0	0	0	(No interrupt request)
0	0	0	0	0	0	1	Non-maskable interrupt 0 (NMI0) ^{Note 1}
0	0	0	0	0	1	0	Non-maskable interrupt 1 (NMI1) ^{Notes 1, 3}
0	0	0	0	0	1	1	Non-maskable interrupt 2 (NMI2) ^{Notes 2, 3}
0	0	0	0	1	×	×	(Reserved for future function expansion)
0	0	0	1	0	0	0	Maskable interrupt 0 (INT0)
0	0	0	1	0	0	1	Maskable interrupt 1 (INT1)
:	:	:	:	:	:	:	:
1	1	1	1	0	1	1	Maskable interrupt 115 (INT115)
1	1	1	1	1	0	0	Maskable interrupt 116 (INT116)
1	1	1	1	1	1	1	HALT mode release request
Other than	Other than above						(Reserved for future function expansion)

Table 2-8.	EINTLV6 to	EINTLV0 Signals
------------	------------	------------------------

Notes 1. Only valid when the NP bit of the PSW register is 0.

2. Valid regardless of the value of the NP bit of the PSW register.

3. Cannot be returned from the NMI handler address.

Remark 0: Low-level input

1: High-level input

×: Arbitrary

The interrupts are listed in detail in the table below.

Туре	Name	Exception Code	Handler Address	Туре	Name	Exception Code	Handler Address
Non-maskable	NMI0	0010H	00000010H	Maskable	INT33	0290H	00000290H
interrupt	NMI1	0020H	0000020H	interrupt	INT34	02A0H	000002A0H
	NMI2	0030H	0000030H		INT35	02B0H	000002B0H
Maskable	INT0	0080H	00000080H		INT36	02C0H	000002C0H
interrupt	INT1	0090H	00000090H		INT37	02D0H	000002D0H
	INT2	00A0H	000000A0H		INT38	02E0H	000002E0H
	INT3	00B0H	000000B0H		INT39	02F0H	000002F0H
	INT4	00C0H	000000C0H		INT40	0300H	00000300H
	INT5	00D0H	000000D0H		INT41	0310H	00000310H
	INT6	00E0H	000000E0H		INT42	0320H	00000320H
	INT7	00F0H	000000F0H		INT43	0330H	00000330H
	INT8	0100H	00000100H		INT44	0340H	00000340H
	INT9	0110H	00000110H		INT45	0350H	00000350H
	INT10	0120H	00000120H		INT46	0360H	00000360H
	INT11	0130H	00000130H		INT47	0370H	00000370H
	INT12	0140H	00000140H		INT48	0380H	00000380H
	INT13	0150H	00000150H		INT49	0390H	00000390H
	INT14	0160H	00000160H		INT50	03A0H	000003A0H
	INT15	0170H	00000170H		INT51	03B0H	000003B0H
	INT16	0180H	00000180H		INT52	03C0H	000003C0H
	INT17	0190H	00000190H		INT53	03D0H	000003D0H
	INT18	01A0H	000001A0H		INT54	03E0H	000003E0H
	INT19	01B0H	000001B0H		INT55	03F0H	000003F0H
	INT20	01C0H	000001C0H		INT56	0400H	00000400H
	INT21	01D0H	000001D0H		INT57	0410H	00000410H
	INT22	01E0H	000001E0H		INT58	0420H	00000420H
	INT23	01F0H	000001F0H		INT59	0430H	00000430H
	INT24	0200H	00000200H		INT60	0440H	00000440H
	INT25	0210H	00000210H		INT61	0450H	00000450H
	INT26	0220H	00000220H		INT62	0460H	00000460H
	INT27	0230H	00000230H		INT63	0470H	00000470H
	INT28	0240H	00000240H		INT64	0480H	00000480H
	INT29	0250H	00000250H		INT65	0490H	00000490H
	INT30	0260H	00000260H		INT66	04A0H	000004A0H
	INT31	0270H	00000270H		INT67	04B0H	000004B0H
	INT32	0280H	00000280H		INT68	04C0H	000004C0H

Table 2-9. List of Interrupts from External INTC (1/2)

Туре	Name	Exception Code	Handler Address	Туре	Name	Exception Code	Handler Address	
Maskable	INT69	04D0H	000004D0H	Maskable	INT93	0650H	00000650H	
interrupt	rupt INT70 04E0H 000004E0H interrupt	interrupt	INT94	0660H	00000660H			
	INT71	04F0H	000004F0H		INT95	0670H	00000670H	
	INT72	0500H	00000500H		INT96	0680H	00000680H	
	INT73	0510H	00000510H		INT97	0690H	00000690H	
	INT74	0520H	00000520H		INT98	06A0H	000006A0H	
	INT75	0530H	00000530H		INT99	06B0H	000006B0H	
	INT76	0540H	00000540H		INT100	06C0H	000006C0H	
	INT77	0550H	00000550H		INT101	06D0H	000006D0H	
	INT78	0560H	00000560H		INT102	06E0H	000006E0H	
	INT79	0570H	00000570H		INT103	06F0H	000006F0H	
	INT80	0580H	00000580H		INT104	0700H	00000700H	
	INT81	0590H	00000590H		INT105	0710H	00000710H	
	INT82	05A0H	000005A0H		INT106	0720H	00000720H	
	INT83	05B0H	000005B0H		INT107	0730H	00000730H	
	INT84	05C0H	000005C0H		INT108	0740H	00000740H	
	INT85	05D0H	000005D0H		INT109	0750H	00000750H	
	INT86	05E0H	000005E0H		INT110	0760H	00000760H	
	INT87	05F0H	F0H 000005F0H		INT111	0770H	00000770H	
	INT88 0600H 00000600H	INT112	0780H	00000780H				
	INT89	0610H	00000610H		INT113	0790H	00000790H	
	INT90	0620H	00000620H				INT114	07A0H
	INT91	0630H	00000630H		INT115	07B0H	000007B0H	
	INT92	0640H	00000640H		INT116	07C0H	000007C0H	

Table 2-9. List of Interrupts from External INTC (2/2)

(2) EINTRQ (input)

This is the pin to which interrupt requests are input from the external INTC. When a high level is input to this pin, interrupt servicing based on the level input to the EINTLV6 to EINTLV0 pins will commence.

(3) EINTAK (output)

This is an output pin indicating that an interrupt request from the external INTC has been acknowledged. A high level is output upon acknowledgement of an interrupt request by the CPU.

(4) ECLRIP (output)

This is an output pin indicating that the processing of the interrupt request from the external INTC is complete. A high level is output for one clock when the RETI instruction is executed by the interrupt servicing routine.

2.2.11 DCU pins

(1) DCK (input)

This is the pin to which the clock for the DCU is input from the N-Wire type IE.

(2) DMS (input)

This is the pin to which the debug mode selection is input from the N-Wire type IE.

(3) DDI (input)

This is the pin to which the debug data is input from the N-Wire type IE.

(4) DDO (output)

This is the pin from which the debug data is output to the N-Wire type IE.

(5) DRSTZ (input)

This is the DCU reset input pin. The DCU is reset asynchronously when a low level is input.

(6) TRCCLK (output)

This is the trace clock output pin. Output is stopped when software/hardware STOP mode is entered (the output level becomes undefined).

(7) TRCDATA3 to TRCDATA0 (output)

These are the pins from which trace data is output to the N-Wire type IE.

(8) TRCEND (output)

This is the pin from which the trace processing end signal is output to the N-Wire type IE.

(9) EVTTRG (output)

This is an output pin for indicating that an event has been detected. This signal is output in synchronization with a clock that is the system clock divided by 2. A high level of 1-clock width is output when an event is detected.

(10) MWAIT (input)

This is the wait insertion control input pin and is the source of the DCWAIT signal.

(11) DCWAIT (output)

This is the debugging wait output pin for external waits output to the MEMC. The signal input to the MWAIT pin is output from this pin via an internal mask circuit. This signal becomes active when a low level is input to the MWAIT pin.

(12) DBINT (input)

This is the debug interrupt input pin.

(13) ROMTYPE (input)

This is an NEC reserved pin. Input a low level.

* (14) DCRESZ, IDBR2 to IDBR0, EXHLT, DDOOUT, DDOENB, TAPSM3 to TAPSM0, TRG1, TRG0, DBRESZ, RESMK, MSKSTP, MSKNMI2 to MSKNMI0, MSKHRQ, DBRDY (output)

These are NEC reserved pins. Leave them open.

2.2.12 Peripheral EVA chip mode pins

If a high-level signal is input to the PHEVA pin, the NU85ET is set to peripheral EVA chip mode.

In peripheral EVA chip mode, the ASIC in which the NU85ET is incorporated is used as a peripheral emulation chip when the in-circuit emulator is used to perform debugging.

The peripheral EVA chip mode pins constitute an interface with the EVA chip within the in-circuit emulator, and various EVA chip signals are converted to NPB signals via these pins.

(1) EVASTB (input)

This is the address strobe input pin. It is connected to the EPHASTB pin of the EVA chip.

(2) EVDSTB (input)

This is the data strobe input pin. It is connected to the EPHDSTB pin of the EVA chip.

(3) EVAD15 to EVAD0 (input/output)

These pins constitute an address/data bus. They are connected to the EPHADn pins of the EVA chip (n = 15 to 0).

(4) EVIEN (output)

This pin outputs an input enable signal for controlling the direction of the I/O buffer on the EVADn bus (n = 15 to 0).

(5) EVOEN (output)

This pin outputs an output enable signal for controlling the direction of the I/O buffer on the EVADn bus (n = 15 to 0).

(6) EVLKRT (input/output)

This is the lock/retry input/output pin. It is connected to the EPHLKRT pin of the EVA chip.

(7) EVIREL (input)

This is the standby release input pin.

(8) EVCLRIP (input)

This is the ISPR clear input pin. It is connected to the ECLRIP pin of the EVA chip.

(9) EVINTAK (input)

This is the interrupt acknowledge input pin. It is connected to the EINTAK pin of the EVA chip.

(10) EVINTRQ (output)

This is the interrupt request output pin. It is connected to the EINTRQ pin of the EVA chip.

(11) EVINTLV6 to EVINTLV0 (output)

These are the interrupt vector output pins. They are connected to the EINTLV6 to EINTLV0 pins of the EVA chip.

2.2.13 Operation mode setting pins

The following pins are used to specify the operation mode of the NU85ET.

The input level to these pins should remain fixed during NU85ET operation. Do not change the level input to these pins during operation.

(1) IFIROME (input)

This is the ROM area setting input pin. The setting is made according to the level input to the pin, as shown below.

- Low level: ROM connected as external memory (via the VSB) is used
- High level: ROM connected to the VFB is used

When a low level is input to this pin, instruction processing begins after branching to the reset entry address of the external memory, following the release of system reset. Instruction fetches and data access to the ROM connected to the VFB cannot be performed.

If a high level is input to this pin and a low level is input to the IFIROB2 pin, instruction processing begins after branching to the reset entry address of the ROM connected to the VFB, following the release of system reset. If a high level is input to the IFIROB2 pin, instruction processing begins after branching to the reset entry address of the external memory, following the release of system reset, however it is possible to access the area of ROM connected to the VFB that is allocated to addresses 100000H and higher.

(2) IFIROB2 (input)

This is the ROM area relocation setting input pin. It specifies the range for locating the ROM area. The ROM area range is set as follows according to the level input to this pin.

- Low level: Addresses 000000H to 0FFFFH
- High level: Addresses 100000H to 1FFFFH

For details, see 3.4.1 (1) ROM relocation function.

(3) IFIRA64, IFIRA32, IFIRA16 (input)

These are RAM area size selection input pins. The RAM area size is set as follows according to the level input to these pins. For details, see **3.4.2 RAM area**.

IFIRA64	IFIRA32	IFIRA16	RAM Area Size
0	0	0	4 KB
0	0	1	12 KB
0	1	Arbitrary	28 KB
1	Arbitrary	Arbitrary	60 KB

Table 2-10. IFIRA64, IFIRA32, and IFIRA16 Signals

Remark 0: Low-level input 1: High-level input

(4) IFIMAEN (input)

This is the misalign access setting input pin.

Misalign access is enabled or disabled as follows according to the level input to this pin.

- Low level: Misalign access disabled
- High level: Misalign access enabled

(5) IFID256 (input)

This is the data area setting input pin. It is used to set the data area size. Each mode is set as follows according to the level input to this pin. For details, see **3.3.2 Data area**.

- Low level: 64 MB mode
- High level: 256 MB mode

(6) IFINSZ1, IFINSZ0 (input)

These are the VSB data bus size (initial value) selection input pins. The VSB data bus size is set as follows according to the level input to these pins.

Table 2-11. IFINSZ1 and IFINSZ0 Signals

IFINSZ1	IFINSZ0	VSB Data Bus Size
0	0	32 bits
0	1	16 bits
1	0	8 bits
1	1	Setting prohibited

Remark 0: Low-level input 1: High-level input

If the VSB data bus size is changed after reset through the bus size configuration register (BSC), the setting of the BSC register is valid regardless of the level input to these pins.

(7) IFIWRTH (input)

This is the data cache write-back or write-through mode selection input pin. When using the data cache, connect to the IFIWRTH pin of the data cache. Each mode is set as follows according to the level input to this pin.

- Low level: Write-back mode
- High level: Write-through mode

(8) IFIUNCH1 (input)

This is the data cache setting input pin.

When using the data cache, connect to the IFIUNCH1 pin of the data cache. The data cache is enabled or disabled as follows according to the level input to this pin.

- Low level: Data cache is enabled
- High level: Data cache is disabled

(9) IFIUNCH0 (input)

This is the instruction cache setting input pin. The instruction cache is enabled or disabled as follows according to the level input to this pin.

- Low level: Instruction cache is enabled
- High level: Instruction cache is disabled

(10) PHEVA (input)

This is the peripheral EVA chip mode setting input pin. A high level is input when the ASIC in which the NU85ET has been incorporated is used as a peripheral EVA chip.

(11) IFIEVA (input)

This is the interrupt controller (INTC) selection input pin. The INTC to be used is set as follows according to the level input to this pin.

- Low level: The NU85ET internal INTC is used
- High level: The INTC connected to the NU85ET externally (external INTC) is used

(12) IFIROBE, IFIROPR, IFIRASE, IFIRABE, IFIMODE3, IFIMODE2, IFIUSWE, FCOMB (input)

These are NEC reserved pins. Always input low-level signals.

2.2.14 Test mode pins

(1) TBI39 to TBI0 (input)

These pins constitute an input test bus.

(2) TBO34 to TBO0 (output)

These pins constitute an output test bus.

(3) TEST (input)

This is the test bus control input pin.

(4) BUNRI (input)

This is the input pin for selecting normal or test mode.

(5) BUNRIOUT (output)

This is the status output pin that indicates the test mode status. The level of the BUNRI pin (input) is output as is.

(6) PHTDO1, PHTDO0 (input)

These pins are the peripheral macro test input pins.

(7) TESEN (output)

This is the enable output pin for setting peripheral macros to test mode.

(8) VPTCLK (output)

This is the clock output pin for peripheral macro tests.

(9) PHTDIN1, PHTDIN0 (output)

These are the peripheral macro test output pins.

(10) VPRESZ (output)

This is the pin from which reset signals are output to the peripheral macros (including the user logic). A signal is output from this pin via the reset mask circuit of the DCU. This pin is used to input a reset signal to the NU85ET and peripheral macro when a forcible reset is executed by the debugger.

Caution The VPRESZ signal is the reset signal for the peripheral macros in normal operation mode as well as test mode.

(11) PHTEST (output)

This is the pin from which signals indicating the peripheral test mode status are output.

(12) TMODE1, TMODE0, TBREDZ (output)

These are NEC reserved pins. Leave them open.

2.3 Recommended Connection of Unused Pins

	Pin Name	I/O	Recommended Connection
NPB pins	VPA13 to VPA0, VPDO15 to VPDO0, VPWRITE, VPSTB, VPLOCK, VPUBENZ, VPDV	Output	Leave open.
	VPDI15 to VPDI0 ^{Note} , VPRETR ^{Note}	Input	Input low level.
	VPDACT	Input	Input high level.
VSB pins	VAREQ	Input	Input low level.
	VAACK, VAPREQ, VBDO31 to VBDO0, VMA27 to VMA0, VMTTYP1, VMTTYP0, VMSTZ, VMBENZ3 to VMBENZ0, VMSIZE1, VMSIZE0, VMWRITE, VMLOCK, VMCTYP2 to VMCTYP0, VMSEQ2 to VMSEQ0, VMBSTR, VDSELPZ, VSWAIT, VSLAST, VSAHLD, VBDC, VBDV, VDCSZ7 to VDCSZ0	Output	Leave open.
	VBDI31 to VBDI0 ^{Note} , VMWAIT ^{Note} , VMLAST ^{Note} , VMAHLD ^{Note} , VSA13 to VSA0 ^{Note} , VSWRITE, VSLOCK	Input	Input low level.
	VSSTZ, VSBENZ1, VSSELPZ	Input	Input high level.
System control	RESETZ, VBCLK	Input	-
pins	CGREL	Input	Input low level.
	CLKB1, SWSTOPRQ, HWSTOPRQ, STPRQ	Output	Leave open.
	STOPZ, STPAK	Input	Input high level.
DMAC pins	IDMASTP, DMARQ3 to DMARQ0	Input	Input low level.
	DMTCO3 to DMTCO0, DMACTV3 to DMACTV0	Output	Leave open.
INTC pins	NMI2 to NMI0, INT63 to INT0	Input	Input low level.
VFB pins	IROMA19 to IROMA2, IROMEN, IROMCS, IROMIA, IROMAE	Output	Leave open.
	IROMZ31 to IROMZ0	Input	Input high level.
	IROMWT	Input	Input low level.
VDB pins	IRAMA27 to IRAMA2, IRAOZ31 to IRAOZ0, IRAMEN, IRAMWR3 to IRAMWR0, IRAMRWB	Output	Leave open.
	IRAMZ31 to IRAMZ0	Input	Input high level.
	IRAMWT	Input	Input low level.
Instruction cache pins	IBDRRQ, IBEA25 to IBEA2, IBBTFT, IIAACK, IIDLEF, IIEDI31 to IIEDI0	Input	Input low level.
	IBAACK, IBDRDY, IBDLE3 to IBDLE0, IBEDI31 to IBEDI0, IIDRRQ, IIEA25 to IIEA2, IIBTFT, IIRCAN, BCUNCH	Output	Leave open.
Data cache pins	IDDARQ, IDAACK, IRRSA, IDRETR, IDUNCH, IDES, IDDRDY	Output	Leave open.
	IDDRRQ, IDDWRQ, IDSEQ4, IDSEQ2, IDRRDY, IDHUM, IDEA27 to IDEA0	Input	Input low level.
	IDED31 to IDED0	I/O	Leave open.

 \star

			(2/2)
	Pin Name	I/O	Recommended Connection
External INTC	EINTLV6 to EINTLV0, EINTRQ	Input	Input low level.
pins	EINTAK, ECLRIP	Output	Leave open.
DCU pins	DDO, TRCCLK, TRCDATA3 to TRCDATA0, TRCEND, IDBR2 to IDBR0, EVTTRG, TRG1, TRG0, DCRESZ, DCWAIT, EXHLT, DDOOUT, DDOENB, TAPSM3 to TAPSM0, DBRESZ, RESMK, MSKSTP, MSKNMI2 to MSKNMI0, MSKHRQ, DBRDY	Output	Leave open.
	DRSTZ, DBINT	Input	Input low level.
	DCK, DMS, DDI, MWAIT	Input	Input high level.
	ROMTYPE	Input	Input low level or high level.
Peripheral EVA chip mode pins	EVASTB, EVDSTB, EVIREL, EVCLRIP, EVINTAK	Input	Input low level.
	EVAD15 to EVAD0, EVLKRT	I/O	Leave open.
	EVIEN, EVOEN, EVINTRQ, EVINTLV6 to EVINTLV0	Output	Leave open.
Operation mode setting pins	IFIROME, IFIRA64, IFIRA32, IFIRA16, IFIMAEN, IFID256, IFINSZ1, IFINSZ0, IFIEVA	Input	-
	IFIUNCH1	Input	Input high level.
	IFIROB2, IFIWRTH, IFIUNCH0	Input	Input low level or high level.
	PHEVA, IFIROBE, IFIROPR, IFIRASE, IFIRABE, IFIMODE3, IFIMODE2, IFIUSWE, FCOMB	Input	Input low level.
Test mode pins	TBI39 to TBI0	Input	Refer to the various cell-based IC family user's
	TBO34 to TBO0	Output	manuals.
	TEST, BUNRI	Input	_
	PHTDO1 ^{Note} , PHTDO0 ^{Note}	Input	Input low level.
	BUNRIOUT, TESEN, VPTCLK, PHTDIN1, PHTDIN0, VPRESZ, PHTEST, TMODE1, TMODE0, TBREDZ	Output	Leave open.

*** Note** Clamp to low level via a buffer.

2.4 Pin Status

The following table shows the status in each operating mode of the pins that have output functions.

Pin Name				Pin S	Status		
		Reset ^{Note}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
NPB pins	VPA13 to VPA0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPDO15 to VPDO0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPWRITE	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPSTB	L	L	L	Operates	Undefined	Operates
	VPLOCK	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPUBENZ	Undefined	Retained	Retained	Operates	Undefined	Operates
	VPDV	Undefined	Retained	Retained	Operates	Undefined	Operates
VSB pins	VAACK	L	Retained	Retained	Operates	Undefined	Operates
	VAPREQ	L	Retained	Retained	Operates	Undefined	Operates
	VBDO31 to VBDO0	L	Retained	Retained	Operates	Undefined	Operates
	VMA27 to VMA0	L	Retained	Retained	Operates	Undefined	Operates
	VMTTYP1, VMTTYP0	L	Retained	Retained	Operates	Undefined	Operates
	VMSTZ	Н	Retained	Retained	Operates	Undefined	Operates
	VMBENZ3 to VMBENZ0	Н	Retained	Retained	Operates	Undefined	Operates
	VMSIZE1, VMSIZE0	L	Retained	Retained	Operates	Undefined	Operates
	VMWRITE	L	Retained	Retained	Operates	Undefined	Operates
	VMLOCK	L	Retained	Retained	Operates	Undefined	Operates
	VMCTYP2 to VMCTYP0	Undefined	Retained	Retained	Operates	Undefined	Operates
	VMSEQ2 to VMSEQ0	L	Retained	Retained	Operates	Undefined	Operates
	VMBSTR	L	Retained	Retained	Operates	Undefined	Operates
	VDSELPZ	Н	Retained	Retained	Operates	Undefined	Operates
	VSWAIT	L	Retained	Retained	Operates	Undefined	Operates
	VSLAST	L	Retained	Retained	Operates	Undefined	Operates
	VSAHLD	L	Retained	Retained	Operates	Undefined	Operates

Table 2-12.	Pin Status in	Each Operating	Mode (1/4)
-------------	---------------	-----------------------	------------

Note When a low level is input to the RESETZ pin and an external clock is input to the VBCLK pin.

Remark L: Low-level output

H: High-level output Retained: Retains prior status

Pin	Name			Pin	Status		
		Reset ^{Note}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
VSB pins	VBDC	L	L	L	Operates	Undefined	Operates
	VBDV	L	L	L	Operates	Undefined	Operates
	VDCSZ7 to VDCSZ0	Н	Retained	Retained	Operates	Undefined	Operates
System control pins	CLKB1	Outputs conte	nts of VBCLK inp	ut		L	Outputs test clock
	SWSTOPRQ	L	н	L	L	Undefined	Undefined
	HWSTOPRQ	L	L	Н	L	Undefined	Undefined
	STPRQ	L	н	н	L	Undefined	Undefined
DMAC pins	DMTCO3 to DMTCO0	L	L	L	Operates	Undefined	Undefined
	DMACTV3 to DMACTV0	L	L	L	Operates	Undefined	Undefined
VFB pins	IROMA19 to IROMA2	Undefined	Retained	Retained	Retained	Undefined	Operates
	IROMEN	L	L	L	L	Undefined	Operates
	IROMCS	L	L	L	L	Undefined	Operates
	IROMIA	Н	Undefined	Undefined	Undefined	Undefined	Operates
	IROMAE	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
VDB pins	IRAMA27 to IRAMA2	Undefined	Undefined	Undefined	Operates	Undefined	Operates
	IRAOZ31 to IRAOZ0	Undefined	Undefined	Undefined	Operates	Undefined	Operates
	IRAMEN	L	L	L	Operates	Undefined	Operates
	IRAMWR3 to IRAMWR0	L	L	L	Operates	Undefined	Operates
	IRAMRWB	Undefined	Undefined	Undefined	Operates	Undefined	Operates
Instruction	IBAACK	L	L	L	L	Undefined	Operates
cache pins	IBDRDY	L	L	L	L	Undefined	Operates
	IBDLE3 to IBDLE0	L	L	L	L	Undefined	Operates
	IBEDI31 to IBEDI0	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IIDRRQ	L	L	L	L	Undefined	Operates
	IIEA25 to IIEA2	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IIBTFT	Undefined	Undefined	Undefined	Undefined	Undefined	Operates

Table 2-12. Pin Status in Each Operating Mode (2/4)

Note When a low level is input to the RESETZ pin and an external clock is input to the VBCLK pin.

Remark L: Low-level output

H: High-level output Retained: Retains prior status

Pir	n Name			Pin S	Status		
		Reset ^{Note 1}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
Instruction	IIRCAN	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
cache pins	BCUNCH	L	L	L	L	Undefined	Operates
Data cache	IDDARQ	L	L	L	L	Undefined	Operates
pins	IDAACK	L	L	L	L	Undefined	Operates
	IRRSA	L	Undefined	Undefined	Undefined	Undefined	Operates
	IDRETR	L	L	L	L	Undefined	Operates
	IDUNCH	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IDES	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
	IDDRDY	L	L	L	L	Undefined	Operates
	IDED31 to IDED0	Undefined	Undefined	Undefined	Undefined	Undefined	Operates
External	EINTAK	L	L	L	L	Undefined	Undefined
INTC pins	ECLRIP	L	L	L	L	Undefined	Undefined
DCU	DDO	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
pins ^{Note 2}	TRCCLK	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
	TRCDATA3 to TRCDATA0	H/Operates	H/Operates	H/Operates	H/Operates	H/Operates	H/Operates
	TRCEND	H/Operates	H/Operates	H/Operates	H/Operates	H/Operates	H/Operates
	IDBR2 to IDBR0	L	Retained	Retained	Retained	Undefined	Undefined
	EVTTRG	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
	TRG1, TRG0	L	L	L	L	Undefined	Undefined
	DCRESZ	L	Н	н	н	Undefined	Undefined
	DCWAIT	Outputs conte	nts of MWAIT inp	out	·		
	EXHLT	L	L	L	Н	Undefined	Undefined
	DDOOUT	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
	DDOENB	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
	TAPSM3 to TAPSM0	H/Operates	H/Operates	H/Operates	H/Operates	H/Operates	H/Operates
	DBRESZ	H/Operates	H/Operates	H/Operates	H/Operates	H/Operates	H/Operates
	RESMK	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
	MSKSTP	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
	MSKNMI2 to MSKNMI0	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates

Table 2-12. Pin Status in Each Operating Mode (3/4)

Notes 1. When a low level is input to the RESETZ pin and an external clock is input to the VBCLK pin.

2. The status when a low level is input to the DRSTZ pin is shown on the left of the slash (/), and the status when a high level is input to the DRSTZ pin is shown on the right of the slash.

Remark L: Low-level output

H: High-level output Retained: Retains prior status

Pir	n Name			Pin S	Status		
		Reset ^{Note 1}	Software STOP Mode	Hardware STOP Mode	HALT Mode	Standby Test Mode	Unit Test Mode
DCU	MSKHRQ	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
pins ^{Note 2}	DBRDY	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates	L/Operates
Peripheral	EVIEN	Undefined	L	L	L	Undefined	Undefined
evaluation chip mode	EVOEN	Undefined	L	L	L	Undefined	Undefined
pins	EVINTRQ	L	Retained	Retained	Operates	Undefined	Undefined
	EVINTLV6 to EVINTLV0	Undefined	Retained	Retained	Operates	Undefined	Undefined
	EVAD15 to EVAD0	Undefined	Retained	Retained	Undefined	Undefined	Undefined
	EVLKRT	Undefined	Retained	Retained	Undefined	Undefined	Undefined
Test mode pins	TBO34 to TBO0	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Hi-Z	Operates
	BUNRIOUT	L	L	L	L	н	н
	TESEN	L	L	L	L	L	Operates
	VPTCLK	L	L	L	L	L	Operates
	PHTDIN1, PHTDIN0	L	L	L	L	L	Operates
	VPRESZ	L	н	н	н	Undefined	Undefined
	PHTEST	L	L	L	L	L	Operates
	TMODE1, TMODE0	L	L	L	L	L	Operates
	TBREDZ	н	н	н	н	н	Operates

Table 2-12. Pin Status in Each Operating Mode (4/4)

Notes 1. When a low level is input to the RESETZ pin and an external clock is input to the VBCLK pin.

2. The status when a low level is input to the DRSTZ pin is shown on the left of the slash (/), and the status when a high level is input to the DRSTZ pin is shown on the right of the slash.

Remark L: Low-level output

H: High-level output Retained: Retains prior status Hi-Z: High-impedance

CHAPTER 3 CPU

The CPU is based on a RISC architecture and executes almost all instructions in one clock cycle due to its fivestage pipeline control.

3.1 Features

- Advanced 32-bit architecture for embedded control
 - Number of instructions: 83
 - Number of 32-bit general-purpose registers: 32
 - Load/store instructions having long/short format
 - Three-operand instructions
 - Five-stage pipeline structure with one-clock pitch
 - Register/flag hazard interlock supported by hardware
 - Memory space
 Program area: 64 MB linear address space
 - Data area: 4 GB linear address space
- Instruction set suited to various application fields
 - Saturated calculation instructions
 - Bit manipulation instructions (set, clear, not, test)
 - Multiplication can be performed in 1 or 2 clocks due to on-chip hardware multiplier 16 bits \times 16 bits \rightarrow 32 bits
 - 32 bits \times 32 bits \rightarrow 32 bits or 64 bits

3.2 Registers

The CPU registers can be classified into program registers, which are used by programs, and system registers, which are used to control the execution environment. All registers are 32-bit registers.

(a) Program registers	(b) System registers
r0 (Zero register)	EIPC (Register for saving status when interrupt occurs)
r1 (Assembler-reserved register)	EIPSW (Register for saving status when interrupt occurs)
r2	
r3 (Stack pointer (SP))	FEPC (Register for saving status when NMI occurs)
r4 (Global pointer (GP))	FEPSW (Register for saving status when NMI occurs)
r5 (Text pointer (TP))	
r6	ECR (Interrupt source register)
r7	PSW (Program status word)
r8	
r9	CTPC (Register for saving status when CALLT is executed)
r10	CTPSW (Register for saving status when CALLT is executed
r11	
r12	DBPC (Register for saving status when exception is trapped)
	DBPSW (Register for saving status when exception is trappe
r13	
r14	CTBP (CALLT base pointer)
r15	
r16	
r17	
r18	
r19	
r20	
r21	
r22	
r23	
r24	
r25	
r26	
r27	
r28	
r29	
r30 (Element pointer (EP))	
r31 (Link pointer (LP))	
PC (Program counter)	
]

Figure 3-1. List of CPU Registers

3.2.1 Program registers

The program registers include the general-purpose registers (r0 to r31) and the program counter (PC).

Program Register	Name	Function
General-purpose	rO	Zero register (always holds zero)
register	r1	Assembler-reserved register (used as a working register for address generation)
	r2	Address/data variable register (when this register is not used by the real-time OS)
	r3	Stack pointer (used to generate a stack frame when a function is called)
	r4	Global pointer (used to access a global variable of the data area)
	r5	Text pointer (used as the register indicating the beginning of the text area (area for locating program code))
	r6 to r29	Registers for address/data variables
	r30	Element pointer (used as the base pointer for address generation when accessing memory)
	r31	Link pointer (used when the compiler calls a function)
Program counter	PC	Holds instruction address during program execution

Table 3-1. List of Program Registers

Remark For detailed explanations of r1, r3 to r5, and r31, which are used by the assembler or C compiler, refer to the **C Compiler Package (CA850) User's Manual**.

(1) General-purpose registers

The 32 registers r0 to r31 are provided as general-purpose registers. All of these registers can be used for data variables or address variables.

However, take note of the following points when using the r0 to r5, r30, and r31 registers.

(a) r0, r30

These registers are implicitly used by instructions.

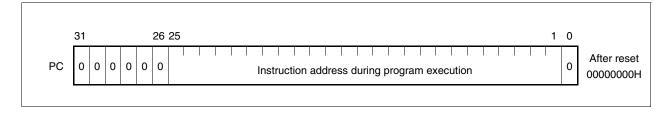
r0, which is a register that always holds 0, is used by operations that use 0, or in 0-offset addressing. r30 is used as a base pointer when accessing memory by the SLD and SST instructions.

(b) r1, r3 to r5, r31

These registers are implicitly used by the assembler and C compiler.

The contents of these registers must be saved before they are used so that the contents are not destroyed, and the original contents must be returned after use.

(c) r2


This register may be used by the real-time OS.

When not being used by the real-time OS, r2 can be used as an address variable or data variable register.

(2) Program counter

This register holds the instruction address during program execution. The lower 26 bits are valid, and bits 31 to 26 are reserved for future function expansion (fixed at 0). If a carry from bit 25 to bit 26 occurs, it is ignored. Also, bit 0 is fixed at 0, and no branching to an odd address can be performed.

Figure 3-2. Program Counter (PC)

3.2.2 System registers

System registers control the status of the CPU and hold interrupt information.

To read from or write to these system registers, specify the system register number (see **Table 3-2**) indicated by the system register load or store instruction (LDSR or STSR instruction).

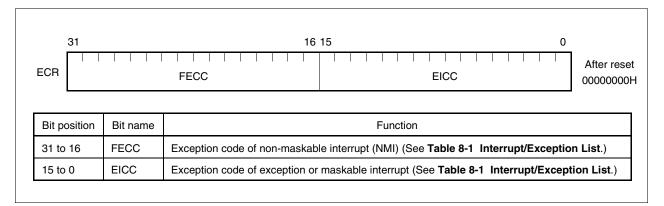

Register No.		Name	Operation		Not Operand Specified
				LDSR Instruction	STSR Instruction
0	EIPC	Register for saving status	This register saves the value of the PC when a software exception or interrupt occurs.	Yes	Yes
1	EIPSW	when interrupt occurs ^{∾₀}	This register saves the value of the PSW when a software exception or interrupt occurs.	Yes	Yes
2	FEPC	Register for saving status	This register saves the value of the PC when a non- maskable interrupt (NMI) occurs.	Yes	Yes
3	FEPSW	when NMI occurs	This register saves the value of the PSW when a non- maskable interrupt (NMI) occurs.	Yes	Yes
4	ECR	Interrupt source register	This register holds information about the source when an exception or interrupt occurs. The exception code of a non-maskable interrupt (NMI) is set in the higher 16 bits of this register (FECC). The exception code of an exception or maskable interrupt is set in the lower 16 bits (EICC) (See Figure 3-3).	No	Yes
5	PSW	Program status word	This is a collection of flags indicating the program status (instruction execution result) or CPU status (See Figure 3-4).	Yes	Yes
16	CTPC	Register for saving status	This register saves the value of the PC when a CALLT instruction is executed.	Yes	Yes
17	CTPSW	when CALLT is executed	This register saves the value of the PSW when a CALLT instruction is executed.	Yes	Yes
18	DBPC	Register for saving status when exception	This register saves the value of the PC when an exception trap is generated due to the detection of an illegal instruction code.	No	Yes
19	DBPSW	is trapped	This register saves the value of the PSW when an exception trap is generated due to the detection of an illegal instruction code.	No	Yes
20	СТВР	CALLT base pointer	This is used to specify the table address or generate the target address.	Yes	Yes
6 to 15, 21 to 31	Reserved guarantee		unction expansion (if these are accessed, operation is not	No	No

Table 3-2. List of System Registers

Note Since there is only one set of these registers, their contents must be saved by the program when multiple interrupts are permitted.

Remark Yes: Access enabled No: Access disabled

Caution When interrupt servicing is performed and control is returned by the RETI instruction after bit 0 of the EIPC, FEPC, or CTPC had been set (1) by the LDSR instruction, bit 0 is ignored (because bit 0 of the PC is fixed at 0). When setting a value in EIPC, FEPC, or CTPC, set an even value (bit 0 = 0) as long as there is no specific reason not to.

Figure 3-3. Interrupt Source Register (ECR)

Figure 3-4. Program Status Word (PSW)

	Г									1				1				1				1		Γ				-		-						
PSW	C	0	0	0	0	0	0	C	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	N	PE	P	ID	SAT	CY	OV	S	Z		After r 00000	
Bit po	osit	ion	В	it n	am	е														Fı	unct	ion														
 NP Indicates that non-maskable interrupt servicing is in progress. When a non-maskable interrupt is acknowledged, this flag is set (1) to disable multiple interrupts. 0: Non-maskable interrupt servicing is not in progress 1: Non-maskable interrupt servicing is in progress 																																				
6			E	Ρ			ge (ndicates that exception processing is in progress. This flag is set (1) when an exception is enerated. Interrupt requests are acknowledged even if this bit is set. 0: Exception processing is not in progress 1: Exception processing is in progress																												
5			10)			(ndicates whether or not maskable interrupt requests can be acknowledged. 0: Interrupts are enabled 1: Interrupts are disabled																												
4			S	АТ			ov fla ar sa no (ver ag, nd atu or D:	cate rflow is s it is rate clea It is It is	ed et (not d. V red not	and 1) v cle Vhe (0) sati	the /he are n th by a urat	e ca n th d ((nis f a g	alcu ne c)) e flag	lati alc ver is	on i ulat if t clea	resu tion the o ared	ilt is res cale I (0	s sa sult cula), da	itur of a itioi ata	ateo a sa n re is lo	d. T itura sult oad	This atec is o	s fla d ca f su	ag, alc ubs	wh ulat	ich tior uei	ı is n in nt ir	ca stri nst	lled ucti ruct	the on tion	e sa is s is a	atura atur re n	rate lot	d,	
3			С	Y			(D:	cate No c A ca	arry	/ or	bor	rov	v oc	ccu	rrec		bor	row	00	cur	red	in t	he	са	lcu	lati	on	res	sult.						
2			С	v			(Indicates whether or not an overflow occurred during the calculation. 0: No overflow occurred 1: An overflow occurred																												
1			S				(D: '	cate The The	cal	cula	tior	ı re	sult	is	pos	itive	e o			t is	neç	gativ	ve.												
0			z						cate The										n re	sul	t is	zer	0.													

3.3 Address Space

The CPU of the NU85ET supports a linear address space with a maximum size of 4 GB. Memory and I/O are located in this address space (memory mapped I/O method).

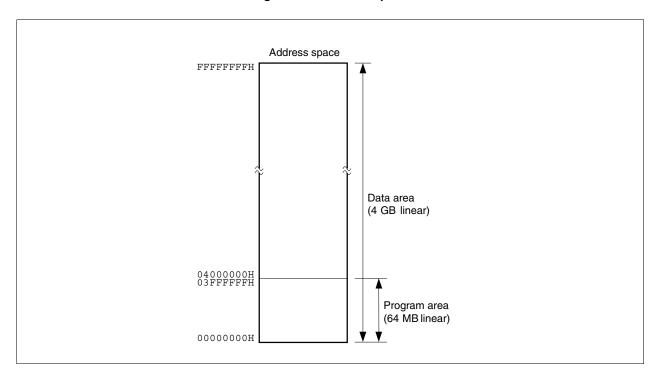


Figure 3-5. Address Space

3.3.1 Program area

For instruction addressing, the CPU of the NU85ET supports a linear address space (program area) with a maximum size of 64 MB.

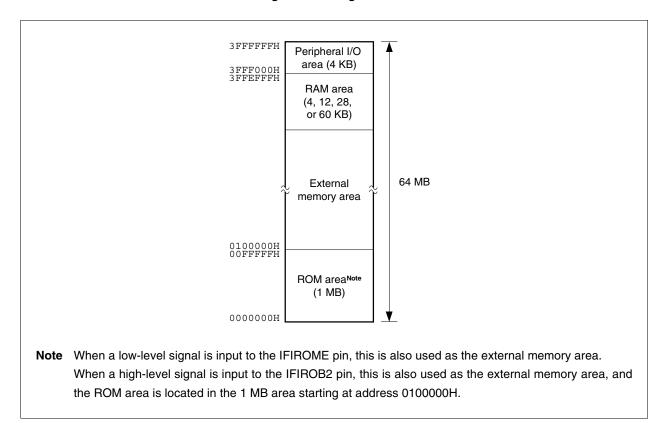
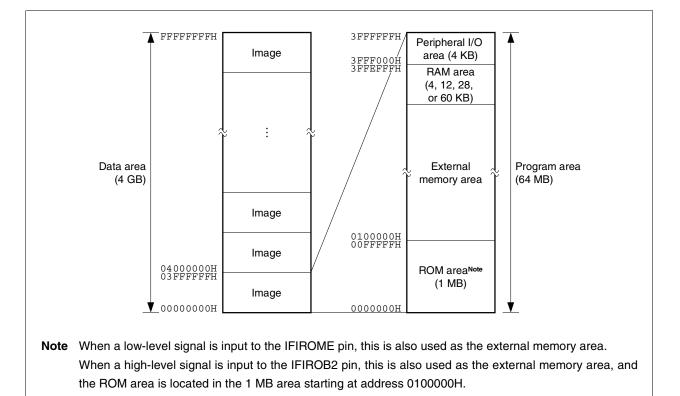


Figure 3-6. Program Area

3.3.2 Data area

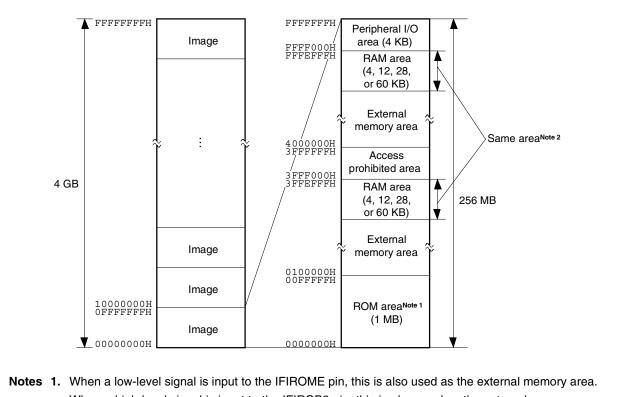

For operand addressing (data access), the CPU of the NU85ET supports a linear address space (data area) with a maximum size of 4 GB.

The ROM, RAM, and peripheral I/O areas are each located in 64 MB or 256 MB address spaces. The size setting is selected according to the input level to the IFID256 pin.

(1) 64 MB mode

When a low-level signal is input to the IFID256 pin, the data area is set to 64 MB mode.

In this mode, the 64 MB physical address space can be viewed as 64 images in the 4 GB address space. That is, the same 64 MB physical address space is accessed regardless of the values of bits 31 to 26 of the CPU address.



(2) 256 MB mode

When a high-level signal is input to the IFID256 pin, the data area is set to 256 MB mode.

In this mode, the 256 MB physical address space can be viewed as 16 images in the 4 GB address space. That is, the same 256 MB physical address space is accessed regardless of the values of bits 31 to 28 of the CPU address.

- When a high-level signal is input to the IFIROB2 pin, this is also used as the external memory area, and the ROM area is located in the 1 MB area starting at address 0100000H.
 When data is written to the RAM area at address FFFEFFFH and below in 256 MB mode, data
 - 2. When data is written to the RAM area at address FFFEFFFH and below in 256 MB mode, data having the same contents is also written to the area at address 3FFEFFFH and below, which is indicated by "Same area" in the figure. The contents of these areas are linked (a memory access is performed from the RAM area at address 3FFEFFFH and below).

Caution Addresses 3FFF000H to 3FFFFFFH are an access prohibited area. The operation is not guaranteed when that area is accessed.

3.4 Areas

3.4.1 ROM area

If a high level is input to the IFIROME pin, the area of ROM that can be accessed when ROM is connected to the VFB is set.

(1) ROM relocation function

A 1 MB area at addresses 00000000H to 000FFFFFH or addresses 00100000H to 001FFFFFH is reserved as the ROM area.

The area where it is to be located is selected according to the level input to the IFIROB2 pin.

(2) Interrupt/exception table

The NU85ET increases the interrupt response speed by assigning fixed jump destination addresses corresponding to interrupts or exceptions.

This set of jump destination addresses is called the interrupt/exception table and is located at address 00000000H and following. When an interrupt/exception request is acknowledged, processing jumps to the jump destination address and the program that is written in memory beginning at that address is executed.

Remark When address 00000000H is set in the external memory area, prepare the jump destination address for jumping to the reset routine at address 00000000H of the external memory.

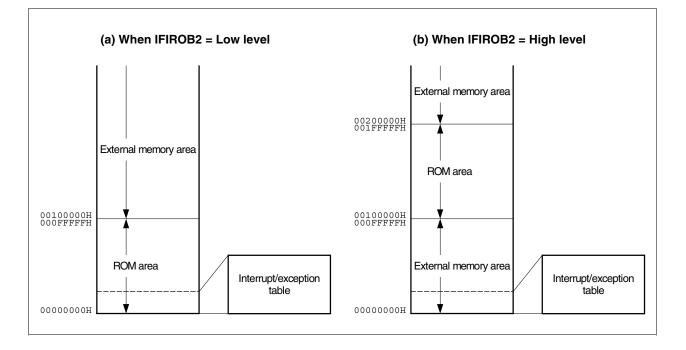


Figure 3-9. ROM Area

Starting Address	Interrupt/Exception Source	Starting Address	Interrupt/Exception Source	Starting Address	Interrupt/Exception Source
0000000H	RESET	00000250H	INT29	00000490H	INT65
00000010H	NMIO	00000260H	INT30	000004A0H	INT66
0000020H	NMI1	00000270H	INT31	000004B0H	INT67
0000030H	NMI2	00000280H	INT32	000004C0H	INT68
00000040H	TRAP0n (n = 0 to FH)	00000290H	INT33	000004D0H	INT69
0000050H	TRAP1n (n = 0 to FH)	000002A0H	INT34	000004E0H	INT70
0000060H	ILGOP	000002B0H	INT35	000004F0H	INT71
0000080H	INT0	000002C0H	INT36	00000500H	INT72
00000090H	INT1	000002D0H	INT37	00000510H	INT73
000000A0H	INT2	000002E0H	INT38	00000520H	INT74
000000B0H	INT3	000002F0H	INT39	00000530H	INT75
000000C0H	INT4	00000300H	INT40	00000540H	INT76
000000D0H	INT5	00000310H	INT41	00000550H	INT77
000000E0H	INT6	00000320H	INT42	00000560H	INT78
000000F0H	INT7	00000330H	INT43	00000570H	INT79
00000100H	INT8	00000340H	INT44	00000580H	INT80
00000110H	INT9	00000350H	INT45	00000590H	INT81
00000120H	INT10	00000360H	INT46	000005A0H	INT82
00000130H	INT11	00000370H	INT47	000005B0H	INT83
00000140H	INT12	00000380H	INT48	000005C0H	INT84
00000150H	INT13	00000390H	INT49	000005D0H	INT85
00000160H	INT14	000003A0H	INT50	000005E0H	INT86
00000170H	INT15	000003B0H	INT51	000005F0H	INT87
00000180H	INT16	000003C0H	INT52	00000600H	INT88
00000190H	INT17	000003D0H	INT53	00000610H	INT89
000001A0H	INT18	000003E0H	INT54	00000620H	INT90
000001B0H	INT19	000003F0H	INT55	00000630H	INT91
000001C0H	INT20	00000400H	INT56	00000640H	INT92
000001D0H	INT21	00000410H	INT57	00000650H	INT93
000001E0H	INT22	00000420H	INT58	00000660H	INT94
000001F0H	INT23	00000430H	INT59	00000670H	INT95
00000200H	INT24	00000440H	INT60	00000680H	INT96
00000210H	INT25	00000450H	INT61	00000690H	INT97
00000220H	INT26	00000460H	INT62	000006A0H	INT98
00000230H	INT27	00000470H	INT63	000006B0H	INT99
00000240H	INT28	00000480H	INT64	000006C0H	INT100

Table 3-3. Interrupt/Exception Table (1/2)

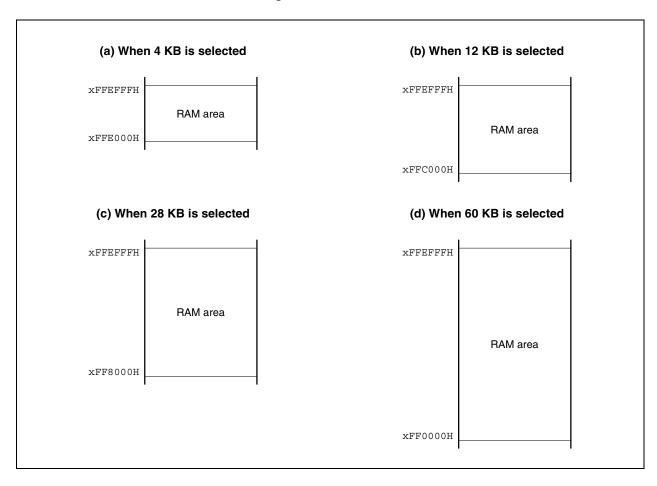
Remark For the sources of interrupts or exceptions, see Table 8-1 Interrupt/Exception List.

Starting Address	Interrupt/Exception Source	Starting Address	Interrupt/Exception Source	Starting Address	Interrupt/Exception Source
000006D0H	INT101	00000730H	INT107	00000790H	INT113
000006E0H	INT102	00000740H	INT108	000007A0H	INT114
000006F0H	INT103	00000750H	INT109	000007B0H	INT115
00000700H	INT104	00000760H	INT110	000007C0H	INT116
00000710H	INT105	00000770H	INT111	_	_
00000720H	INT106	00000780H	INT112	-	-

Table 3-3. Interrupt/Exception Table (2/2)

Remark For the sources of interrupts or exceptions, see **Table 8-1** Interrupt/Exception List.

3.4.2 RAM area


In 64 MB mode, the area at address 3FFEFFFH and below is reserved, and in 256 MB mode, the area at address FFFEFFFH and below is reserved as the area for RAM connected to the VDB.

The size of the RAM area, which can be selected from among 4 KB, 12 KB, 28 KB, and 60 KB, is set according to the levels input to the IFRA64, IFRA32, and IFRA16 pins.

Table 3-4.	RAM	Area	Size	Settings
------------	-----	------	------	----------

IFIRA64	IFIRA32	IFIRA16	RAM Area Size
0	0	0	4 KB
0	0	1	12 KB
0	1	Arbitrary	28 KB
1	Arbitrary	Arbitrary	60 KB

Remark 0: Low-level input 1: High-level input

Figure	3-10.	RAM	Area
riguic	0.10.		Alcu

Set as follows if the size of the RAM area to be used is other than 4 KB, 12 KB, 28 KB, or 60 KB.

(a) RAM area size = 0 KB (RAMIess)

Set the RAM area size to 4 KB and handle the VDB pins as indicated in **2.3 Recommended Connection** of Unused Pins.

(b) 0 KB < RAM area size < 4 KB

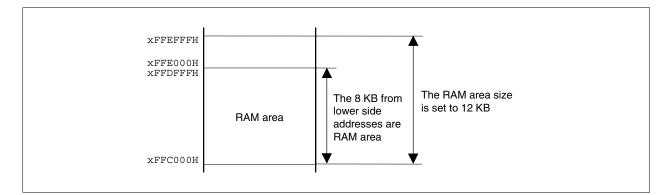
Set the RAM area size to 4 KB and use from the lower side addresses as RAM area.

(c) 4 KB < RAM area size < 12 KB

Set the RAM area size to 12 KB and use from the lower side addresses as RAM area.

(d) 12 KB < RAM area size < 28 KB

Set the RAM area size to 28 KB and use from the lower side addresses as RAM area.


(e) 28 KB < RAM area size < 60 KB

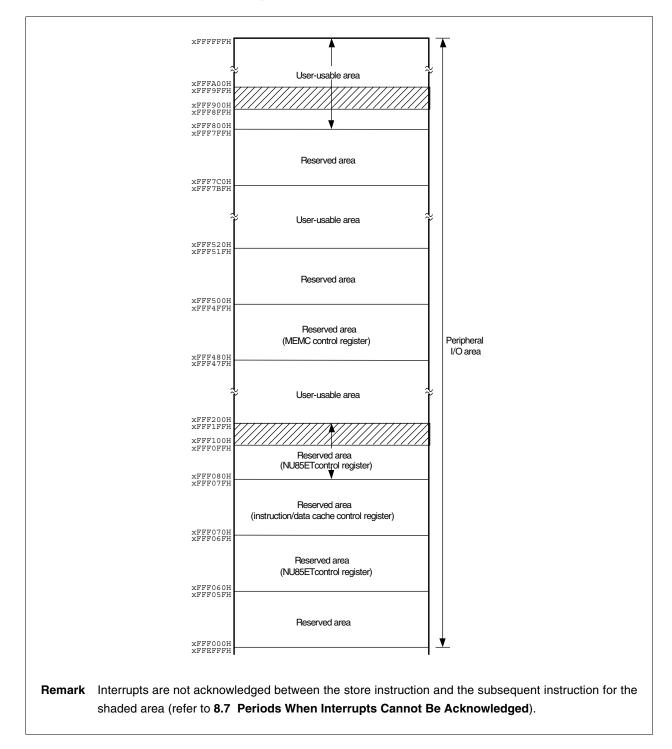
Set the RAM area size to 60 KB and use from the lower side addresses as RAM area.

(f) 60 KB < RAM area size

A RAM area size exceeding 60 KB cannot be set.

Example Memory map when 8 KB RAM is used.

3.4.3 Peripheral I/O area


In 64 MB mode, the area at address 3FFFFFFH and below is reserved as a peripheral I/O area. In 256 MB mode, the area at address FFFFFFH and below is reserved.

Peripheral I/O registers to which functions have been assigned such as status monitoring or specification of the operating mode of the NU85ET, memory controller (MEMC), or instruction/data cache are located in this area.

For information about assigned registers, see 3.5 Peripheral I/O Registers.

Caution User-defined addresses must be assigned to the following areas only (user-usable area); all other addresses are reserved and cannot be used.

- xFFF200H to xFFF47FH
- xFFF520H to xFFF7BFH
- xFFF800H to xFFFFFFH

3.4.4 External memory area

Access to the external memory area is made using the VDCSZ7 to VDCSZ0 signals assigned to each bank (see **4.2 Memory Banks**).

The "programmable peripheral I/O area", which is independent of the peripheral I/O area, is also assigned to this area (see **4.4 Programmable Peripheral I/O Area Selection Function**).

Caution ROM, RAM, and peripheral I/O areas cannot be accessed as external memory areas.

3.5 Peripheral I/O Registers

- (1) Only the lower 12 bits of a 32-bit address are used for register address decoding, after being allocated to the 4 KB area of xxxxx000H to xxxxxFFFH.
- (2) The lowest bit of the address is not decoded. Therefore, when the register of an odd address (2n + 1 address) is byte-accessed, the register of an even address (2n) will be accessed.
- (3) Although word-accessible registers do not exist in the NU85ET, halfword access using the lower and higher bits (in that order and ignoring the lowest 2) of a word area can be made twice to enable word access.
- (4) When byte-accessible registers are halfword-accessed, the higher 8 bits become undefined in a read operation, and the lower 8 bits of data are written to a register in a write operation.
- (5) Registers other than those that control the NU85ET are incorporated in each macro (MEMC, instruction/data cache).

3.5.1 NU85ET control registers

Address	Register Name	Symbol	R/W	Bit Units	s for Man	ipulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFF060H	Chip area select control register 0	CSC0	R/W			\checkmark	2C11H
FFFF062H	Chip area select control register 1	CSC1	R/W			\checkmark	2C11H
FFFFF064H	Peripheral I/O area select control register	BPC	R/W			\checkmark	0000H
FFFF066H	Bus size configuration register	BSC	R/W			\checkmark	0000H/ 5555H/ AAAAH
FFFFF068H	Endian configuration register	BEC	R/W			\checkmark	0000H
FFFF06AH	Cache configuration register	BHC	R/W			\checkmark	0000H
FFFFF06EH	NPB strobe wait control register	VSWC	R/W	\checkmark	\checkmark		77H
FFFFF080H	DMA source address register 0L	DSA0L	R/W			\checkmark	Undefined
FFFFF082H	DMA source address register 0H	DSA0H	R/W			\checkmark	Undefined
FFFFF084H	DMA destination address register 0L	DDA0L	R/W			\checkmark	Undefined
FFFFF086H	DMA destination address register 0H	DDA0H	R/W			\checkmark	Undefined
FFFFF088H	DMA source address register 1L	DSA1L	R/W			\checkmark	Undefined
FFFFF08AH	DMA source address register 1H	DSA1H	R/W			\checkmark	Undefined
FFFF08CH	DMA destination address register 1L	DDA1L	R/W			\checkmark	Undefined
FFFFF08EH	DMA destination address register 1H	DDA1H	R/W			\checkmark	Undefined
FFFFF090H	DMA source address register 2L	DSA2L	R/W			\checkmark	Undefined
FFFFF092H	DMA source address register 2H	DSA2H	R/W			\checkmark	Undefined
FFFFF094H	DMA destination address register 2L	DDA2L	R/W			\checkmark	Undefined
FFFFF096H	DMA destination address register 2H	DDA2H	R/W			\checkmark	Undefined
FFFFF098H	DMA source address register 3L	DSA3L	R/W			\checkmark	Undefined
FFFFF09AH	DMA source address register 3H	DSA3H	R/W			\checkmark	Undefined
FFFFF09CH	DMA destination address register 3L	DDA3L	R/W			\checkmark	Undefined
FFFFF09EH	DMA destination address register 3H	DDA3H	R/W			\checkmark	Undefined
FFFFF0C0H	DMA transfer count register 0	DBC0	R/W			\checkmark	Undefined
FFFF6C2H	DMA transfer count register 1	DBC1	R/W			\checkmark	Undefined
FFFF0C4H	DMA transfer count register 2	DBC2	R/W			\checkmark	Undefined
FFFF0C6H	DMA transfer count register 3	DBC3	R/W			\checkmark	Undefined
FFFF6D0H	DMA addressing control register 0	DADC0	R/W			\checkmark	0000H
FFFF6D2H	DMA addressing control register 1	DADC1	R/W			\checkmark	0000H
FFFF6D4H	DMA addressing control register 2	DADC2	R/W			\checkmark	0000H
FFFF0D6H	DMA addressing control register 3	DADC3	R/W			\checkmark	0000H
FFFF0E0H	DMA channel control register 0	DCHC0	R/W	\checkmark	\checkmark		00H
FFFF6E2H	DMA channel control register 1	DCHC1	R/W	\checkmark	\checkmark		00H
FFFF0E4H	DMA channel control register 2	DCHC2	R/W	\checkmark	\checkmark		00H
FFFF0E6H	DMA channel control register 3	DCHC3	R/W	\checkmark	\checkmark		00H
FFFFF0F0H	DMA disable status register	DDIS	R				00H

Address	Register Name	Symbol	R/W	Bit Unit	s for Man	ipulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF0F2H	DMA restart register	DRST	R/W	\checkmark	\checkmark		00H
FFFFF100H	Interrupt mask register 0	IMR0	R/W			\checkmark	FFFFH
FFFFF100H	Interrupt mask register 0L	IMR0L	R/W		\checkmark		FFH
FFFFF101H	Interrupt mask register 0H	IMR0H	R/W		\checkmark		FFH
FFFFF102H	Interrupt mask register 1	IMR1	R/W			\checkmark	FFFFH
FFFFF102H	Interrupt mask register 1L	IMR1L	R/W		\checkmark		FFH
FFFFF103H	Interrupt mask register 1H	IMR1H	R/W		\checkmark		FFH
FFFFF104H	Interrupt mask register 2	IMR2	R/W			\checkmark	FFFFH
FFFFF104H	Interrupt mask register 2L	IMR2L	R/W		\checkmark		FFH
FFFFF105H	Interrupt mask register 2H	IMR2H	R/W				FFH
FFFFF106H	Interrupt mask register 3	IMR3	R/W			\checkmark	FFFFH
FFFFF106H	Interrupt mask register 3L	IMR3L	R/W				FFH
FFFFF107H	Interrupt mask register 3H	IMR3H	R/W				FFH
FFFFF110H	Interrupt control register 0	PIC0	R/W		\checkmark		47H
FFFFF112H	Interrupt control register 1	PIC1	R/W				47H
FFFFF114H	Interrupt control register 2	PIC2	R/W				47H
FFFFF116H	Interrupt control register 3	PIC3	R/W				47H
FFFFF118H	Interrupt control register 4	PIC4	R/W				47H
FFFFF11AH	Interrupt control register 5	PIC5	R/W				47H
FFFFF11CH	Interrupt control register 6	PIC6	R/W				47H
FFFFF11EH	Interrupt control register 7	PIC7	R/W				47H
FFFFF120H	Interrupt control register 8	PIC8	R/W				47H
FFFFF122H	Interrupt control register 9	PIC9	R/W				47H
FFFFF124H	Interrupt control register 10	PIC10	R/W				47H
FFFFF126H	Interrupt control register 11	PIC11	R/W				47H
FFFFF128H	Interrupt control register 12	PIC12	R/W		\checkmark		47H
FFFFF12AH	Interrupt control register 13	PIC13	R/W				47H
FFFFF12CH	Interrupt control register 14	PIC14	R/W				47H
FFFFF12EH	Interrupt control register 15	PIC15	R/W		\checkmark		47H
FFFFF130H	Interrupt control register 16	PIC16	R/W				47H
FFFFF132H	Interrupt control register 17	PIC17	R/W				47H
FFFFF134H	Interrupt control register 18	PIC18	R/W				47H
FFFFF136H	Interrupt control register 19	PIC19	R/W	\checkmark	\checkmark		47H
FFFFF138H	Interrupt control register 20	PIC20	R/W				47H
FFFFF13AH	Interrupt control register 21	PIC21	R/W	\checkmark	\checkmark		47H
FFFFF13CH	Interrupt control register 22	PIC22	R/W	\checkmark	\checkmark		47H
FFFFF13EH	Interrupt control register 23	PIC23	R/W	\checkmark	\checkmark		47H
FFFFF140H	Interrupt control register 24	PIC24	R/W				47H

Address	Register Name	Symbol	R/W	Bit Units	s for Man	ipulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF142H	Interrupt control register 25	PIC25	R/W				47H
FFFFF144H	Interrupt control register 26	PIC26	R/W	\checkmark	\checkmark		47H
FFFFF146H	Interrupt control register 27	PIC27	R/W	\checkmark	\checkmark		47H
FFFFF148H	Interrupt control register 28	PIC28	R/W	\checkmark	\checkmark		47H
FFFFF14AH	Interrupt control register 29	PIC29	R/W	\checkmark	\checkmark		47H
FFFFF14CH	Interrupt control register 30	PIC30	R/W	\checkmark	\checkmark		47H
FFFFF14EH	Interrupt control register 31	PIC31	R/W	\checkmark	\checkmark		47H
FFFFF150H	Interrupt control register 32	PIC32	R/W	\checkmark	\checkmark		47H
FFFFF152H	Interrupt control register 33	PIC33	R/W	\checkmark	\checkmark		47H
FFFFF154H	Interrupt control register 34	PIC34	R/W		\checkmark		47H
FFFFF156H	Interrupt control register 35	PIC35	R/W	\checkmark	\checkmark		47H
FFFFF158H	Interrupt control register 36	PIC36	R/W	\checkmark	\checkmark		47H
FFFFF15AH	Interrupt control register 37	PIC37	R/W	\checkmark	\checkmark		47H
FFFFF15CH	Interrupt control register 38	PIC38	R/W	\checkmark	\checkmark		47H
FFFFF15EH	Interrupt control register 39	PIC39	R/W	\checkmark	\checkmark		47H
FFFFF160H	Interrupt control register 40	PIC40	R/W	\checkmark	\checkmark		47H
FFFFF162H	Interrupt control register 41	PIC41	R/W	\checkmark	\checkmark		47H
FFFFF164H	Interrupt control register 42	PIC42	R/W	\checkmark	\checkmark		47H
FFFFF166H	Interrupt control register 43	PIC43	R/W	\checkmark	\checkmark		47H
FFFFF168H	Interrupt control register 44	PIC44	R/W	\checkmark	\checkmark		47H
FFFFF16AH	Interrupt control register 45	PIC45	R/W	\checkmark	\checkmark		47H
FFFFF16CH	Interrupt control register 46	PIC46	R/W	\checkmark	\checkmark		47H
FFFFF16EH	Interrupt control register 47	PIC47	R/W	\checkmark	\checkmark		47H
FFFFF170H	Interrupt control register 48	PIC48	R/W	\checkmark	\checkmark		47H
FFFFF172H	Interrupt control register 49	PIC49	R/W	\checkmark	\checkmark		47H
FFFFF174H	Interrupt control register 50	PIC50	R/W	\checkmark	\checkmark		47H
FFFFF176H	Interrupt control register 51	PIC51	R/W	\checkmark	\checkmark		47H
FFFFF178H	Interrupt control register 52	PIC52	R/W	\checkmark	\checkmark		47H
FFFFF17AH	Interrupt control register 53	PIC53	R/W	\checkmark	\checkmark		47H
FFFFF17CH	Interrupt control register 54	PIC54	R/W	\checkmark	\checkmark		47H
FFFFF17EH	Interrupt control register 55	PIC55	R/W	\checkmark	\checkmark		47H
FFFFF180H	Interrupt control register 56	PIC56	R/W	\checkmark	\checkmark		47H
FFFFF182H	Interrupt control register 57	PIC57	R/W	\checkmark	\checkmark		47H
FFFFF184H	Interrupt control register 58	PIC58	R/W	\checkmark	\checkmark		47H
FFFFF186H	Interrupt control register 59	PIC59	R/W	\checkmark	\checkmark		47H
FFFFF188H	Interrupt control register 60	PIC60	R/W	\checkmark	\checkmark		47H
FFFFF18AH	Interrupt control register 61	PIC61	R/W	\checkmark	\checkmark		47H
FFFFF18CH	Interrupt control register 62	PIC62	R/W				47H

							(4/4)
Address	Register Name	Symbol	R/W	Bit Units	s for Man	ipulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF18EH	Interrupt control register 63	PIC63	R/W	\checkmark	\checkmark		47H
FFFFF1FAH	In-service priority register	ISPR	R	\checkmark	\checkmark		00H
FFFFF1FCH	Command register	PRCMD	W		\checkmark		Undefined
FFFFF1FEH	Power save control register	PSC	R/W	\checkmark	\checkmark		00H

3.5.2 Memory controller (MEMC) control registers

Address	Register Name	Symbol	R/W	Bit Units	s for Man	ipulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF480H	Bus cycle type configuration register 0	BCT0	R/W			\checkmark	8888H/0000H
FFFFF482H	Bus cycle type configuration register 1	BCT1	R/W			\checkmark	8888H/0000H
FFFFF484H	Data wait control register 0	DWC0	R/W			\checkmark	7777H
FFFFF486H	Data wait control register 1	DWC1	R/W			\checkmark	7777H
FFFFF488H	Bus cycle control register	BCC	R/W			\checkmark	FFFFH
FFFFF48AH	Address setting wait control register	ASC	R/W			\checkmark	FFFFH
FFFFF48CH	Bus cycle period control register	BCP	R/W	\checkmark	\checkmark		80H/00H
FFFFF49AH	Page ROM configuration register	PRC	R/W			\checkmark	7000H
FFFFF4A0H	SDRAM configuration register 0	SCR0	R/W			\checkmark	0000H
FFFFF4A2H	SDRAM refresh control register 0	RFS0	R/W			\checkmark	0000H
FFFFF4A4H	SDRAM configuration register 1	SCR1	R/W			\checkmark	0000H
FFFFF4A6H	SDRAM refresh control register 1	RFS1	R/W			\checkmark	0000H
FFFFF4A8H	SDRAM configuration register 2	SCR2	R/W			\checkmark	0000H
FFFFF4AAH	SDRAM refresh control register 2	RFS2	R/W			\checkmark	0000H
FFFFF4ACH	SDRAM configuration register 3	SCR3	R/W			\checkmark	0000H
FFFFF4AEH	SDRAM refresh control register 3	RFS3	R/W			\checkmark	0000H
FFFFF4B0H	SDRAM configuration register 4	SCR4	R/W			\checkmark	0000H
FFFFF4B2H	SDRAM refresh control register 4	RFS4	R/W			\checkmark	0000H
FFFFF4B4H	SDRAM configuration register 5	SCR5	R/W			\checkmark	0000H
FFFFF4B6H	SDRAM refresh control register 5	RFS5	R/W			\checkmark	0000H
FFFFF4B8H	SDRAM configuration register 6	SCR6	R/W			\checkmark	0000H
FFFFF4BAH	SDRAM refresh control register 6	RFS6	R/W			\checkmark	0000H
FFFFF4BCH	SDRAM configuration register 7	SCR7	R/W			\checkmark	0000H
FFFFF4BEH	SDRAM refresh control register 7	RFS7	R/W			\checkmark	0000H

3.5.3 Instruction cache control registers

Address	Register Name	Symbol	R/W	Bit Units	s for Mani	pulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF070H	Instruction cache control register	ICC	R/W			\checkmark	0003H ^{Note 1}
FFFFF070H	Instruction cache control register L	ICCL	R/W	\checkmark	\checkmark		03H ^{Note 2}
FFFFF071H	Instruction cache control register H	ICCH	R/W	\checkmark	\checkmark		00H
FFFFF074H	Instruction cache data configuration register	ICD	R/W			\checkmark	Undefined

Notes 1. This value becomes 0003H when the reset signal is active, and tag initialization starts automatically. The value changes to 0000H upon the completion of tag initialization.

2. This value becomes 03H when the reset signal is active, and tag initialization starts automatically. The value changes to 00H upon the completion of tag initialization.

3.5.4 Data cache control registers

Address	Register Name	Symbol	R/W	Bit Units	s for Mani	pulation	After Reset
				1 Bit	8 Bits	16 Bits	
FFFFF078H	Data cache control register	DCC	R/W			\checkmark	0003H ^{Note}
FFFFF07CH	Data cache data configuration register	DCD	R/W			\checkmark	Undefined

Note This value becomes 0003H when the reset signal is active, and tag initialization starts automatically. The value changes to 0000H upon the completion of tag initialization.

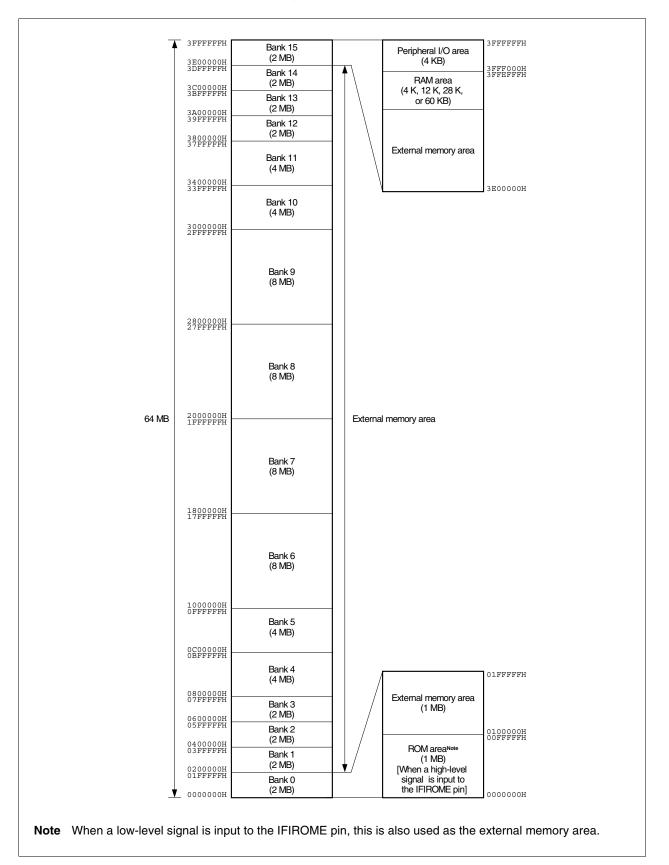
CHAPTER 4 BCU

The bus control unit (BCU), which operates as a bus master on the VSB, controls the on-chip bus bridge (BBR), test interface control unit (TIC), and peripheral macros (bus slaves) such as the external memory controller (MEMC) connected to the VSB.

4.1 Features

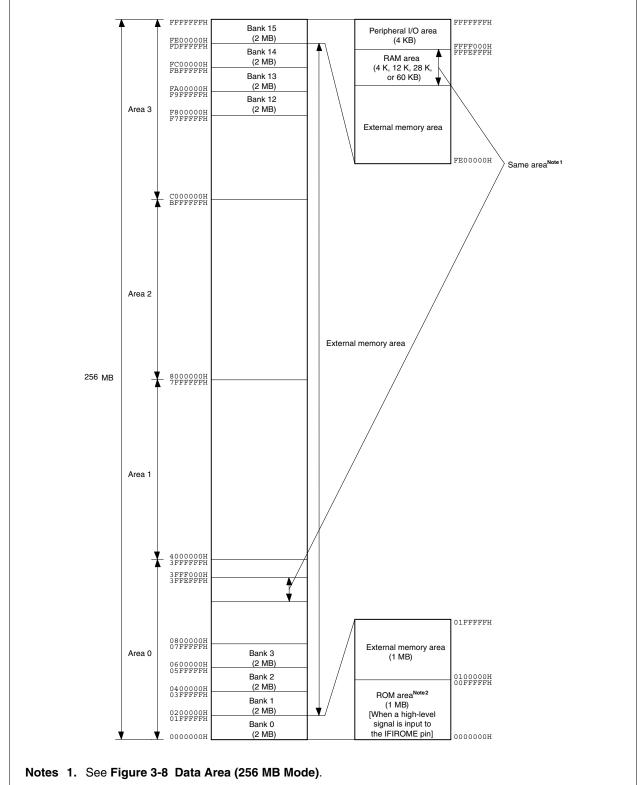
- 32-bit independent I/O separated data bus
- One bus clock transfer between consecutive clock falling edges
- Data transfer in 8-bit, 16-bit, or 32-bit units on a 32-bit bus by means of the bus size function
- Bus arbitration for a multi-master system
- Programmable chip select function
- Programmable peripheral I/O area select function
- Endian setting function

4.2 Memory Banks


The data area is subdivided into multiple units called banks.

The BCU makes bus size, endian, and cache settings in terms of units called "CSn area", which are arbitrary combinations of banks.

"CSn area" settings are made based on the VDCSZn signals corresponding to each bank (n = 7 to 0).


(1) Memory banks for 64 MB mode

The 64 MB data area is subdivided into memory banks with sizes of 2 MB, 4 MB, and 8 MB.

(2) Memory banks for 256 MB mode

The 256 MB data area is subdivided into four areas (area 0 to area 3), each of which contain memory banks of size 2 MB.

^{2.} When a low-level signal is input to the IFIROME pin, this is also used as the external memory area.

4.3 Programmable Chip Select Function

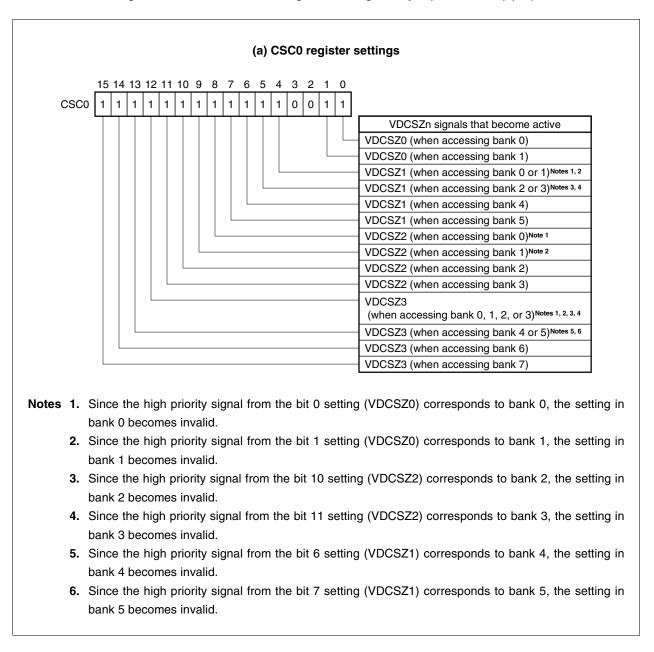
The VDCSZn signals corresponding to each bank of memory are set and the data area is subdivided into multiple CSn areas according to chip area select control registers 0 and 1 (CSC0 and CSC1) (n = 7 to 0). The CSC0 and CSC1 registers can be read or written in 16-bit units.

When the VDCSZn signals for the same bank overlap due to the CSC0 and CSC1 register settings, the signal prioritization is as follows.

• VDCSZ0 > VDCSZ2 > VDCSZ1 > VDCSZ3

VDCSZ7 > VDCSZ5 > VDCSZ6 > VDCSZ4

Figure 4-1.	Chin Area	Select	Control	Register ((CSCO)
riguic 4 -1.		OCICCI	00111101	negister t	(0000)


	CS	CS	CS	CS	CS	CS	CS	CS	CS	CS	CS	CS	CS	CS	CS	CS	Address	After res	
SC0	33	32	31	30	23	22	21	20	13	12	11	10	03	02	01	00	FFFFF060H	2C11F	
Bit po	sition	Bit	name									Funct	tion						
15 to ()	CSI CSI	n3 to n0		hen ea trenthe			t (1), 1	the VE	DCSZr	n signa	al beco	omes	active	e if the	cond	ition within		
					Bit na	me				VE	CSZr	n signa	al that	beco	mes a	ctive			
									64 M	B mo	de					256 N	/IB mode		
					CSOC)	VDCS	Z0 (w	hen a	ccess	ing ba	nk 0)							
					CS01		VDCS	Z0 (w	hen a	ccess	ing ba	nk 1)							
					CS02	2	VDCS	Z0 (w	hen a	ccess	ing ba	nk 2)							
					CS03	;	VDCS	Z0 (w	hen a	ccess	ing ba	nk 3)							
					CS10)	VDCS	Z1 (w	hen a	ccess	ing ba	nk 0 o	,		•		accessing area	·	
					CS11		VDCS	Z1 (w	hen a	ccess	ing ba	nk 2 o	r 3)	(Sam	e wne	n eac	h bit is cleared	(0))	
					CS12		VDCS	Z1 (w	hen a	ccess	ing ba	nk 4)							
					CS13	;	VDCS	Z1 (w	hen a	ccess	ing ba	nk 5)							
					CS20	-	VDCS	Z2 (w	hen a	ccess	ing ba	nk 0)							
					CS21 VDCSZ2 (when accessing bank 1)														
					CS22	2	VDCS	Z2 (w	hen a	ccess	ing ba	nk 2)							
					CS23	;	VDCS	Z2 (w	hen a	ccess	ing ba	nk 3)							
					CS30	VDCSZ3 (when accessing bank 0, 1, 2, or 3) VDCSZ3 (when accessing area 1) (Same when each bit is cleared (0))									'				
					CS31		VDCS	Z3 (w	hen a	ccess	ing ba	nk 4 o	r 5)						
					CS32	2	VDCS	Z3 (w	hen a	ccess	ing ba	nk 6)							
					CS33	;	VDCS	Z3 (w	hen a	ccess	ing ba	nk 7)							


Preliminary User's Manual A15015EJ3V0UM

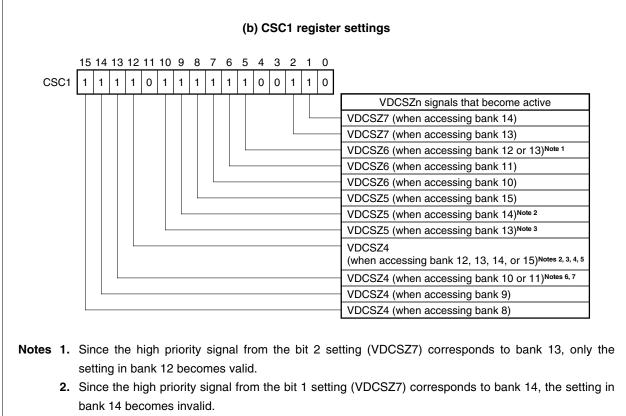
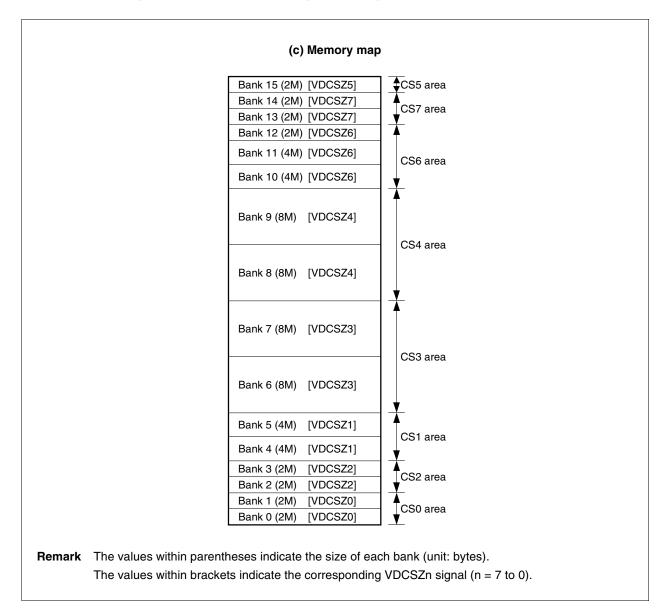
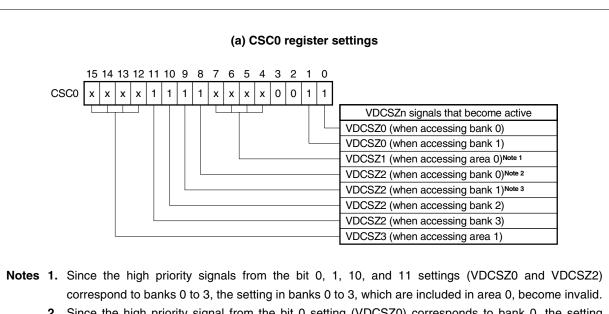

				12	11		9		7	6	5	4	3	2	1	0	1	
CSC1	CS 43	CS 42	CS 41	CS 40	CS 53	CS 52	CS 51	CS 50	CS 63	CS 62	CS 61	CS 60	CS 73	CS 72	CS 71	CS 70	Address FFFF062H	After rese 2C11H
																	1	
Bit pos	sition	Bit	name									Func	tion					
15 to C)	CSI CSI	n3 to n0		/hen ea olds.	ach b	it is se	t (1), 1	the VE	DCSZr	n signa	al bec	omes	active	if the	cond	ition within pare	entheses
					Bit na	me				VE	DCSZr	n signa	al that	t beco	mes a	ctive		
									64 M	B moo		5					IB mode	
					CS40		VDCS 13, 14			ccess	ing ba	nk 12					ccessing area 2 n bit is cleared (-
					CS41		VDCS 11)	Z4 (w	hen a	ccessi	ing ba	nk 10						
					CS42	2	VDCS	Z4 (w	hen a	ccess	ing ba	nk 9)						
	CS43							Z4 (w	hen a	ccessi	ing ba	nk 8)						
()	VDCS	Z5 (w	hen a	ccess	ing ba	nk 15)					
					CS51		VDCSZ5 (when accessing bank 14)											
					CS52	2	VDCS	Z5 (w	hen a	ccess	ing ba	nk 13)					
					CS53	3	VDCS	Z5 (w	hen a	ccess	ing ba	nk 12)					
CS							VDCS 15)	Z6 (w	hen a	ccessi	ing ba	nk 14					ccessing area 3 n bit is cleared (-
	CS61	CS61 VDCSZ6 (when accessing bank 12 or 13)																
	CS62	2 VDCSZ6 (when accessing bank 11)																
		CS63	363 VDCSZ6 (when accessing bank 10)															
				CS70														
					CS71		VDCS	Z7 (w	hen a	ccess	ing ba	nk 14)					
		CS72																
					CS73	3	VDCS	Z7 (w	hen a	ccess	ing ba	nk 12)					

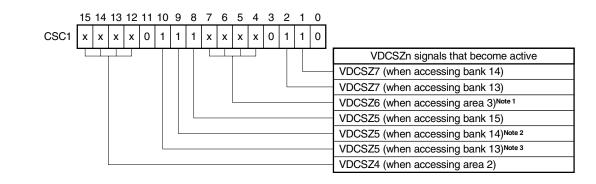
Figure 4-2. Chip Area Select Control Register 1 (CSC1)

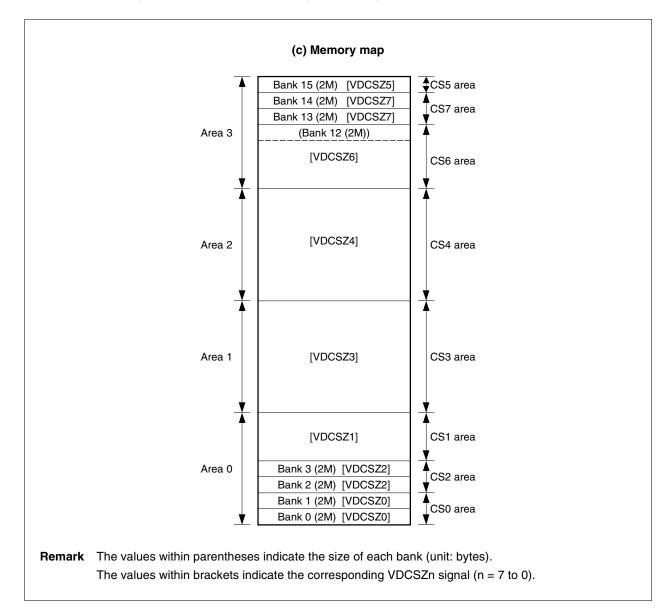
Examples 1. The following figure shows an example of CSC0 and CSC1 register settings for 64 MB mode and the memory map after the settings are made.




Figure 4-3. CSC0 and CSC1 Register Setting Example (64 MB Mode) (2/3)

- **3.** Since the high priority signal from the bit 2 setting (VDCSZ7) corresponds to bank 13, the setting in bank 13 becomes invalid.
- **4.** Since the high priority signal from the bit 5 setting (VDCSZ6) corresponds to bank 12, the setting in bank 12 becomes invalid.
- **5.** Since the high priority signal from the bit 8 setting (VDCSZ5) corresponds to bank 15, the setting in bank 15 becomes invalid.
- **6.** Since the high priority signal from the bit 7 setting (VDCSZ6) corresponds to bank 10, the setting in bank 10 becomes invalid.
- **7.** Since the high priority signal from the bit 6 setting (VDCSZ6) corresponds to bank 11, the setting in bank 11 becomes invalid.


Examples 2. The following figure shows an example of CSC0 and CSC1 register settings for 256 MB mode and the memory map after the settings are made.



- 2. Since the high priority signal from the bit 0 setting (VDCSZ0) corresponds to bank 0, the setting becomes invalid.
- **3.** Since the high priority signal from the bit 1 setting (VDCSZ0) corresponds to bank 1, the setting becomes invalid.

(b) CSC1 register settings

- **Notes 1.** Since the high priority signals from the bit 1, 2, and 8 settings (VDCSZ5 and VDCSZ7) correspond to banks 13 to 15, the settings in banks 13 to 15, which are included in area 3, become invalid (Since bank 12 has no corresponding VDCSZn signal, its setting does not become ineffective).
 - **2.** Since the high priority signal from the bit 1 setting (VDCSZ7) corresponds to bank 14, the setting becomes invalid.
 - **3.** Since the high priority signal from the bit 2 setting (VDCSZ7) corresponds to bank 13, the setting becomes invalid.

4.4 Programmable Peripheral I/O Area Selection Function

The NU85ET has a 4 KB peripheral I/O area that is allocated in advance in the address space and a 12 KB programmable peripheral I/O area that can be allocated at arbitrary addresses according to register settings.

Registers for peripheral macros connected to the NPB or user logic can be freely located in the programmable peripheral I/O area.

Caution Be sure to allocate the programmable peripheral I/O area to a CSn area in which both little endian and instruction/data cache-prohibited settings have been made (n = 7 to 0).

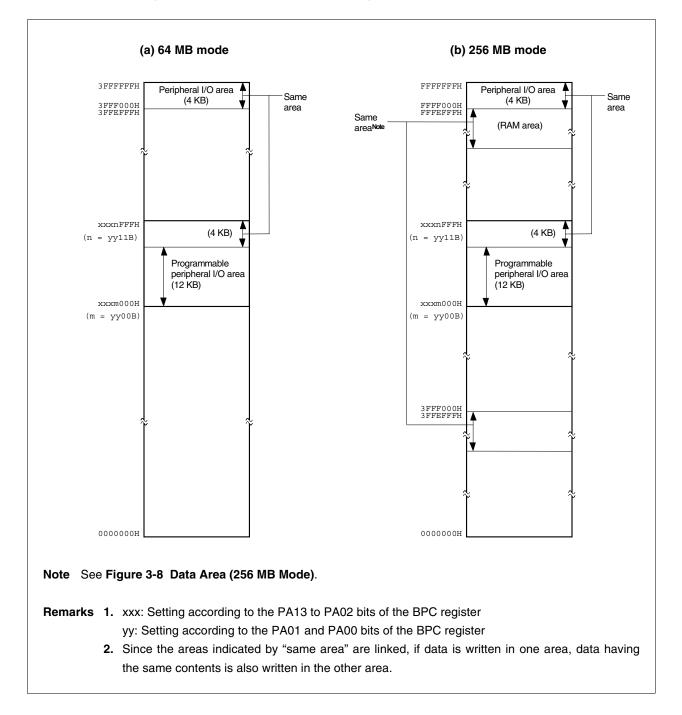


Figure 4-5. Peripheral I/O Area and Programmable Peripheral I/O Area

The programmable peripheral I/O area can be used by specifying the higher 14 bits (bit 27 to bit 14) of the starting address in the PA00 to PA13 bits of the peripheral I/O area select control register (BPC) and setting (1) the PA15 bit. The BPC register can be read or written in 16-bit units.

The prioritization of the various CSn areas selected by the VDCSZn signals and the programmable peripheral I/O area is as follows (n = 7 to 0).

Programmable peripheral I/O area > Various CSn areas selected by VDCSZn signals

Cautions 1. In 64 MB mode, if the programmable peripheral I/O area overlaps the following areas, the programmable peripheral I/O area becomes invalid.

- Peripheral I/O area
- ROM area
- RAM area
- 2. In 256 MB mode, if the programmable peripheral I/O area overlaps the following areas, the programmable peripheral I/O area becomes invalid.
 - Peripheral I/O area
 - ROM area
 - RAM area
 - The area that is the same as the RAM area and that is located at address 3FFEFFFH and below (See Figure 3-8 Data Area (256 MB Mode))
- 3. If there are no peripheral macros connected to the NPB or user logic, no programmable peripheral I/O area need be set (Set the BPC register to its after-reset value).
- 4. When accessing the programmable peripheral I/O area, the VDCSZn signals are all output as inactive (high level) and the VDSELPZ signal becomes active (low level) (n = 7 to 0).
- 5. Programmable peripheral I/O area address setting is enabled only once. Do not change address in the middle of a program.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
BPC	PA	0	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	Address	After rese
DFC	15	0	13	12	11	10	09	08	07	06	05	04	03	02	01	00	FFFFF064H	0000H
		1		-														
Bit pos	sition	Bit	name									Func	tion					
15		PA	t name Function 115 Sets whether or not the programmable peripheral I/O area can be accessed. 0: It cannot be accessed 1: It can be accessed															
13 to 0 PA13 to Specifies bit 27 to bit 14 of the starting address of the programmable peripheral I/O area. (The other bits are fixed at zero.)										a. (The								

Figure 4-6. Peripheral I/O Area Select Control Register (BPC)

4.5 Bus Size Setting Function

The bus size setting function uses the bus size configuration register (BSC) to set the VSB data bus size for each CSn area selected by the chip select signal (VDCSZn) (see **Figures 4-3** and **4-4**) (n = 7 to 0).

The BSC register can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
BSC	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	BS	Address	After rese
000	71	70	61	60	51	50	41	40	31	30	21	20	11	10	01	00	FFFFF066H	Note
Bit po	sition	Bit	name	Т								Func	tion					
15 to ()	BSr BSr	-	Sp siz		s the p	beriph	eral m	nacro	on the	VSB	that w	as loo	cated	in the	CSn a	area and the da	ata bus
					BS	n1	В	Sn0					VS	B data	t bus	size		
				[C)		0	8	bits								
					C)		1	16	i bits								
					1			0	32	bits								
					1			1	Se	etting	orohib	ited						
	-	ז = 7	to 0															
Rema	a rk r																	
Rema Note		after	-reset	valu	ue diff	ers a	s follo	ows a	iccord	ding t	o the	level	s inpı	ut to t	he IF	INSZ	1 and IFINSZ	0 pins.

Figure 4-7. Bus S	Size Configuration	Register (BSC)
-------------------	--------------------	----------------

IFINSZ1	IFINSZ0	VSB data bus size	After-reset value
Low level	Low level	32 bits	ААААН
Low level	High level	16 bits	5555H
High level	Low level	8 bits	0000H

Example In a CSn area, when the boot ROM is 16-bit width and memories in other areas are 32-bit width, start up using 16-bit width in the initial state (input a low level to the IFINSZ1 pin and a high level to the IFINSZ0 pin) and then switch to 32-bit width via the BSC resister.

4.6 Endian Setting Function

4.6.1 Endian configuration register (BEC)

The endian setting function uses the endian configuration register (BEC) to set the endian format of word data within memory for each CSn area selected by the chip select signal (VDCSZn) (see **Figures 4-3** and **4-4**) (n = 7 to 0). The BEC register can be read or written in 16-bit units.

Cautions 1. Set the CSn area specified as the programmable peripheral I/O area in the little endian format (n = 7 to 0).

- 2. Each of the following areas is fixed to little endian format. Setting the big endian format for these areas via the BEC register is invalid.
 - Peripheral I/O area
 - ROM area
 - RAM area
 - The area that is the same as the RAM area and that is located at address 3FFEFFFH and below (for 256 MB mode) (See Figure 3-8 Data Area (256 MB Mode))
 - External memory fetch area (when the VMBSTR signal is active)

Figure 4-8. Endian Configuration Register (BEC)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
BEC	0	BE 70	0	BE 60	0	BE 50	0	BE 40	0	BE 30	0	BE 20	0	ВЕ 10	0	BE 00	Address FFFFF068H	After reset 0000H
Bit pos	sition	Bit	name	9		Function												
14, 12 8, 6, 4		BEI	า0	Se	Sets the endian format of word data in the CSn area.													
					BE	n0						En	dian	format				
					C)	Little	e endia	an for	mat (s	ee Fig	gure 4	-9)					
					1		Big	endiar	n form	at (se	e Figu	ure 4-1	I O)					
Rema	irk i	า = 7	to 0	I														

Caution Always set bits 15, 13, 11, 9, 7, 5, 3, and 1 to 0. If they are set to 1, operation is not guaranteed.

31 24	4 23 16	15 8	7	0
(000BH)	(000AH)	(0009H)	(0008H)	
(0007H)	(0006H)	(0005H)	(0004H)	
(0003H)	(0002H)	(0001H)	(0000H)	

Figure 4-9. Word Data Little Endian Format Example

Figure 4-10. Word Data Big Endian Format Example

31 24	23 16	15 8	7 0
(0008H)	(0009H)	(000AH)	(000BH)
(0004H)	(0005H)	(0006H)	(0007H)
(0000H)	(0001H)	(0002H)	(0003H)

4.6.2 Usage restrictions concerning big endian format with NEC development tools

(1) When using the debugger (ID850)

Only the Memory window display supports the big endian format.

(2) When using the compiler (CA850)

(a) C language restrictions

- (i) The following restrictions are attached to variables configured in a big endian space.
 - <1> unions cannot be used.
 - <2> bitfields cannot be used.
 - <3> Accesses based on the cast (changed access size) cannot be used.
 - <4> Variables with initial values cannot be used.
- (ii) Because the access size may change due to optimization, it is necessary to specify the following optimization suppression options.
 - For global optimization sections (opt850).....-Wo, -XTb
 - For model-based optimization sections (impr850).....-Wi, +arg_reg_opt=OFF, +stld_trans_opt=OFF

However, it is unnecessary to specify the above optimization suppression options when not using "cast" or "mask/shift" access^{Note}.

Note The condition is that patterns causing the following optimization are not used. It is extremely difficult to perform a perfect check on the user side in a state such as where all the patterns (especially in the model-based optimization section) are mixed together. The above optimization suppression options are therefore recommended.

<1> For global optimization section

• 1 bit set using bit or

int i;

```
i ^= 1;
```

- 1 bit clear using bit and
 - i &= ~1;

• 1 bit not using bit xor

i ^= 1;

1 bit test using bit and if(i & 1);

<2> For model-based optimization section

Usage whereby identical variables are accessed in different sizes

- Cast
- Mask
- Shift

```
Example int i, *ip;

char c;

:

:

c=*((char*)ip);

:

c = 0xff & i;

:

i = (i << 24) >> 24;
```

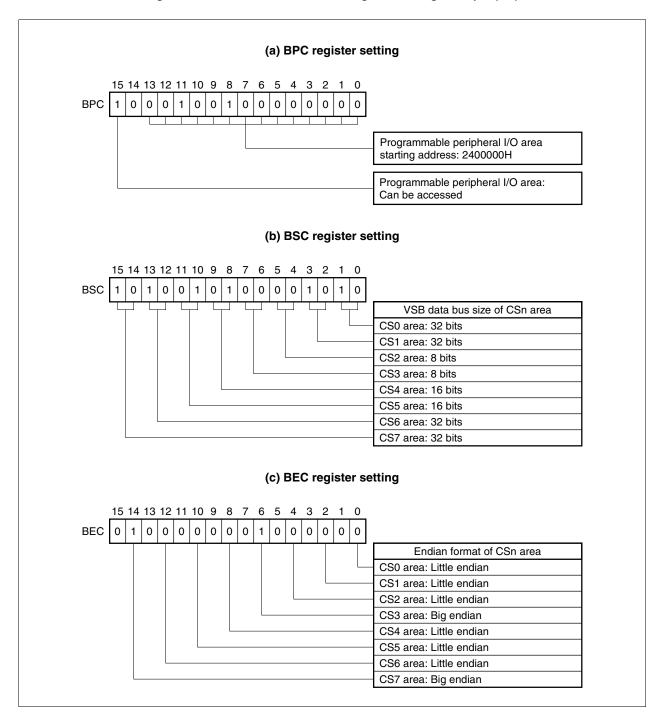
(b) Assembly language restrictions

Area-securing quasi directives that are not byte size (.hword, .word, .float, .shword) cannot be used for variables configured in the big endian space.

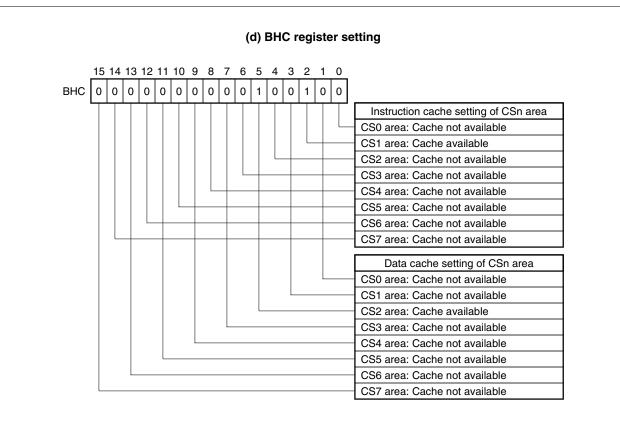
4.7 Cache Configuration

The cache configuration register (BHC) is used to set the cache memory configuration for each CSn area selected by the chip select signal (VDCSZn) (see **Figures 4-3** and **4-4**) (n = 7 to 0).

The BHC register can be read or written in 16-bit units.


- Cautions 1. Be sure to disable the cache for big endian format CSn area or CSn areas set as the following areas (n = 7 to 0).
 - ROM area
 - RAM area
 - Peripheral I/O area
 - Programmable peripheral I/O area
 - 2. The instruction/data cache enabled setting (BHn0/BHn1 bit = 1 (set)) is only valid when a low level is being input (cache enabled) to the IFIUNCH0 or IFIUNCH1 pin. In other cases, the instruction/data cache enabled setting is invalid even if the BHn0/BHn1 bit is set to 1.
 - 3. When using the data cache, set this register after setting the data cache's data cache control register (DCC).

r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	٦	
BHC	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	BH	Address	After reset
-	71	70	61	60	51	50	41	40	31	30	21	20	11	10	01	00	FFFFF06AH	0000H
Bit pos	sition	Bit	name		Function													
15, 13, 9, 7, 5,		BHı	า1	Sets whether or not the data cache located in the CSn area can be used.														
					BHn1 Data cache setting													
					0 Cache disabled													
					1	Cache enabled												
				'														
14, 12, 8, 6, 4,		BHı	า0	Se	ets wh	ether	or not	the in	struct	ion ca	iche la	ocated	l in the	e CSn	area	can b	e used.	
					BH	n0					In	struct	ion ca	che s	etting			
					0)	Cach	ne disa	abled									
					1		Cacł	ne ena	abled									
				'														
Rema	Remark $n = 7 \text{ to } 0$																	


Figure 4-11. Cache Configuration Register (BHC)

4.8 BCU-Related Register Setting Examples

Figure 4-12 shows a BPC, BSC, BEC, and BHC register setting example, the corresponding settings for each CSn area, and the memory map when the data area has been set according to the contents of the example shown in Figure 4-3 CSC0 and CSC1 Register Setting Example (64 MB Mode) (n = 7 to 0).

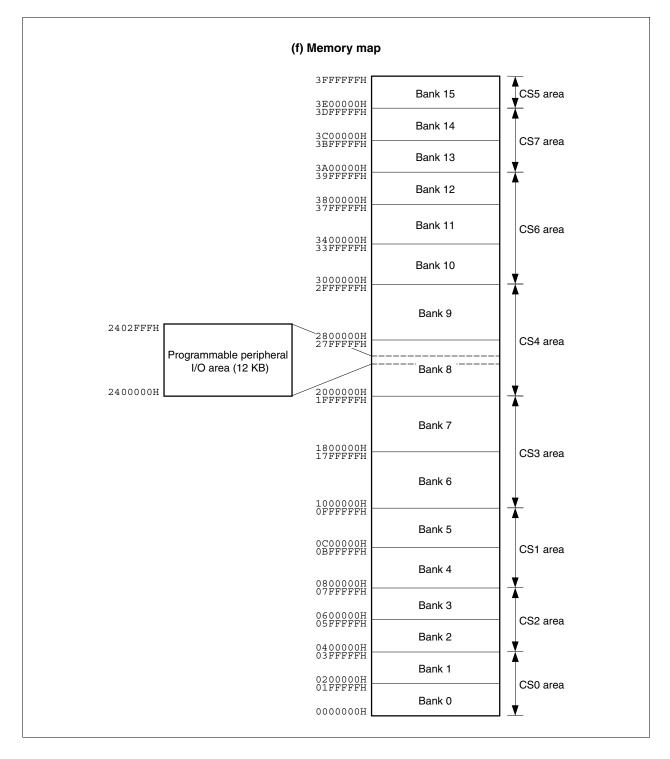
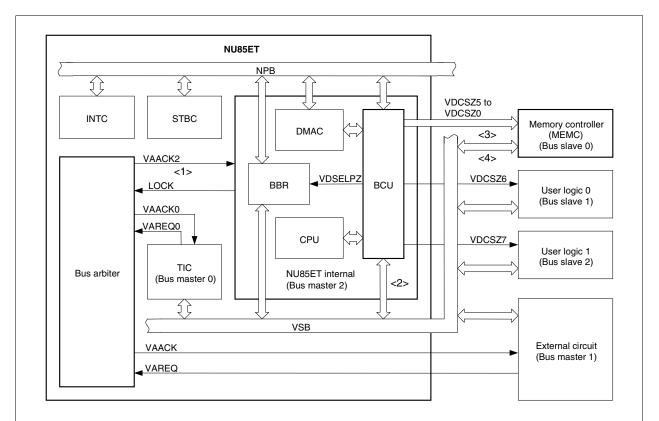


Figure 4-12. BPC, BSC, BEC, BHC Register Setting Example (2/3)

(e) Settings of each CSn area

CSn area	Addresses	Banks	VDCSZn signal	VSB data bus	Endian format	Cache	setting
				size (bits)		Instruction	Data
0	0000000H to 03FFFFFH	0, 1	VDCSZ0	32	Little endian	No	No
1	0800000H to 0FFFFFFH	4, 5	VDCSZ1	32	Little endian	Yes	No
2	0400000H to 07FFFFFH	2, 3	VDCSZ2	8	Little endian	No	Yes
3	1000000H to 1FFFFFFH	6, 7	VDCSZ3	8	Big endian	No	No
4	2000000H to 2FFFFFFH	8, 9	VDCSZ4	16	Little endian	No	No
5	3E00000H to 3FFFFFFH	15	VDCSZ5	16	Little endian	No	No
6	3000000H to 39FFFFFH	10 to 12	VDCSZ6	32	Little endian	No	No
7	3A00000H to 3DFFFFFH	13, 14	VDCSZ7	32	Big endian	No	No



4.9 Data Transfer Using VSB

4.9.1 Data transfer example

This section uses the circuit shown in Figure 4-13 to explain the procedure for transferring data between bus masters and bus slaves connected to the VSB.

<1> The NU85ET grants bus control (bus access right) to only one bus master according to the on-chip bus arbiter (Refer to **4.9.6 Bus master transition** for detail). The bus arbiter arbitrates the bus access right according to the following prioritization.

TIC (bus master 0) > External circuit (bus master 1) > NU85ET internal (bus master 2)

For example, if a bus access right request (VAREQ) is generated from the TIC or an external circuit when the NU85ET internal is operating as the bus master, the NU85ET internal releases the bus.

In the figure shown above, the NU85ET internal (bus master 2) receives an acknowledge signal (VAACK2: internal signal) from the bus arbiter and has the bus access right (a bus access right request signal is always being output from the NU85ET internal to the bus arbiter).

- <2> Bus master 2, which has the bus access right, begins the data transfer to the VSB.
- <3> The BCU selects the bus slave by generating a chip select signal (VDCSZn) corresponding to each bank of the data area according to the programmable chip select function (n = 7 to 0). In the figure shown above, MEMC (bus slave 0) is selected by the VDCSZ5 to VDCSZ0 signals.
- <4> The selected bus slave 0 returns a transfer response to bus master 2, and the data transfer begins.

4.9.2 Control signals output by bus master

When the NU85ET operates as the bus master, the contents of the transfer that is currently being executed are indicated by outputting the various control signals indicated below (When the NU85ET operates as a bus slave, the external bus master performs output, and this data is input to the NU85ET as the VSxxxx signal).

However, the VxWAIT, VxAHLD, and VxLAST signals are output by the bus slave and input by the bus master (the signal names on the bus master side are VMWAIT, VMAHLD, and VMLAST, and the signal names on the bus slave side are VSWAIT, VSAHLD, and VSLAST).

(1) Transfer type

When the transfer begins, the bus master outputs the VMTTYP1 and VMTTYP0 signals to indicate the transfer type.

VMTTYP1	VMTTYP0	Transfer Type
0	0	Address-only transfer (transfer without data processing)
1	0	Non-sequential transfer (single transfer or burst transfer)
1	1	Sequential transfer (transfer in which the address currently being transferred is related to the previously transferred address)
0	1	(Reserved for future function expansion)

Table 4-1. VMTTYP1 and VMTTYP0 Signals

Remark 0: Low level 1: High level

(2) Bus cycle type

The bus master indicates the current bus cycle status according to the VMCTYP2 to VMCTYP0 signals.

VMCTYP2	VMCTYP1	VMCTYP0	Bus Cycle Status
0	0	0	Opcode fetch
0	0	1	Data access
0	1	0	Misalign access ^{Note}
0	1	1	Read modify write access
1	0	0	Opcode fetch of jump address due to branch instruction
1	1	0	DMA 2-cycle transfer
1	1	1	DMA flyby transfer
1	0	1	(Reserved for future function expansion)

Table 4-2. VMCTYP2 to VMCTYP0 Signals

Note Output only when a high level is input to the IFIMAEN pin (misalign access enabled).

Remark 0: Low level 1: High level

(3) Byte enable

The bus master uses the VMBENZ3 to VMBENZ0 signals to indicate the byte data among the data obtained by quartering the data bus (VBDI31 to VBDI0 and VBDO31 to VBDO0) into byte units.

Active (Low-Level Output) Signal	Enabled Byte Data
VMBENZ3	VBDI31 to VBDI24, VBDO31 to VBDO24
VMBENZ2	VBDI23 to VBDI16, VBDO23 to VBDO16
VMBENZ1	VBDI15 to VBDI8, VBDO15 to VBDO8
VMBENZ0	VBDI7 to VBDI0, VBDO7 to VBDO0

Table 4-3. VMBENZ3 to VMBENZ0 Signals

(4) Transfer size

The bus master uses the VMSIZE1 and VMSIZE0 signals to indicate the transfer size.

VMSIZE1	VMSIZE0	Explanation
0	0	Byte (8 bits)
0	1	Halfword (16 bits)
1	0	Word (32 bits)
1	1	(Reserved for future function expansion)

Table 4-4. VMSIZE1 and VMSIZE0 Signals

Remark 0: Low level 1: High level

(5) Sequential status

The bus master uses the VMSEQ2 to VMSEQ0 signals to indicate the "burst transfer length" when a burst transfer starts, to indicate "continuous" during a burst transfer, and to indicate "single transfer" at the end of the burst transfer.

VMSEQ2	VMSEQ1	VMSEQ0	Sequential Status
0	0	0	Single transfer
0	0	1	Continuous (indicates that the next transfer address is related to the current transfer address) $^{\mbox{\tiny Note}}$
0	1	0	Continuous 4 times (burst transfer length: 4)
0	1	1	Continuous 8 times (burst transfer length: 8)
1	0	0	Continuous 16 times (burst transfer length: 16)
1	0	1	Continuous 32 times (burst transfer length: 32)
1	1	0	Continuous 64 times (burst transfer length: 64)
1	1	1	Continuous 128 times (burst transfer length: 128)

Table 4-5. VMSEQ2 to VMSEQ0 Signals

Note This is output during continuous 2 times, or continuous 4, 8, 16, 32, 64, or 128 times transfer.

Remark 0: Low level 1: High level

(6) Transfer response

The transfer response is indicated by the VMWAIT, VMAHLD, and VMLAST signals, which are output from the bus slave (the signal names on the bus slave side are VSWAIT, VSAHLD, and VSLAST). These signals become effective only while the VBCLK signal is low level.

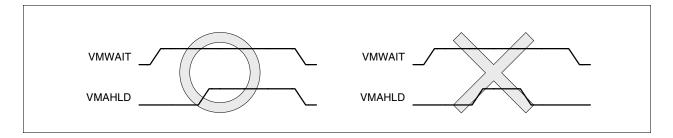

VMWAIT	VMAHLD	VMLAST	Explanation
0	0	0	Status when the current transfer is completed (ready status)
0	0	1	Last response (burst transfer last response status)
1	0	0	Wait response (wait status)
1	1	0	Maintains address and control signal (address hold status)
Other than the above			(Reserved for future function expansion)

Table 4-6. VMWAIT, VMAHLD, and VMLAST Signals

Remark 0: Low level 1: High level

Caution Once the VMAHLD signal becomes active (1), hold the active level (1) until the VMWAIT signal becomes inactive (0).

It is not possible to return to the wait state from the address hold state during a bus cycle.

(7) Transfer direction

The bus master uses the VMWRITE signal to indicate the transfer direction. This signal outputs a high level during write access.

(8) Data bus direction control

The VBDC signal is the data input (VBDI31 to VBDI0) control signal output pin. This signal outputs a high level during read access.

The VBDV signal is the data output (VBDO31 to VBDO0) control signal output pin. This signal outputs a high level during write access.

VBDC	VBDV	Explanation
1	0	Read access
0	1	Write access

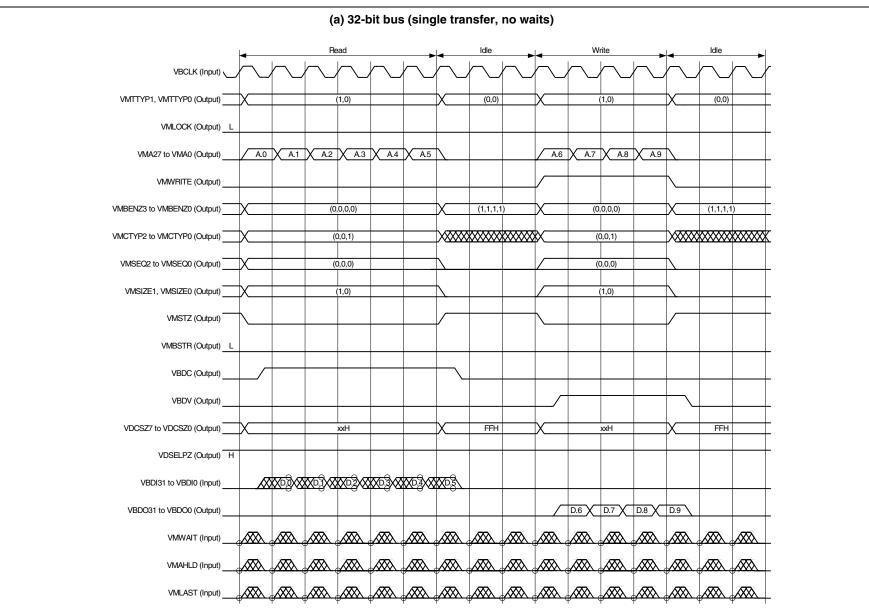
Table 4-7. VBDC and VBDV Signals

Remark 0: Low level 1: High level

4.9.3 Read/write timing

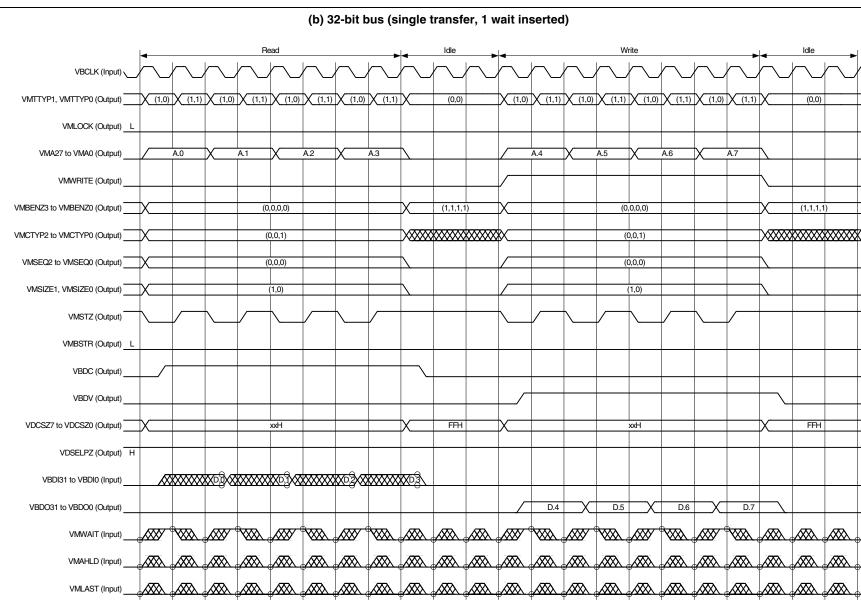
(1) Read timing

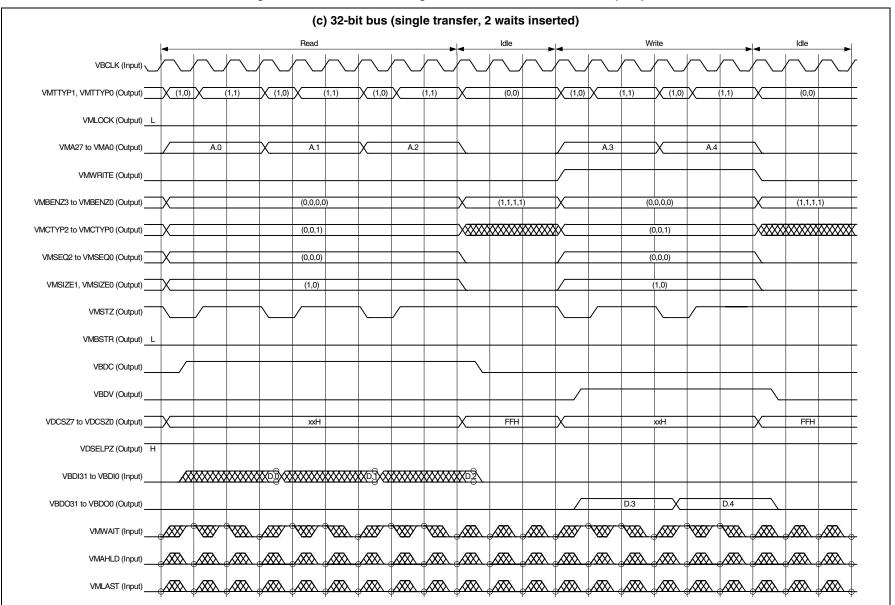
Read data is output from the bus slave side in synchronization with the rising edge of the VBCLK signal immediately after the end of address output to the bus slave. Following this, the bus master fetches (samples) the data in synchronization with the next falling edge of the VBCLK signal.


However, if the VMAHLD signal has been input at an active level (high level), the bus slave outputs data in synchronization with the rising edge of the VBCLK signal immediately after the active-level VMAHLD was input, and the bus master fetches (samples) the data in synchronization with the next falling edge of the VBCLK signal.

(2) Write timing

Write data is output from the NU85ET in synchronization with the falling edge of the VBCLK signal half clock after the address is output to the bus slave.

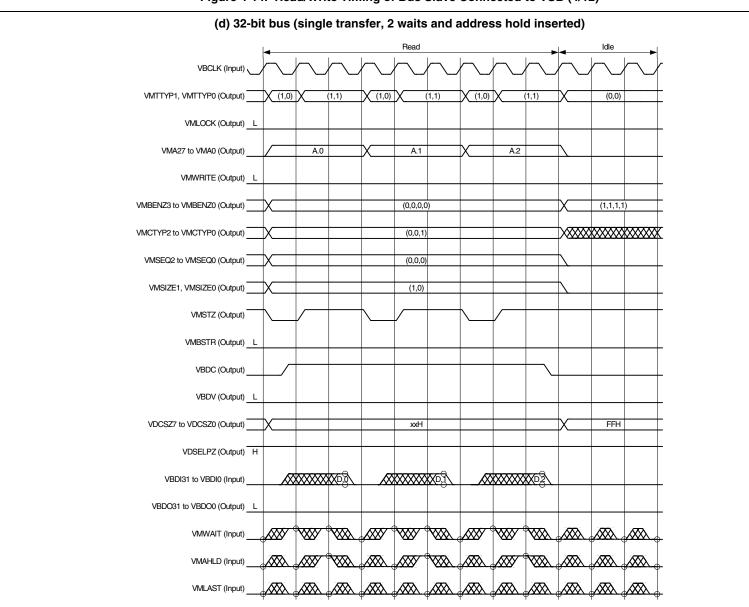
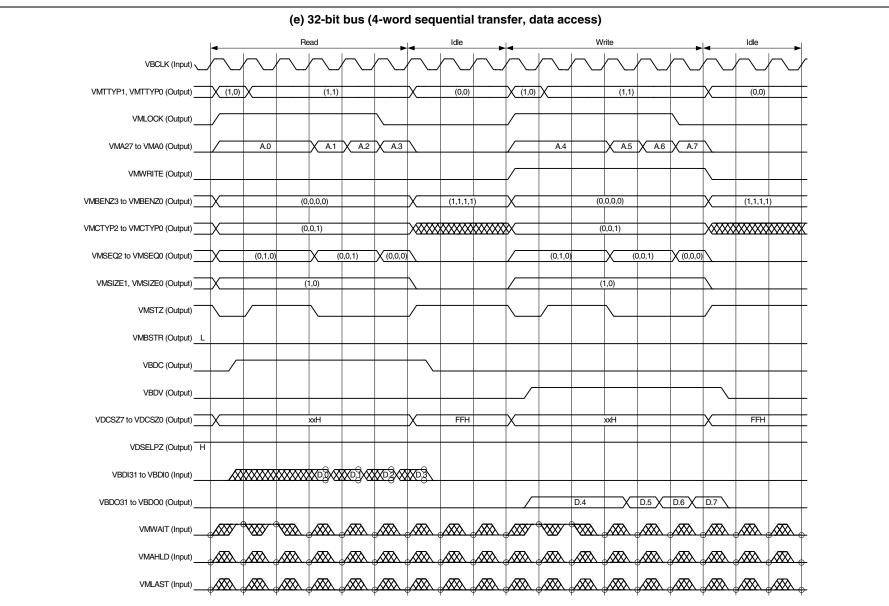
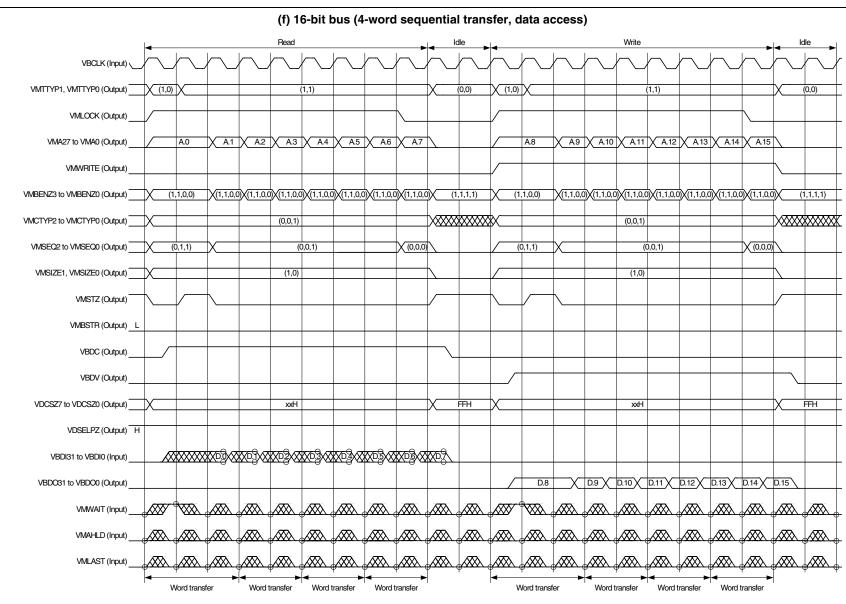
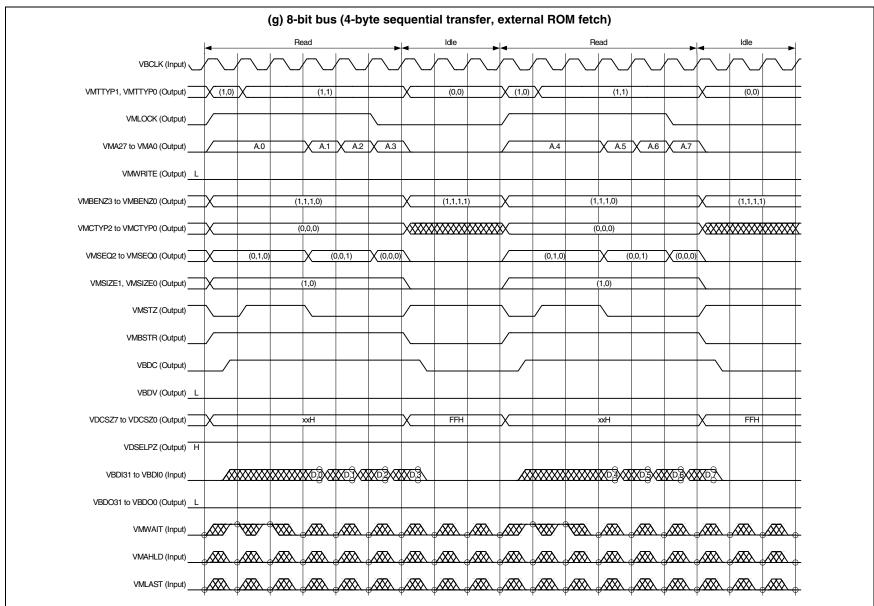

The following pages show the read/write timing of the bus master and slaves connected to the VSB. The diagrams show the timing seen from the NU85ET side when the NU85ET has the bus access right.

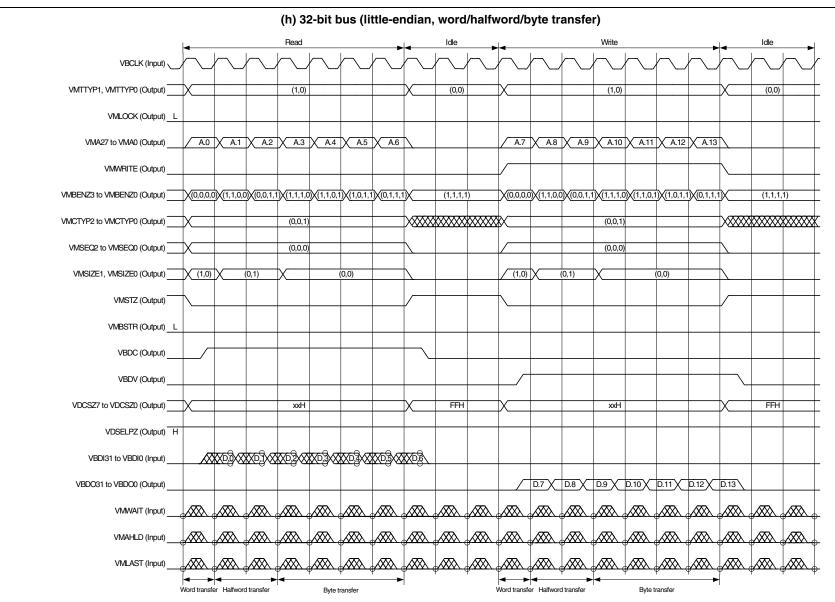

Remark	O mark:	Sampling timing	
	A.x:	Arbitrary address output from the VMA27 to VMA0 pins	
	D.x:	I/O data for address "A.x"	
	XXX :	Arbitrary level (for input), or undefined status (for output)	

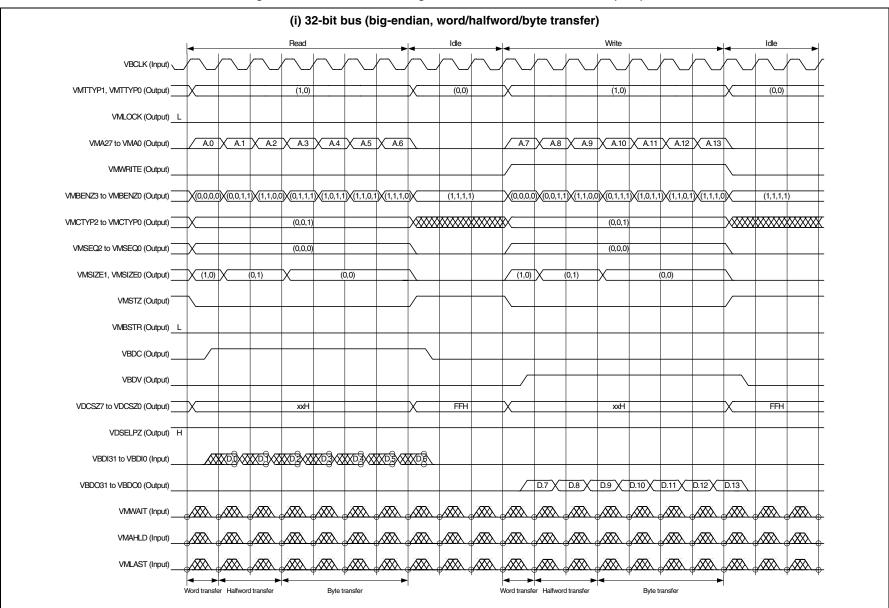
CHAPTER 4 BCU

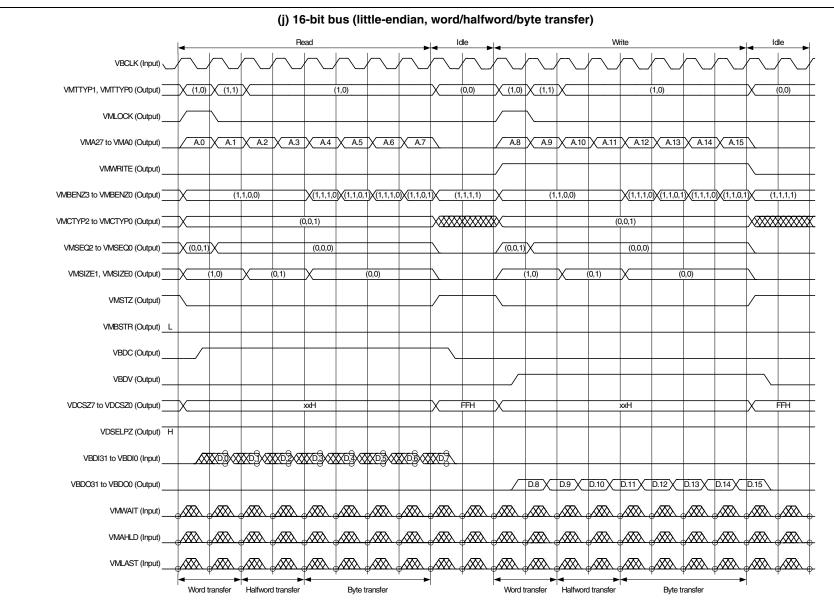
CHAPTER 4 BCU

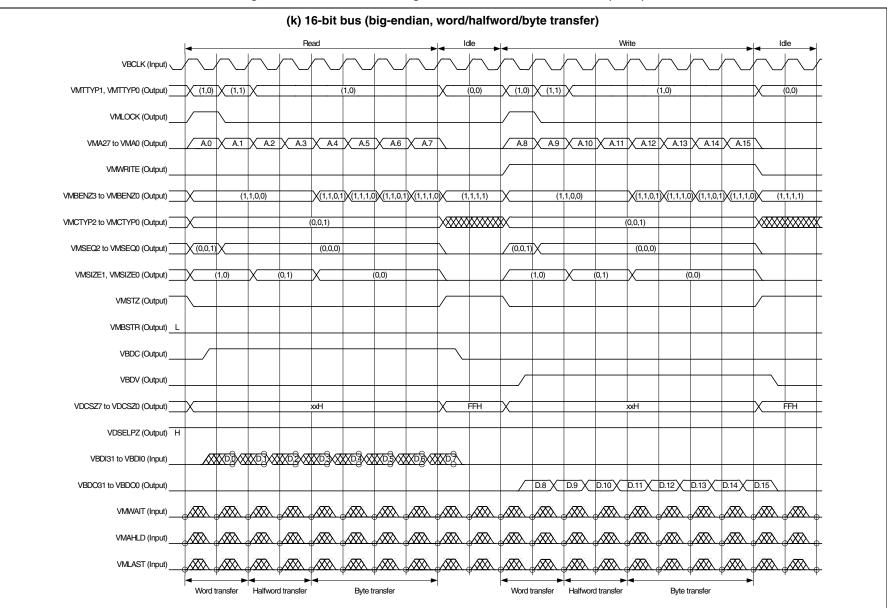
Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (3/12)


Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (4/12)







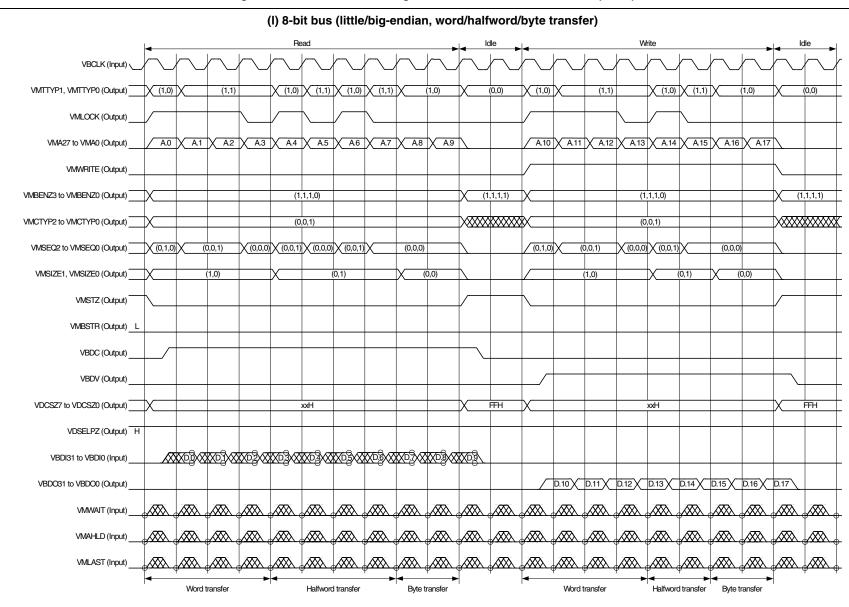

Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (9/12)

Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (10/12)

CHAPTER 4 BCU

Figure 4-14. Read/Write Timing of Bus Slave Connected to VSB (12/12)

4.9.4 VSB read/write timing example

The read/write timing example of the SRAM connected to the NT85E500 is shown below.

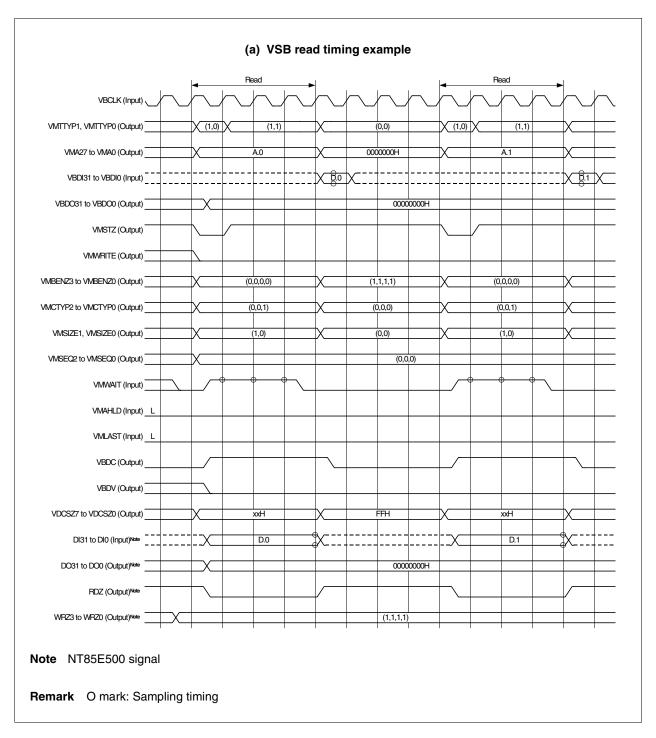
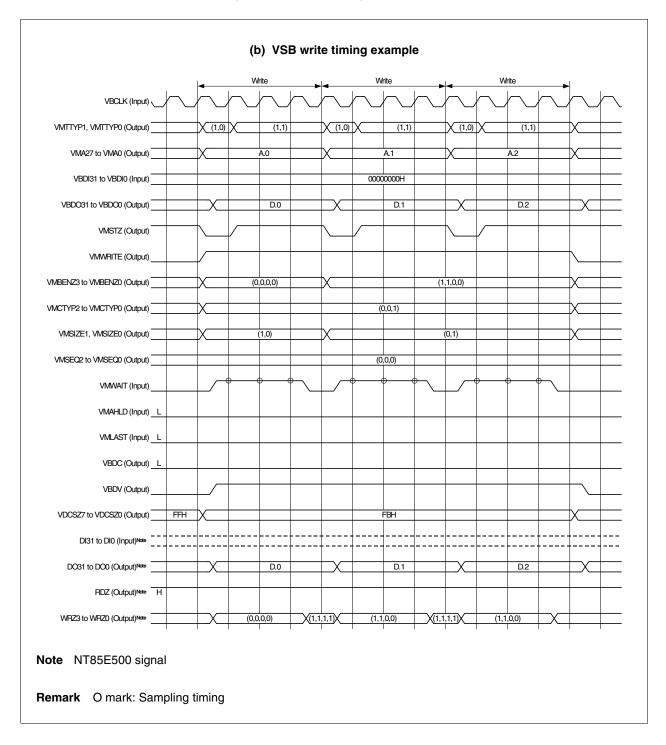
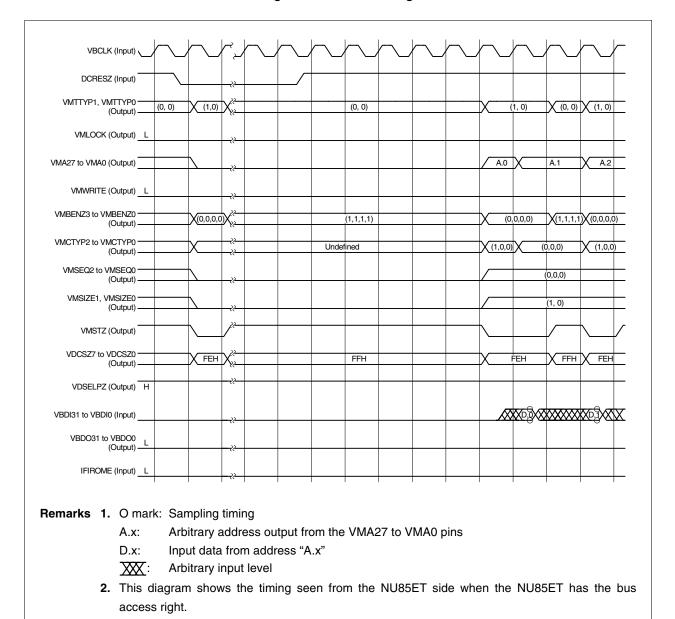



Figure 4-15. VSB Timing Example (1/2)


Figure 4-15. VSB Timing Example (2/2)

4.9.5 Reset timing

The reset timing of when a low level is input to the IFIROME pin (the connected ROM is used as external memory (via the VSB)) is shown below.

Caution Be sure to input the VBCLK signal continuously during the reset period (the period when RESETZ is low level).

Figure 4-16. Reset Timing

4.9.6 Bus master transition timing

There are five kinds of external bus cycles as shown below. Bus hold has the highest priority, followed by refresh cycle, DMA cycle, operand data access, and instruction fetch in that order.

Priority	External Bus Cycle	Bus Master				
High	Bus hold	External device				
\uparrow	Refresh cycle	SDRAM controller				
	DMA cycle	DMA controller				
\downarrow	Operand data access	CPU				
Low	Instruction fetch	CPU				

The procedure of bus master transition from the master device (M1) operating as the bus master to another master device (M2) is as follows.

- <1> M1, which operates as the bus master inputs a VSB access right request signal (VAREQ) from M2, another master device.
- <2> The bus arbiter within M1 goes into waiting for the ready response from the bus slave.
- <3> Upon completion of the current transfer, the bus slave returns a ready response.
- <4> The VMTTYP1 and VMTTYP0 signals of M1 indicate address-only transfer, and the VMLOCK, VDCSZ7 to VDCSZ0, and VDSELPZ signals are all ignored.
- <5> M1 returns an acknowledge signal (VAACK) for the VAREQ signal and a ready response to M2.
- <6> M2 becomes the bus master and data transfer on VSB starts.

Remark The ready response is when the VMWAIT, VMAHLD, and VMLAST signals are all in a low-level state.

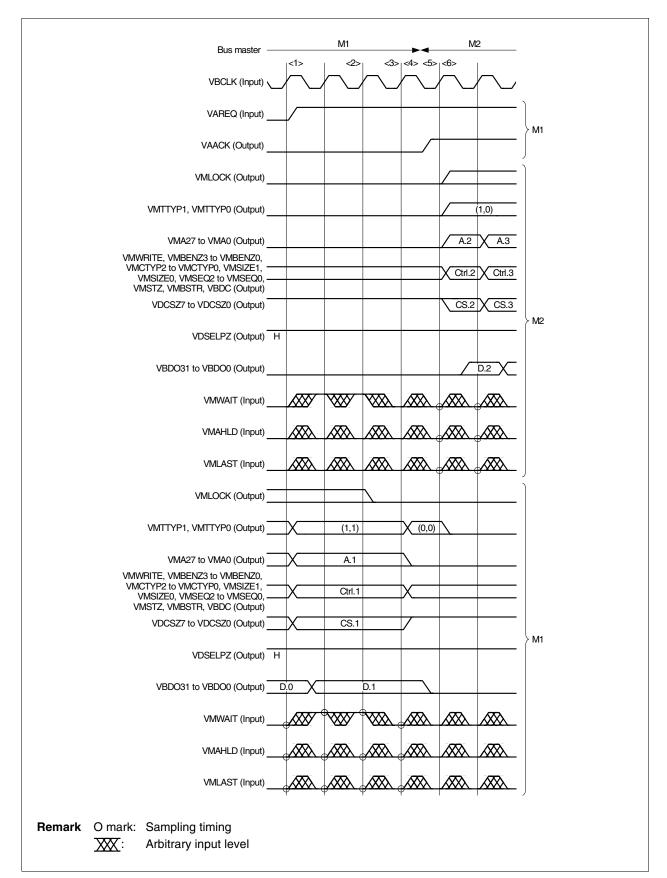


Figure 4-17. Bus Master Transition Timing

4.9.7 Misalign access timing

The VSB access timing when misalign access is enabled (when a high level is input to the IFIMAEN pin) is shown below.

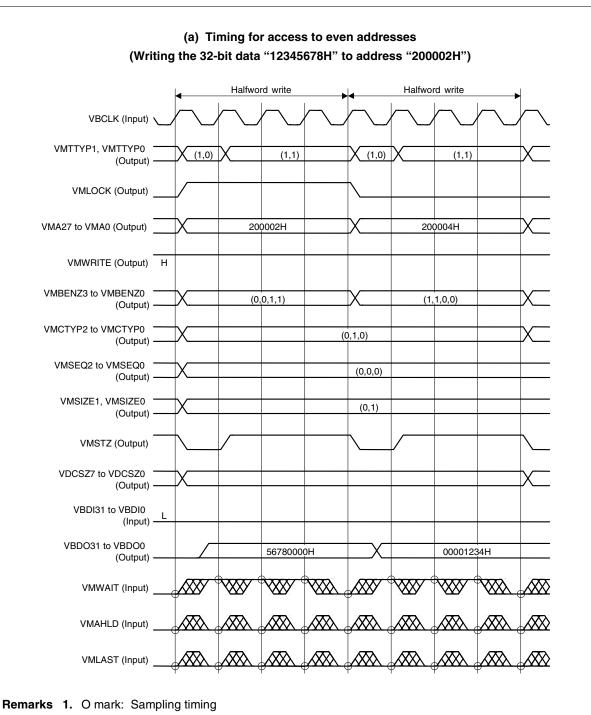


Figure 4-18. Misalign Access Timing (1/2)

XXX : Arbitrary input level

2. This diagram shows the timing seen from the NU85ET side when the NU85ET has the bus access right.

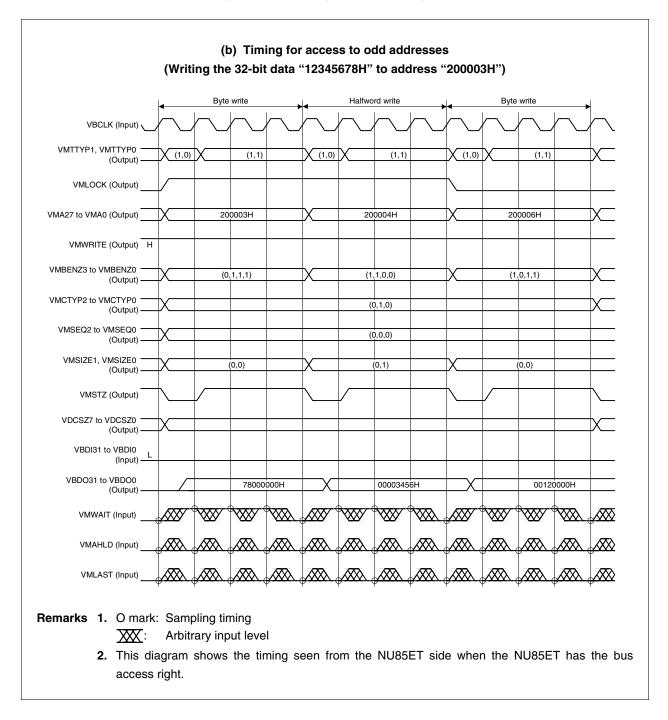


Figure 4-18. Misalign Access Timing (2/2)

CHAPTER 5 BBR

The bus bridge (BBR) converts signals that are passed between the VSB and NPB. The BBR sets up the following functions for peripheral macros that are connected to the NPB.

- Wait insertion function
- Retry function

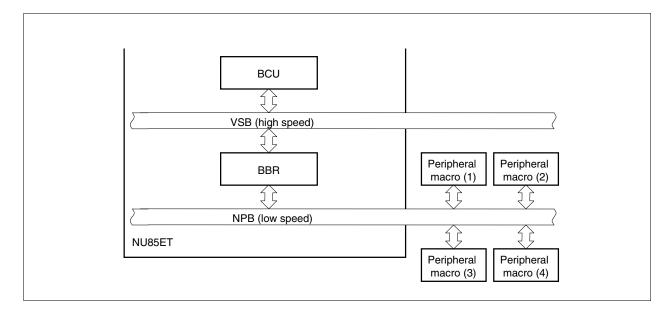


Figure 5-1. NPB Connection Overview

The following figure shows an example of connection between the NU85ET and peripheral macros that are connected to the NPB.

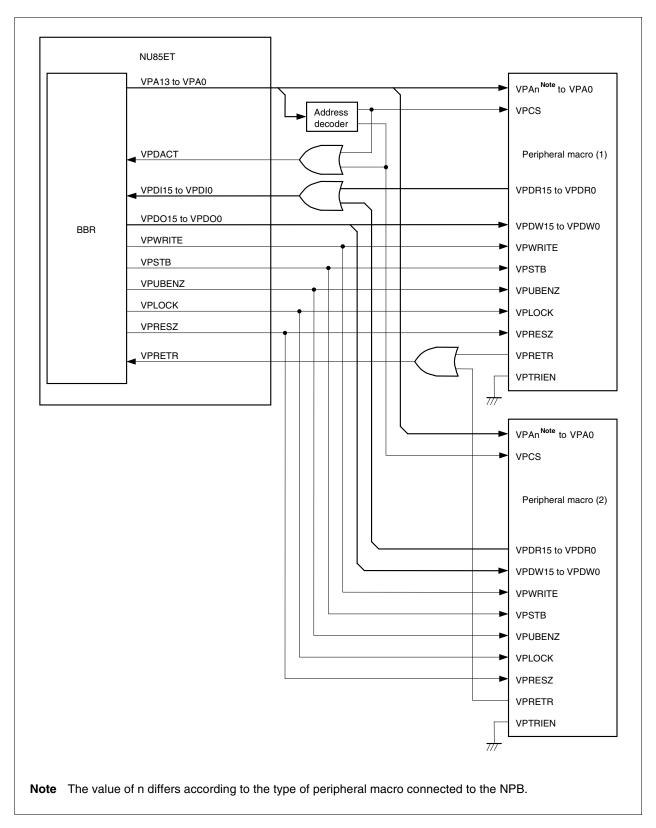


Figure 5-2. NU85ET and Peripheral Macro Connection Example

5.1 Programmable Peripheral I/O Area

The NU85ET has a 4 KB peripheral I/O area that is allocated in advance in the address space and a 12 KB programmable peripheral I/O area that can be allocated at arbitrary addresses according to register settings (See 4.4 **Programmable Peripheral I/O Area Selection Function**).

If the peripheral I/O area or programmable peripheral I/O area in the memory map shown in Figure 5-3 is accessed, the NPB becomes active.

The programmable peripheral I/O area is set by the peripheral I/O area select control register (BPC).

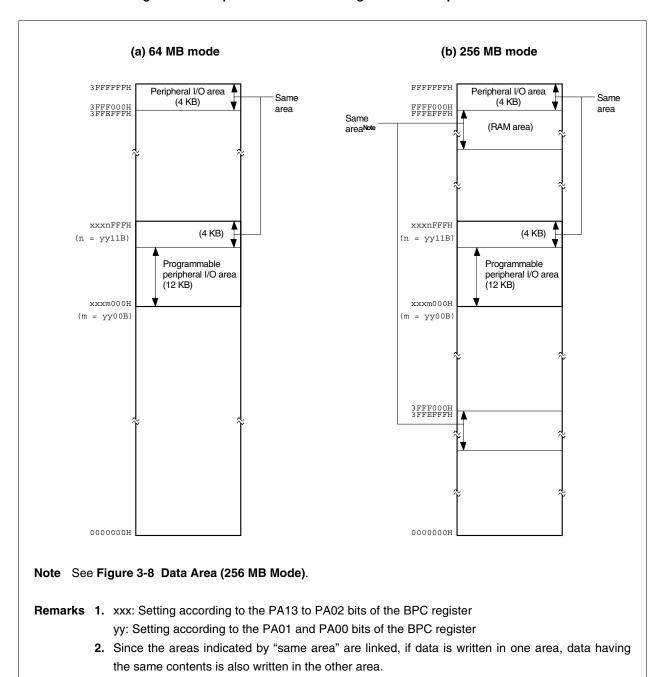
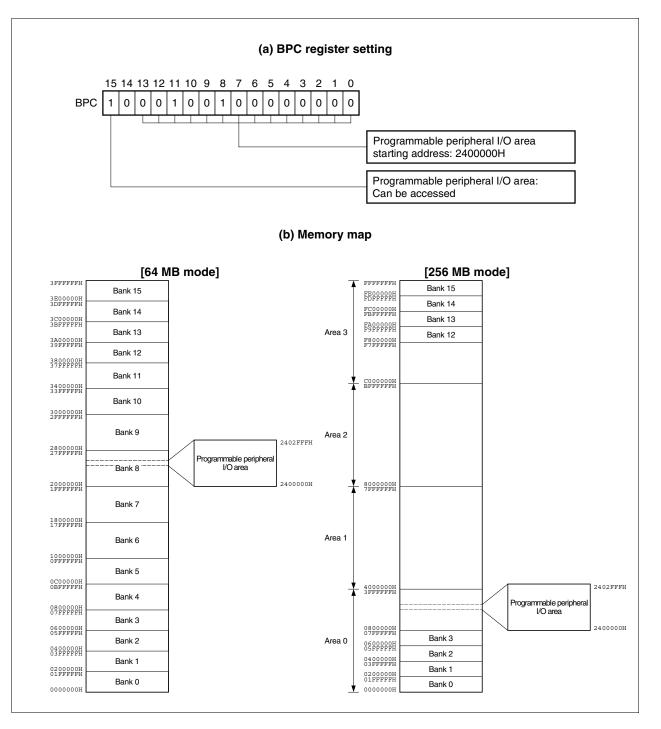


Figure 5-3. Peripheral I/O Area and Programmable Peripheral I/O Area


	15 14 13				11	10	9	8	7	6	5	4	3	2	1	0		
BPC	PA	0	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	PA	A PA	PA	PA	Address	After rese
	15	0	13	12	11	10	09	08	07	06	05	04	03	02	01	00	FFFFF064H	0000H
Bit position Bit name			e Function															
15		PA	15	0	Sets whether or not the programmable peripheral I/O area can be accessed. 0: It cannot be accessed 1: It can be accessed													
13 to 0 PA13 to Specifies bit 27 to bit 14 of the starting address of the programmable period PA00 other bits are fixed at zero.)						ripheral I/O are	a. (The											


Figure 5-4. Peripheral I/O Area Select Control Register (BPC)

Cautions 1. In 64 MB mode, if the programmable peripheral I/O area overlaps the following areas, the programmable peripheral I/O area becomes ineffective.

- Peripheral I/O area
- ROM area
- RAM area
- 2. In 256 MB mode, if the programmable peripheral I/O area overlaps the following areas, the programmable peripheral I/O area becomes ineffective.
 - Peripheral I/O area
 - ROM area
 - RAM area
 - The area that is the same as the RAM area and that is located at address 3FFEFFFH and below (See Figure 3-8 Data Area (256 MB Mode))
- 3. If no peripheral macros are connected to the NPB, no programmable peripheral I/O area need be set (Set the BPC register to its after-reset value).
- 4. The programmable peripheral I/O area address setting is enabled only once. Do not change addresses in the middle of a program.

Figure 5-5 shows a BPC register setting example and the memory map after the setting is made.

5.2 Wait Insertion Function

The BBR is equipped with a wait insertion function for connection with low-speed peripheral macros connected to the NPB. The NPB strobe wait control register (VSWC) is used to set up this function.

The VSWC register sets the setup wait length and VPSTB wait length (see **Figure 5-6**). The number of waits can be set in the range from 0 to 7 clocks based on the internal system clock (VBCLK).

The VSWC register can be read or written in 8-bit or 1-bit units.

1											Address	After rese			
/SWC	0		SUWL	.2	SUWL1	SUWL0	0	VSWL2	VSWL1	VSWL0	FFFFF06EH	77H			
Bit pos	sition	Bit	name		Function										
6 to 4			NL2 to NL0	Se	ets the setu	p wait lengt	h.								
				Ī	SUWL2	SUWL1	SUWL0		Setu	ıp wait leng	th				
				Ī	0	0	0	0 (no waits)							
					0	0	1	1×tс∟к							
					0	1	0	2×tськ							
					0	1	1	З×tс∟к							
					1	0	0	4×tськ							
					1	0	1	5×tськ							
					1	1	0	6×tськ							
					1	1	1	7×tськ							
				_	Remark	tclk: Inter	nal system	clock (VBCLI	K) cycle						

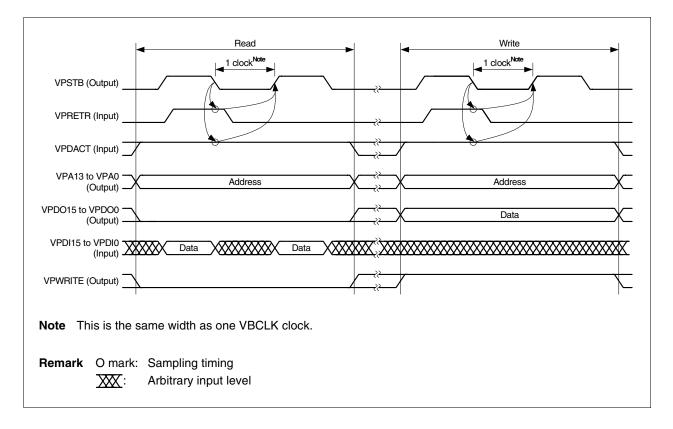
Figure 5-6. NPB Strobe Wait Control Register (VSWC) (1/2)

Bit position	Bit name		Function								
2 to 0	VSWL2 to VSWL0	Sets the VPSTB wait length.									
		VSWL2	VSWL2 VSWL1 VSWL0 VPSTB wait length								
		0	0	0	0 (no waits)						
		0	0	1	1×tськ						
		0	1	0	2×tclк						
		0	1	1	З×tськ						
		1	0	0	4×tclk						
		1	0	1	5×tclk						
		1	1	0	6×tськ						
			1	1	1	7×tськ					
		Remark	tclк: Inte	rnal system	n clock (VBCLK) cycle						
	VBCL	< (Input)		Setup wait	0.5 clock 1 clock 1.5 clock						
VPA	VPSTB				VPSTB wait						

Figure 5-6. NPB Strobe Wait Control Register (VSWC) (2/2)

Be sure to set values for the setup wait and VPSTB wait lengths at each operation frequency that are the same as or greater than the number of waits shown in Table 5-1 below.

Table 5-1. Setting of Setup Wait, VPSTB Wait Lengths at Each Operation Frequency

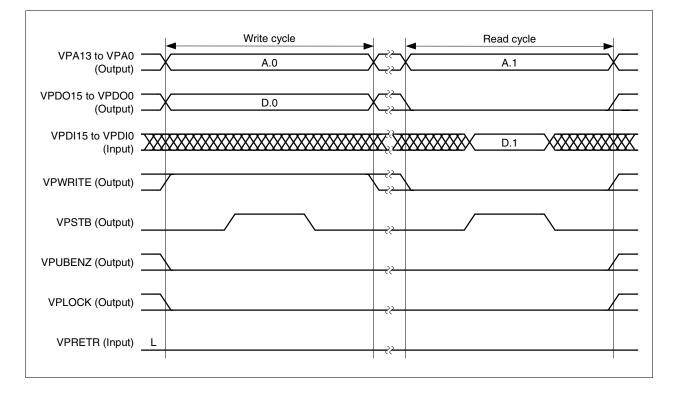

Wait Length	Operation Frequency						
	Up to 25 MHz	Up to 33 MHz	Up to 50 MHz	Up to 76.9 MHz			
Setup wait length	1	1	1	2			
VPSTB wait length	1	2	4	5			

Caution These setting values are not guaranteed, so be sure to set the number of waits appropriate to the system after verifying operation.

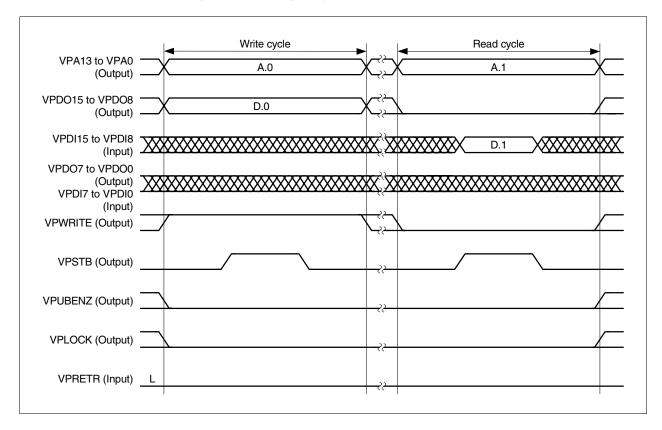
5.3 Retry Function

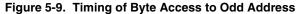
The retry function, which repeats read or write processing according to a retry request signal (VPRETR) from a peripheral macro on the NPB, is used in situations such as when the data setup time is insufficient.

If a high-level signal is being input to the VPRETR and VPDACT pins at the falling edge of the VPSTB signal, the VPSTB signal rises again and the read or write operation is repeated.



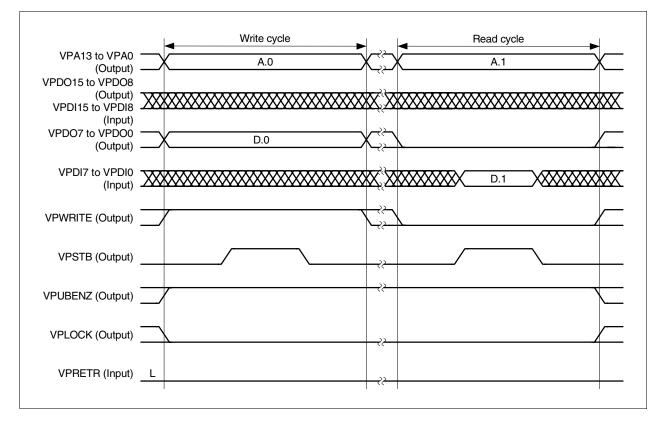
5.4 NPB Read/Write Timing

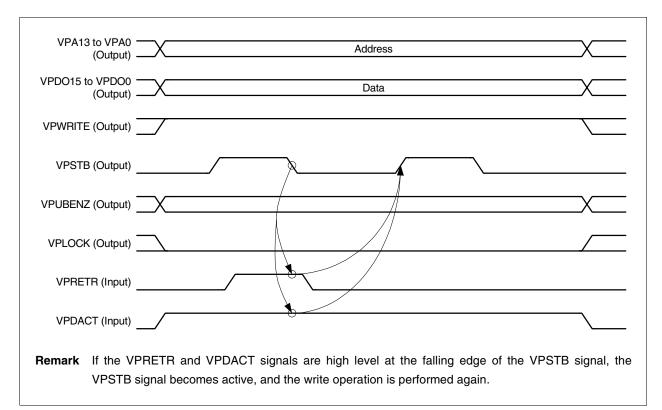
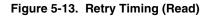

Figures 5-8 to 5-13 show the basic read/write timing of the NPB, Figure 5-14 shows a timing example for read/write access to a bus slave connected to the NU85ET and NPB, and Figure 5-15 shows a timing example of write access to a peripheral I/O register. Each one of these figures shows the timing as seen from the NU85ET side when the NU85ET has the bus access right.


Remark O mark: Sampling timing

- A.x: Arbitrary address output from the VPA13 to VPA0 pins
- D.x: I/O data for address "A.x"
- Signal in undefined state (for output signal), arbitrary level (for input signal)

Figure 5-8. Halfword Access Timing



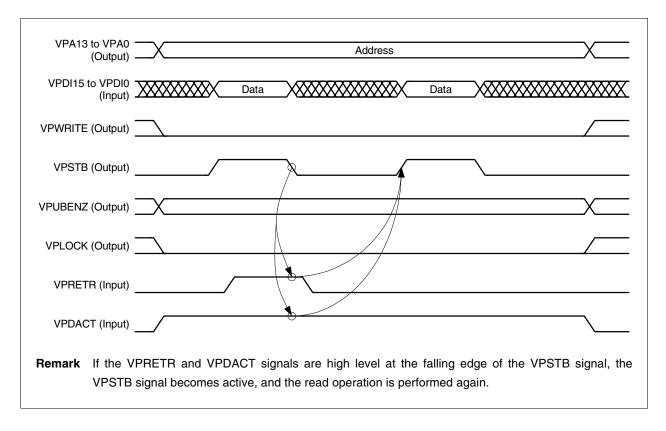
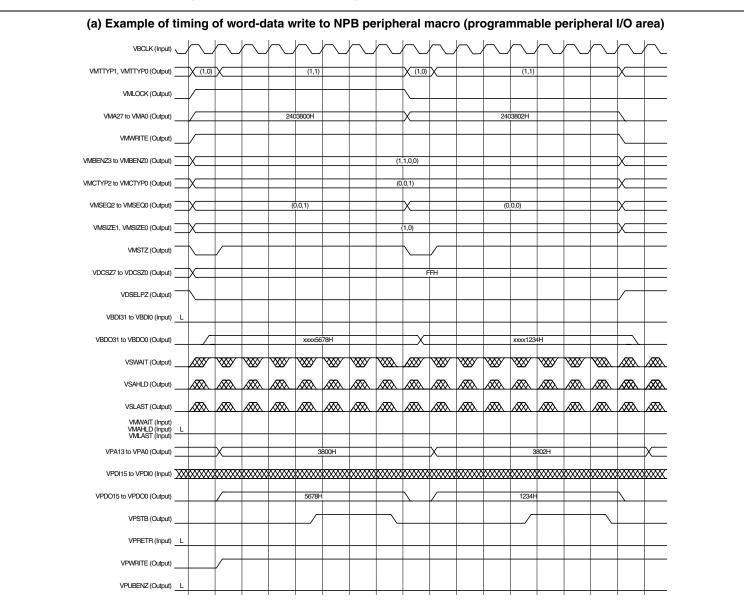
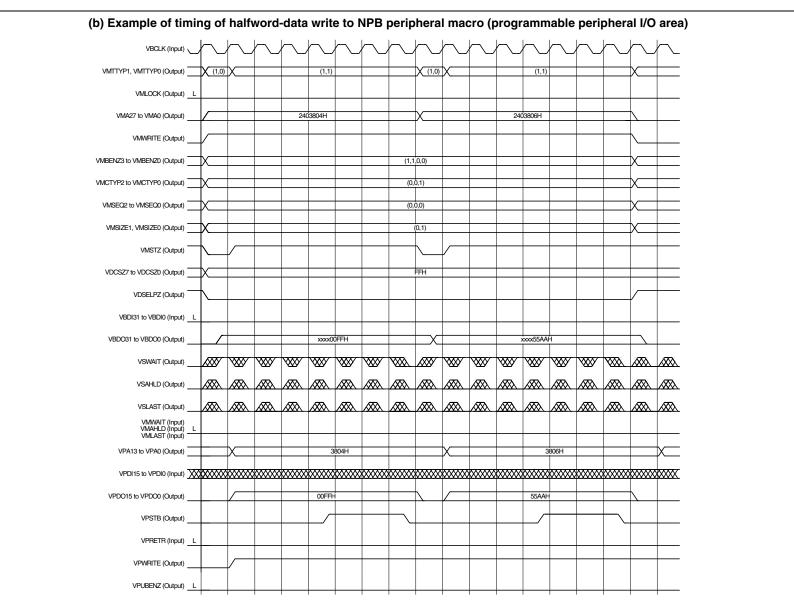
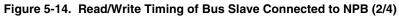
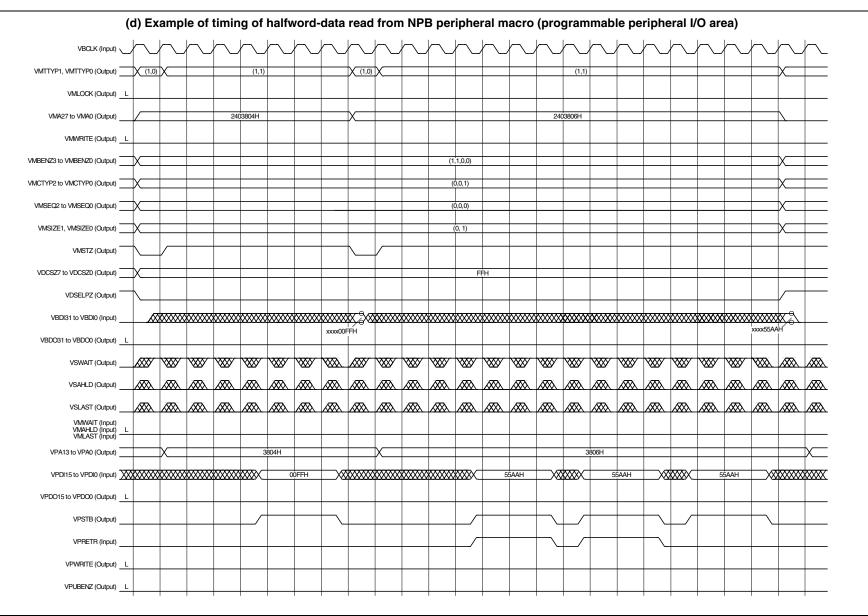


Figure 5-11. Read Modify Write Timing









Preliminary User's Manual

A15015EJ3V0UM

(c) Example of timing of word-data read from NPB peripheral macro (programmable peripheral I/O area) VBCLK (Input) VMTTYP1, VMTTYP0 (Output) X (1,0) (1,1) (1,0) (1,1) VMLOCK (Output) VMA27 to VMA0 (Output) 2403800H 2403802H VMWRITE (Output) L VMBENZ3 to VMBENZ0 (Output) (1,1,0,0) VMCTYP2 to VMCTYP0 (Output) (0,0,1) VMSEQ2 to VMSEQ0 (Output) (0,0,1) (0,0,0) VMSIZE1, VMSIZE0 (Output) (1,0) VMSTZ (Output) VDCSZ7 to VDCSZ0 (Output) FFH VDSELPZ (Output) VBDI31 to VBDI0 (Input) ~~~~~~ XXXXXXXXX xxxx5678H/ xxxx1234H VBDO31 to VBDO0 (Output) L \mathbb{X} W W W W W W W W W W W ∞ VSWAIT (Output) W W W W W Æ VSAHLD (Output) \mathbb{X} ∞ ∞ ∞ ∞ \sim $\langle \infty \rangle$ \mathbb{A} ∞ \mathbb{X} ∞ ∞ \mathbb{A} ∞ ∞ \mathbb{X} \mathbb{A} \mathbb{X} ∞ \mathbb{A} VSLAST (Output) \mathbb{X} $\langle X \rangle$ \mathbb{A} ∞ \mathbb{A} \mathbb{X} \mathbb{A} \mathbb{X} \otimes \otimes \mathbb{X} \mathbb{X} \otimes \mathbb{A} VMWAIT (Input) VMAHLD (Input) VMLAST (Input) VPA13 to VPA0 (Output) 3800H 3802H VPDI15 to VPDI0 (Input) 5678H 5678H \times 1234H ******* \times VPDO15 to VPDO0 (Output) L VPSTB (Output) VPRETR (Input) VPWRITE (Output) L VPUBENZ (Output) L

Figure 5-14. Read/Write Timing of Bus Slave Connected to NPB (3/4)

CHAPTER 5 BBR

Figure 5-14. Read/Write Timing of Bus Slave Connected to NPB (4/4)

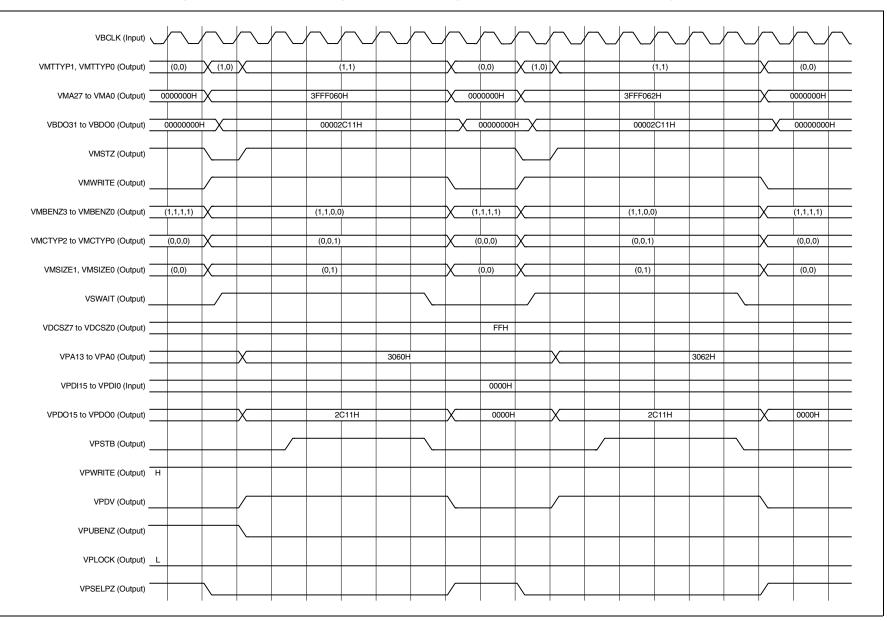


Figure 5-15. NPB Write Timing (Example of Timing of Data Write to CSC0 and CSC1 Registers)

Preliminary User's Manual A15015EJ3V0UM

CHAPTER 5 BBR

***** 5.5 Precautions

• NPB access from external master to NU85ET

BBR does not provide a bus sizing function. Therefore, NPB access from the external bus master of the VSB to the NU85ET as a slave must be executed with the bus size of the VSB set to 16 bits.

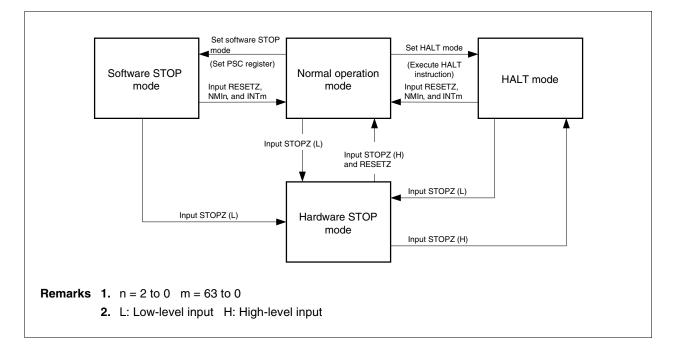
CHAPTER 6 STBC

The standby control unit (STBC) implements the various power save functions of the NU85ET by controlling the external clock generator (CG).

6.1 Power Save Function

The power save function has the following three modes.

(1) HALT mode


This mode, which stops the supply of clocks only to the CPU, is set by executing a special-purpose instruction (HALT instruction). Since the supply of clocks to internal units other than the CPU continues, operation of the NU85ET internal peripheral I/O that do not depend on the CPU instruction processing continues. The power consumption of the overall system can be reduced by intermittent operation that is achieved by combining the HALT mode and normal operation mode.

(2) Software STOP mode

This mode, which stops the overall system by stopping the external clock generator, is set by means of a PSC register setting. The system enters an ultra-low power consumption state in which only leakage current is lost.

(3) Hardware STOP mode

This mode, which stops the overall system by stopping the external clock generator, is set by inputting the STOPZ signal. The system enters an ultra-low power consumption state in which only leakage current is lost.

Figure 6-1. Power Save Function State Transition Diagram

6.2 Control Registers

6.2.1 Power save control register (PSC)

The PSC is an 8-bit register that controls the power save function.

If interrupts are enabled according to the NMI2M to NMI0M and INTM bit settings, software STOP mode can be canceled by an interrupt request (except when interrupt servicing is disabled by the interrupt mask register (IMR0 to IMR3)).

Software STOP mode is specified by setting the STP bit.

This register can only be written by using a specific procedure so that its settings are not mistakenly overwritten due to erroneous program execution.

This register can be read or written in 8-bit or 1-bit units.

Caution Do not set the PSC register by transferring data using the DMAC. To set this register, always use a store instruction (ST or SST) or a bit manipulation instruction (SET1, CLR1, or NOT1 instruction).

-	7	6	5	4	3	2	1	0	-	
PSC	NMI2M	NMI1M	NMIOM	INTM	0	0	STP	0	Address FFFFF1FEH	After reset 00H

Figure 6-2. Power Save Control Register (PSC)

PSC NMI	2M NMI1	M NMIOM	INTM	0	0	STP	0	FFFFF1FEH	00H			
Bit position	Bit name		Function									
7	NMI2M	0: Enables N	lasks non-maskable interrupt requests (NMI2) from the NMI2 pin. ^{Note} 0: Enables NMI2 requests 1: Disables NMI2 requests									
6	NMI1M	0: Enables N	Masks non-maskable interrupt requests (NMI1) from the NMI1 pin. ^{Note} 0: Enables NMI1 requests 1: Disables NMI1 requests									
5	NMIOM	0: Enables N	Masks non-maskable interrupt requests (NMI0) from the NMI0 pin. ^{Note} 0: Enables NMI0 requests 1: Disables NMI0 requests									
4	INTM	0: Enables I	Masks maskable interrupt requests (INT63 to INT0) from the INT63 to INT0 pins. ^{Note} 0: Enables INT63 to INT0 requests 1: Disables INT63 to INT0 requests									
1	STP	Specifies software STOP mode. When this bit is set (1), software STOP mode is set. When software STOP mode is cancele this bit is automatically cleared (0).						celed,				

Note The setting is valid in software STOP mode only.

- Cautions 1. If the NMI2M to NMI0M and INTM bits are set (1) at the same time as the STP bit, the settings of the NMI2M to NMI0M and INTM bits are invalid. Therefore, if there are unmasked interrupt requests pending when software STOP mode is entered, be sure to set (1) those interrupt request bits (NMI2M to NMI0M and INTM) before setting (1) the STP bit.
 - 2. Because an interrupt request that occurs while the NMI2M to NMI0M and INTM bits are set (1) is invalid (it is not held pending), software STOP mode cannot be canceled.

Use the procedure shown below to set data in the PSC register.

- <1> Write the data that is to be set in the PSC register to an arbitrary general-purpose register (see **3.2.1 Program registers**).
- <2> Use a store instruction (ST or SST instruction) to write the contents of the general-purpose register prepared in step <1> to the command register (PRCMD).
- <3> Use the following instructions to write the contents of the general-purpose register prepared in step <1> to the PSC register (do this immediately after writing the contents of the general-purpose register to the PRCMD register).
 - Store instruction (ST or SST instruction)
 - Bit manipulation instruction (SET1, CLR1, or NOT1 instruction)

<4> If the NU85ET switches to software STOP mode, insert NOP instructions (five or more instructions).

Examples 1. <1> mov 0x02, r11

		movea	base_address, r0, r20	; base_address = FFFF000H
	<2>	st.b	r11, PRCMD[r20]	; PRCMD = 01FCH
	<3>	st.b	r11, PSC[r20]	; PSC = 01FEH
	<4>	nop		
		nop		
2.	<1>	mov	0x02, r11	
		movea	0xF1FCH, r0, r20	
		movea	0xF1FEH, r0, r21	
	<2>	st.b	r11, 0x0[r20]	; r20 = FFFFF1FCH (= PRCMD)
	<3>	st.b	r11, 0x0[r21]	; r21 = FFFFF1FEH (= PSC)
	<4>	nop		
		nop		

No special procedure is required to read the contents of the PSC register.

Remarks 1. Interrupts are not acknowledged for store instructions for the PRCMD register.

- 2. Steps <2> and <3> above are assumed to occur consecutively. If another instruction is placed between the instructions described in steps <2> and <3>, when the interrupt is acknowledged for that instruction, the setting may not be established, causing abnormal operation.
- 3. Although the data written in the PRCMD register is dummy data, use the same value (data) as the value of the general-purpose register used for setting data in a specific register (step <3> in the examples above) even when writing to the PRCMD register (step <2> in the examples above). This is similar to using a general-purpose register for addressing.
- **4.** To enable interrupts immediately after the software STOP mode is entered, insert the EI instruction between the <1> mov and <2> st.b instructions.

*

- **Remarks 5.** The following shows the operation when a non-maskable interrupt or maskable interrupt is requested while a NOP instruction is being executed.
 - If a non-maskable or maskable interrupt is requested before SWSTOPRQ becomes active, the interrupt servicing is immediately executed.
 - If a non-maskable or maskable interrupt is requested after SWSTOPRQ became active, the STOP mode is canceled by the requested interrupt after the STOP mode is entered, in the same way as cancellation by a normal interrupt.

6.2.2 Command register (PRCMD)

The command register (PRCMD) is used to set protection for write operations to the PSC register so that the application system is not halted unexpectedly due to erroneous program execution.

Only the first write operation to the PSC register is valid after a registration code (arbitrary 8-bit data) is written to the PRCMD register. Since the register value can be rewritten only by a predetermined procedure, illegal write operations to the PSC register are rejected.

Data can be written in the PRCMD register only in 8-bit units. During reading, the value is undefined.

Caution Do not set the PRCMD register by transferring data using the DMAC. To set this register, always use a store instruction (ST or SST).

	7		6	5	4	3	2	1	0		
PRCMD	REG	97	REG6	REG5	REG4	REG3	REG2	REG1	REG0	Address FFFFF1FCH	After reset Undefined
Bit pos	sition	Bit	name				Func	tion			
7 to 0		RE(G7 to G0	This is the reg	istration co	de (arbitrary	v 8-bit data)	used when	write-acces	ssing the PSC r	egister.

Figure 6-3. Command Register (PRCMD)

6.3 HALT Mode

In HALT mode, the operation clock of the CPU is stopped. Since the supply of clocks to internal units other than the CPU continues, operation continues. The power consumption of the overall system can be reduced by setting the NU85ET to HALT mode while the CPU is idle.

(1) Setting and operation status

The NU85ET is switched to HALT mode by the HALT instruction.

Although program execution stops in HALT mode, the contents of all registers and of RAM immediately before HALT mode began are maintained. Also, operation continues for all NU85ET-internal peripheral I/O that do not depend on CPU instruction processing.

Caution Insert at least five NOP instructions after the HALT instruction.

(2) Cancellation of HALT mode

HALT mode is canceled by a non-maskable interrupt request, an unmasked maskable interrupt request, or the input of the RESETZ signal.

(a) Cancellation by interrupt request

HALT mode is canceled by a non-maskable interrupt request or by an unmasked maskable interrupt request regardless of the priority. The following table shows the operation performed after HALT mode is canceled.

Table 6-1. Operation After HALT Mode Is Canceled by Interrupt Request

Cancellation Source	Interrupt Enabled (EI) State	Interrupt Disabled (DI) State
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execution of next instruction	Execution of next instruction

The operation differs as follows if HALT mode was set within the interrupt servicing routine.

<1> When a low priority interrupt request is generated

Only HALT mode is canceled. The interrupt request is not acknowledged (held pending).

<2> When a high priority interrupt request (including a non-maskable interrupt request) is generated

HALT mode is canceled and the interrupt request is acknowledged.

(b) Cancellation by RESETZ signal input

This is the same as a normal reset operation.

Caution Be sure to input the RESETZ signal so that the setup and hold times referenced to the VBCLK signal are satisfied.

6.4 Software STOP Mode

In software STOP mode, the CPU operation clock and the clock generator are stopped. The overall system is stopped, and ultra-low power consumption is achieved in which only leakage current is lost.

(1) Setting and operation status

The NU85ET is switched to software STOP mode by using a store instruction (ST or SST instruction) or bit manipulation instruction (SET1, CLR1, or NOT1 instruction) to set the PSC register.

Although program execution stops in software STOP mode, the contents of all registers and of RAM immediately before software STOP mode began are maintained. The operation of all NU85ET-internal peripheral I/O is also stopped.

(2) Cancellation of software STOP mode

Software STOP mode is canceled by a non-maskable interrupt request, an unmasked maskable interrupt request, or the input of the RESETZ signal.

(a) Cancellation by interrupt request

Software STOP mode is canceled by a non-maskable interrupt request not masked by the PSC register or by an unmasked maskable interrupt request regardless of the priority. The following table shows the operation performed after software STOP mode is canceled.

Caution An interrupt request that occurs while the NMI2M to NMI0M and INTM bits of the power save control resister (PSC) are set (interrupt disabled), is invalid (software STOP mode is not canceled).

Cancellation Source	Interrupt Enabled (EI) State	Interrupt Disabled (DI) State
Non-maskable interrupt request	Branch to handler address	
Maskable interrupt request	Branch to handler address or execution of next instruction	Execution of next instruction

Table 6-2. Operation After Software STOP Mode Is Canceled by Interrupt Request

The operation shown in Table 6-3 is performed if software STOP mode was set within the interrupt servicing routine.

Interrupt Servicing Routine Type When Software STOP Mode Is Set	Cancell	ation Source Priority ^{Note 1}	Operation
Maskable interrupt	Maskable	Low	Software STOP mode is canceled
	interrupt	Same	and the interrupt request is not
	request	High $(ID = 1)^{Note 2}$	acknowledged (held pending).
		High $(ID = 0)^{Note 3}$	Software STOP mode is canceled
	Non-maskable interrupt request	_	and the interrupt request is acknowledged.
Non-maskable interrupt	Maskable interrupt request	_	Software STOP mode is canceled and the interrupt request is not acknowledged (held pending).
	Non-maskable	Low	
	interrupt	Same	
	request	High	Software STOP mode is canceled and the interrupt request is acknowledged.

Table 6-3. Operation After Setting Software STOP Mode in Interrupt Servicing Routine

- **Notes 1.** The priority order of the interrupts when software STOP mode is set (interrupts that were being serviced).
 - 2. When the ID bit of the PSW is 1 (interrupt acknowledgement disabled)
 - 3. When the ID bit of the PSW is 0 (interrupt acknowledgement enabled)
- * **Remark** Cancellation of software STOP mode by NMI is performed regardless of the NP bit value in the PSW.

(b) Cancellation by RESETZ signal input

This is the same as a normal reset operation.

Caution Be sure to input the RESETZ signal so that the setup and hold times referenced to the VBCLK signal are satisfied.

6.5 Hardware STOP Mode

In hardware STOP mode, the CPU operation clock and the clock generator are stopped. The overall system is stopped, and ultra-low power consumption is achieved in which only leakage current is lost.

(1) Setting and operation status

The NU85ET is switched to hardware STOP mode by inputting a low-level signal to the STOPZ pin. The NU85ET is switched to hardware STOP mode even if a low-level signal is input to the STOPZ pin when the NU85ET is in HALT mode or software STOP mode.

Although program execution stops in hardware STOP mode, the contents of all registers and of RAM immediately before hardware STOP mode began are maintained. The operation of all NU85ET-internal peripheral I/O is also stopped.

Remark The NU85ET may not switch to hardware STOP mode correctly if the STOPZ input becomes active (low level) due to a read modify write, misalign access, etc. while the VMLOCK signal is locked. If the STOPZ input becomes low level in the bus lock state, an internal CPU of the NU85ET is stopped, but the HWSTOPRQ signal, which controls the external clock generator, does not become active because the slave device connected to the locked bus may require clock supply. Consequently, clock is not stopped and the NU85ET will not switch to hardware STOP mode.

If the system must be switched to hardware STOP mode when the STOPZ input is low level, mask the STOPZ input by the VMLOCK signal to avoid switching to hardware STOP mode while the bus is locked.

(2) Cancellation of hardware STOP mode

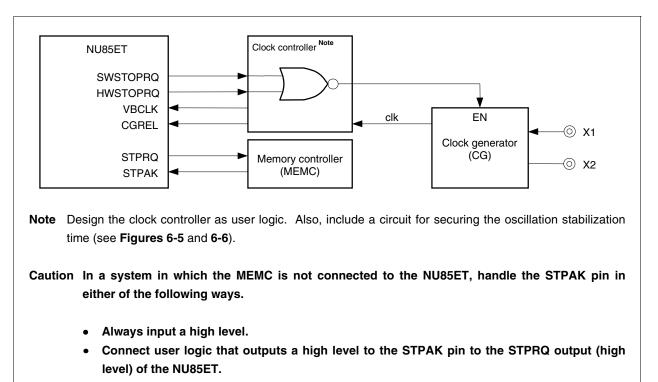
Hardware STOP mode is canceled by inputting the STOPZ or RESETZ signal.

(a) Cancellation by STOPZ signal input

Hardware STOP mode is canceled when the input to the STOPZ pin goes from low level to high level. The mode to which the NU85ET switches after hardware STOP mode is canceled differs as follows according to the status in effect before hardware STOP mode was set.

Before Hardware STOP Mode Is Set	After Hardware STOP Mode Is Canceled
Normal operation mode	Normal operation mode
Software STOP mode	Normal operation mode
HALT mode	HALT mode

 Table 6-4. Status After Cancellation of Hardware STOP Mode

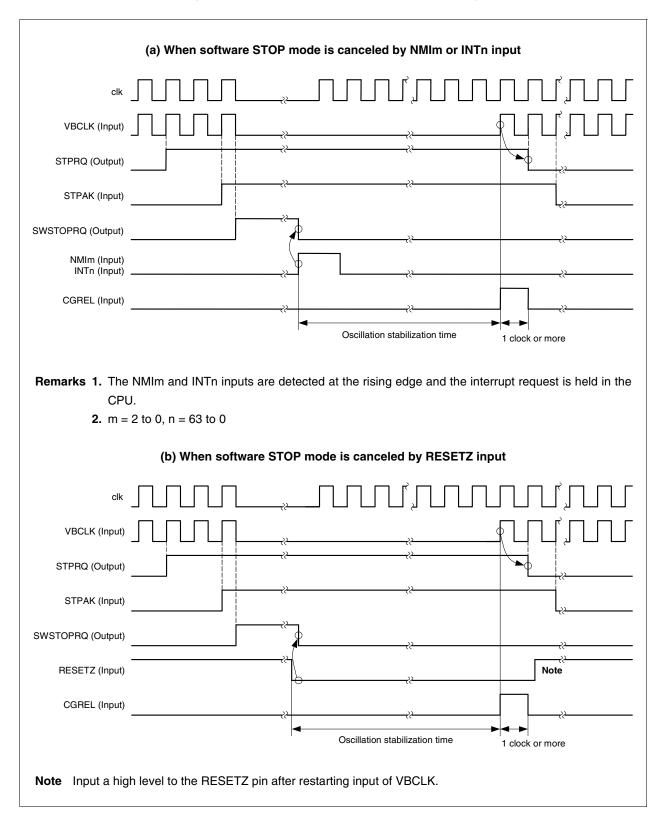

(b) Cancellation by RESETZ signal input

This is the same as a normal reset operation.

Caution Be sure to input the RESETZ signal so that the setup and hold times referenced to the VBCLK signal are satisfied.

6.6 Clock Control in Software/Hardware STOP Mode

The NU85ET and clock controller are connected as follows.


Figure 6-4. Connection of NU85ET and Clock Controller

If a high level is not input to the STPAK pin, the HWSTOPRQ and SWSTOPRQ signals do not become active and shifting the STOP mode becomes impossible.

- (1) Clock control when setting or canceling software STOP mode
 - (a) When setting software STOP mode (after software STOP mode is set by setting the STP bit of the PSC register)
 - <1> Set the STOP mode request signal (STPRQ) to active (high level) and output it to the memory controller.
 - <2> Input the active level (high level) of the acknowledge signal (STPAK) from the memory controller that received the STPRQ signal.
 - <3> Set the software STOP mode request signal (SWSTOPRQ) to active (high level) and output it to the clock controller (use this SWSTOPRQ signal to stop the VBCLK output from the clock controller).

(b) When canceling software STOP mode

- <1> Input a non-maskable interrupt request (NMIm), unmasked maskable interrupt request (INTn), or the RESETZ signal (m = 2 to 0, n = 63 to 0).
- <2> Set the software STOP mode request signal (SWSTOPRQ) to inactive (low level) and output it to the clock controller (clock generator starts operation).
- <3> After the oscillation stabilization time has elapsed, input the active level (high level) of the CGREL signal from the clock controller simultaneous with the VBCLK signal (the input of the VBCLK signal returns the STPRQ and STPAK outputs to low level).
- <4> After inputting the VBCLK signal, input a high level to the RESETZ signal.
- Caution Input an active level (high level) to the CGREL pin for one clock or more. When setting the software STOP mode again, be sure to input an inactive level (low level) to the CGREL pin before setting.
- **Remark** A level latch is used for the RESETZ signal, which can therefore be input asynchronously to VBCLK.

(2) Clock control when setting or canceling hardware STOP mode

(a) When setting hardware STOP mode

- <1> Input the active level (low level) of the STOPZ signal.
- <2> Set the STOP mode request signal (STPRQ) to active (high level) and output it to the memory controller.
- <3> Input the active level (high level) of the acknowledge signal (STPAK) from the memory controller that received the STPRQ signal.
- <4> Set the hardware STOP mode request signal (HWSTOPRQ) to active (high level) and output it to the clock controller (use this HWSTOPRQ signal to stop the VBCLK output from the clock controller).

(b) When canceling hardware STOP mode

*

- <1> Input the RESETZ signal or the inactive level (high level) of the STOPZ signal.
- <2> Set the hardware STOP mode request signal (HWSTOPRQ) to inactive (low level) and output it to the clock controller (clock generator starts operation).
- <3> After the oscillation stabilization time has elapsed, input the active level (high level) of the CGREL signal from the clock controller simultaneous with the VBCLK signal (the input of the VBCLK signal returns the STPRQ and STPAK outputs to low level).

Caution Input an active level (high level) to the CGREL pin for one clock or more. When setting the hardware STOP mode again, be sure to input an inactive level (low level) to the CGREL pin before setting.

Remark A level latch is used for the RESETZ signal, which can therefore be input asynchronously to VBCLK.

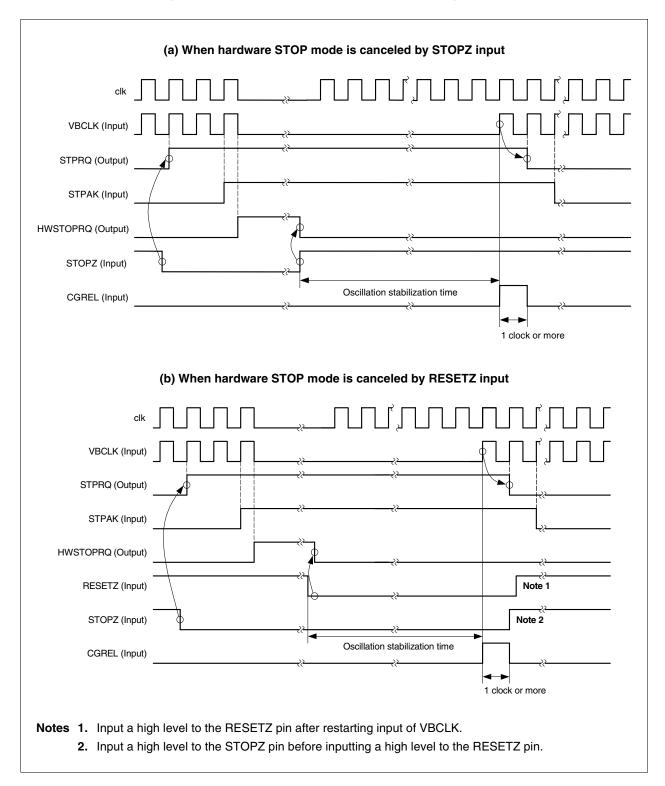
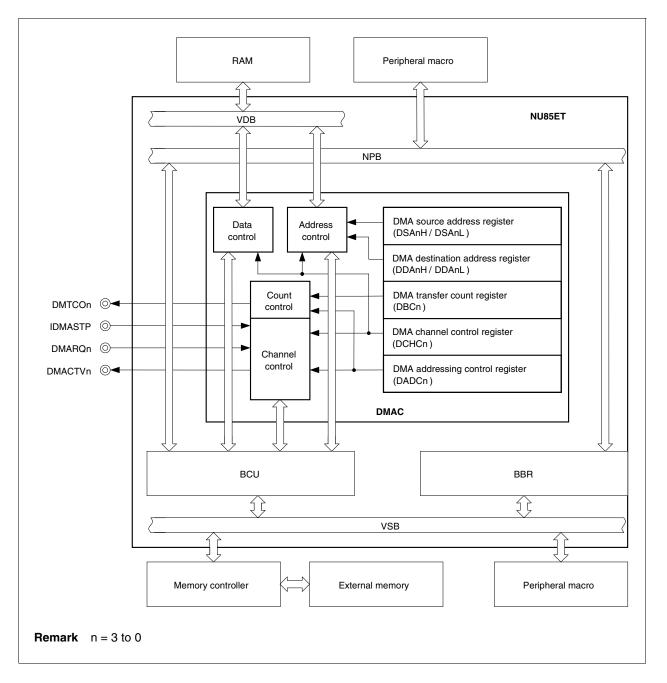


Figure 6-6. Hardware STOP Mode Set/Cancel Timing Example

CHAPTER 7 DMAC

The DMA control unit (DMAC) controls data transfers between memory and peripheral macros or between memory and memory based on DMA transfer requests issued from the DMARQ3 to DMARQ0 pins or by software triggers (memory means RAM or external memory).

7.1 Features


- Four independent DMA channels
- Transfer units: 8 bits, 16 bits, or 32 bits
- Maximum transfer count: 65,536 (2¹⁶)
- Two transfer types
 Flyby (1-cycle) transfer
 Two-cycle transfer
- Four transfer modes
- Single transfer mode
 - Single-step transfer mode
 - Line transfer mode (four bus cycle transfer mode)
 - (in 2-cycle transfer, the operation from read to write is repeated four times)
 - Block transfer mode
- Transfer requests Requests by DMARQ3 to DMARQ0 pin input Requests by software
- Transfer objects
 - Between RAM^{Note} and peripheral macros
 - Between $\text{RAM}^{\textsc{Note}}$ and external memory
 - Between RAM^{Note} and RAM^{Note}
 - Between external memory and peripheral macros

Between external memory and external memory (transfer between little endian area and big endian area is possible)

Note RAM directly connected to the VDB (refer to 7.2 Configuration)

- Terminal count output signals (DMTCO3 to DMTCO0)
- Next address setting function

7.2 Configuration

7.3 Transfer Objects

(1) Transfer types

Table 7-1 shows the relationships between transfer types and transfer objects.

Caution Operation is not guaranteed when a transfer is performed using a combination of transfer source and transfer destination marked by an "No" in Table 7-1.

			Transfer Destination													
		Т	wo-Cycle Transfe	er	Flyby Transfer											
		VSB	NPB	RAM	VSB	NPB	RAM									
	VSB	Yes	Yes	Yes	Yes ^{Note}	No	No									
Transfer source	NPB	Yes	Yes Yes		No	No	No									
000100	RAM	Yes	Yes	Yes	No	No	No									

Table 7-1. Relationships Between Transfer Type and Transfer Object

Note The transfer can be performed only when using the MEMC (NT85E500) associated with the flyby transfer.

Remark Yes: Transfer enabled

No: Transfer disabled

VSB: External memory or peripheral macro on the VSB

NPB: Peripheral macro on the NPB

RAM: RAM directly connected to the VDB

(2) Wait function

Table 7-2 shows the relationships between the wait function and transfer objects.

Table 7-2. Relationships Between Wait Function and Transfer Object

Transfer Object	Wait Function
VSB	Set by MEMC (NT85E500, NT85E502)
NPB	Set by VSWC register
RAM	No wait

7.4 DMA Channel Priorities

DMA channel prioritization is fixed as follows.

DMA channel 0 > DMA channel 1 > DMA channel 2 > DMA channel 3

This prioritization is only valid in the TI state. During a block transfer, the channel used for transfer is never switched.

During a single-step transfer, if a higher priority DMA transfer request is generated during the period when the bus is released (TI), the higher priority DMA transfer is performed.

7.5 Control Registers

7.5.1 DMA source address registers 0 to 3 (DSA0 to DSA3)

These registers are used to set the DMA transfer source addresses (28 bits each) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DSAnH and DSAnL, respectively.

Since they are two-stage FIFO-configuration buffer registers, the transfer source address of a new DMA transfer can be set during a DMA transfer (See **7.6 Next Address Setting Function**).

When a flyby transfer is set according to the TTYP bit of DMA addressing control register n (DADCn), the external memory addresses are set by the DSAn register. At this time, any settings of DMA destination address register n (DDAn) are ignored.

(1) DMA source address registers 0H to 3H (DSA0H to DSA3H)

These registers can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
SA0H	IR	0	0	0	SA 27	SA 26	SA 25	SA 24	SA 23	SA 22	SA 21	SA 20	SA 19	SA 18	SA 17	SA 16	Address FFFFF082H	After reso Undefine
ļ								- ·]	0.1.00
SA1H	IR	0	0	0	SA	Address	After rese											
SAIII	ш	U	0	0	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF08AH	Undefine
					0.1	0.4		SA	0.4	0.4	0.4	0.4	0.4	0.4	0.4			A.G
SA2H	IR	0	0	0	SA 27	SA 26	SA 25	5A 24	SA 23	SA 22	SA 21	SA 20	SA 19	SA 18	SA 17	SA 16	Address FFFFF092H	After resolution
																	1	
SA3H	IB	0	0	0	SA	Address	After res											
0, 101 1		•	Ū	•	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF09AH	Undefine
Bit po	sition	Bit	name									Func	tion					
15		IR			ecifie						acro							
			0: External memory or peripheral macro 1: RAM															
)	<u> </u>		11 to 0 SA27 to Sets the DMA transfer source address (A27 to A SA16 transfer source address is held. For a flyby tran									,	-				

Figure 7-1. DMA Source Address Registers 0H to 3H (DSA0H to DSA3H)

(2) DMA source address registers 0L to 3L (DSA0L to DSA3L)

These registers can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DSA0L	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After reset
DOAUL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF080H	Undefined
									1									
DSA1L	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After reset
DOATE	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF088H	Undefined
																	_	
DSA2L	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After reset
DOAL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF090H	Undefined
DSA3L	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	SA	Address	After reset
DSAGE	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF098H	Undefined
Bit po	sition	Bit	name									Func	tion					
15 to ()	SA15 to SA0 SA15 to DMA transfer source address (A15 to A0). During a DMA transfer, the next DMA transfer source address is held. For a flyby transfer, the external memory address is held																

Figure 7-2.	DMA Source	Address Re	egisters 0L	to 3L	(DSA0L 1	to DSA3L)
-------------	------------	------------	-------------	-------	----------	-----------

7.5.2 DMA destination address registers 0 to 3 (DDA0 to DDA3)

These registers are used to set the DMA transfer destination addresses (28 bits each) for DMA channel n (n = 0 to 3). They are divided into two 16-bit registers, DDAnH and DDAnL, respectively.

Since they are two-stage FIFO-configuration buffer registers, the transfer destination address of a new DMA transfer can be set during a DMA transfer (See **7.6 Next Address Setting Function**).

When a flyby transfer is set according to the TTYP bit of DMA addressing control register n (DADCn), any setting of this register is ignored.

(1) DMA destination address registers 0H to 3H (DDA0H to DDA3H)

These registers can be read or written in 16-bit units.

Figure 7-3. DMA Destination Address Registers 0H to 3H (DDA0H to DDA3H)

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	_	
DDA0H	IR	0	0	0	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDAUH	IN	0	0	0	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF086H	Undefined
																	_	
DDA1H	IR	0	0	0	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDAIH	п	0	0	0	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF08EH	Undefined
																	_	
DDA2H	IR	0	0	0	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDA2H	IK	0	0	0	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF096H	Undefined
																	_	
DDA3H	IR	0	0	0	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDA3H	IN	0	0	0	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF09EH	Undefined
Bit pos	sition	Bit	name									Func	tion					
15	IR Specifies the DMA transfer destination.																	
	0: External memory or peripheral macro																	
				1	: RAM	1												
11 to 0)		27 to	Se	ets the	DMA	trans	fer de	stinati	on ad	dress	(A27	to A16	6). Du	iring a	DMA	transfer, the n	ext DMA
		DA	16	tra	Insfer	destir	nation	addre	ss is l	neld.	For a	flyby t	ransfe	er, this	s is igr	nored.		

Caution Bits 14 to 12 of the DDA0H to DDA3H registers must be set to 0. The operation when these bits are set to 1 is not guaranteed.

(2) DMA destination address registers 0L to 3L (DDA0L to DDA3L)

These registers can be read or written in 16-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
DDA0L	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDAUL	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF084H	Undefined
					1			1	1				1	1		1		
DDA1L	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
22/112	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF08CH	Undefined
					1			1	1				1	r		1		
DDA2L	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF094H	Undefined
DDA3L	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	DA	Address	After reset
DDAGE	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF09CH	Undefined
Bit po	sition	Bit	name									Funct	tion					
15 to ()	DA [®]	15 to									`			0		ransfer, the nex	kt DMA
				ιra	Insfer	uestir	allon	auure	55 15 1	ieiu.	гога	пуру 1	iansie	er, uns	s is igr	iorea.		

	DMA Deetinetien	Adduces Deal		
Floure 7-4.	DIMA Destination	Address Redi	sters up to 3L	(DDA0L to DDA3L)
		/ (ala) 000 110 gi		

7.5.3 DMA transfer count registers 0 to 3 (DBC0 to DBC3)

These 16-bit registers are used to set the transfer count for DMA channel n (n = 0 to 3). These registers hold the remaining transfer count during a DMA transfer.

Since they are two-stage FIFO-configuration buffer registers, the transfer count of a new DMA transfer can be set during a DMA transfer (See **7.6 Next Address Setting Function**).

These registers are decremented by 1 for each transfer that is performed. Transfer ends when a borrow occurs. These registers can be read or written in 16-bit units.

Note that in the case of line transfers, when the DBCn register is 0003H (4 transfers) this becomes one line transfer. For a setting in which the transfer count cannot be divided by 4, the sections that can be line transferred are (line) transferred first, then the remaining indivisible section is transferred as a single transfer.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	-	
DBC0	BC	BC	BC	BC	BC	BC	вС	BC	BC	вС	BC	BC	вС	BC	BC	вС	Address	After rese
BBOO	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF0C0H	Undefined
i					1			1		1	1						1	
DBC1	BC	BC	BC	BC	BC	BC	BC	BC	BC	вС	BC	BC	BC	BC	BC	вС	Address	After rese
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF0C2H	Undefined
1		1		1	1			1	1	1	1	1			1		1	
DBC2	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	Address	After rese
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF0C4H	Undefined
1		1		1	1			1	1	1	1	1			1		1	
DBC3	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	BC	Address	After rese
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF0C6H	Undefined
-		1		-														ī
Bit pos	sition	Bit	name)			Function											
15 to 0)	BC BC	15 to 0	S	ets the	trans	fer co	unt. [During	a DN	IA trar	nsfer, t	the re	mainir	ng trar	nsfer o	count is held.	
					DB	DBCn Status												
					0000	Н	Tran	sfer 1	or re	mainir	ng trar	sfer c	ount					
					0001	Н	Tran	sfer 2	or re	mainir	ng trar	sfer c	ount					
					:		:											
					FFFF	ΞH	Transfer 65,536 (2 ¹⁶) or remaining transfer count											
								-	, -	. /				-				
Dom			to 0															
Rema		n = 0	10 3															

Figure 7-5. DMA Transfer Count Registers 0 to 3 (DBC0 to DBC3)

7.5.4 DMA addressing control registers 0 to 3 (DADC0 to DADC3)

*

possible.

These 16-bit registers are used to control the DMA transfer operation mode for DMA channel n (n = 0 to 3). These registers can be read or written in 16-bit units.

Caution These registers cannot be accessed during a DMA transfer.

	DS 1 DS 1	DS 0 DS 0	0	0	0	0	0	0	SAD	0 A D								
DADC1	1	-	0					0	1	SAD 0	DAD 1	DAD 0	TM1	тмо	ТТҮР	TDIR	Address FFFFF0D0H	After rese 0000H
ADC2	[0	0	0	0	0	SAD 1	SAD 0	DAD 1	DAD 0	TM1	тмо	TTYP	TDIR	Address FFFFF0D2H	After rese 0000H
	DS 1	DS 0	0	0	0	0	0	0	SAD 1	SAD 0	DAD 1	DAD 0	TM1	TM0	ТТҮР	TDIR	Address FFFFF0D4H	After rese 0000H
DADC3	DS 1	DS 0	0	0	0	0	0	0	SAD 1	SAD 0	DAD 1	DAD 0	TM1	TM0	ттүр	TDIR	Address FFFF0D6H	After rese 0000H
Bit posi	ition	Bit	name									Func	tion					
15, 14		DS ⁻ DS(Se	Sets the transfer data size for a DMA transfer.													
				[DS1	1	DS0						Trans	fer da	ta size)		
					0		0	81	oits									
					0		1	16	bits									
					1		0	-	bits									
					1		1	Se	etting p	orohibi	ited							
Cautio	ons	d T D	ata herei ATA	bus fore, 0) ma	line ever ay no	to k n if 8 t alw	be us B-bit (vays b	sed data be us	is de is se sed.	eterm et (D	nined S1, [by 0S0 =	the = 0, (VMB D), th	ENZ3 ie lov	3 to ver c	transferred. VMBENZ0 data bus (DA ed from the a	signals. ATA7 to
												-					t two bits ali	

Figure 7-6. DMA Addressing Control Registers 0 to 3 (DADC0 to DADC3) (1/2)

2. Bits 13 to 8 of the DADC0 to DADC3 registers must be set to 0. The operation when these bits are set to 1 is not guaranteed.

Bit position	Bit name	Function							
7, 6	SAD1, SAD0	Sets the co	ount direct	ion of the transfer source addresses for DMA channel n (n = 0 to 3).					
		SAD1	SAD0	Count direction					
		0	0	Increment					
		0	1	Decrement					
		1	0	Fixed					
		1	1	Setting prohibited					
5, 4	DAD1, DAD0	Sets the co	ount direct	ion of the transfer destination addresses for DMA channel n (n = 0 to 3).					
		DAD1	DAD0	Count direction					
		0	0	Increment					
		0	1	Decrement					
		1	0	Fixed					
		1	1	Setting prohibited					
3, 2	TM1, TM0	Sets the tr	ansfer moo	de used for DMA transfers.					
		TM1	TM0	Transfer mode					
		0	0	Single transfer mode					
		0	1	Single-step transfer mode					
		1	0	Line transfer mode					
		1	1	Block transfer mode					
1	TTYP	Sets the DMA transfer type. 0: Two-cycle transfer 1: Flyby transfer ^{№te}							
0	TDIR	Sets the tr The setting 0: Extern	ansfer dire j is valid o al memory	ction used for transfers between peripheral macros and external memory. nly for flyby transfers and is ignored for 2-cycle transfers. to peripheral macro (read) to external memory (write)					

Figure 7-6. DMA Addressing Control Registers 0 to 3 (DADC0 to DADC3) (2/2)

Note Valid only when using an MEMC that supports flyby transfer.

7.5.5 DMA channel control registers 0 to 3 (DCHC0 to DCHC3)

These 8-bit registers are used to control the DMA transfer operation mode for DMA channel n (n = 0 to 3).

These registers can be read or written in 8-bit or 1-bit units (however bit 7 can only be read and bits 2 and 1 can only be written. If bits 2 and 1 are read, the value 0 is read).

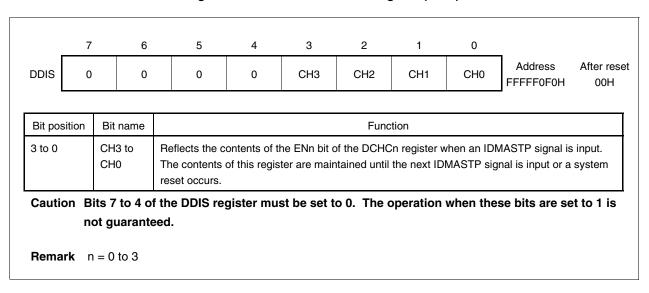
-	7	1	6	5	4	3	2	1	0	-					
OCHC0	тсо))	0	0	MLE0	INITO	STG0	EN0	Address FFFFF0E0H	After res 00H				
OCHC1	TC1	1)	0	0	MLE1	INIT1	STG1	EN1	Address FFFFF0E2H	After res 00H				
OCHC2	TC2	C2 0		0	0	MLE2	INIT2	STG2	EN2	Address FFFFF0E4H	After res 00H				
оснсз	TC3		D	0	0	MLE3	INIT3	STG3	EN3	Address FFFFF0E6H	After rese 00H				
Bit pos	ition	Bit name					Func	tion							
3		TCn MLEn	It i 0 1 If t in ac ST If t in	 This bit can only be read. This bit is set (1) during the last transfer read cycle of DMA transfer. It is cleared (0) when it is read. 0: DMA transfer has not ended 1: DMA transfer has ended If this bit is set (1) when a terminal count is output, the ENn bit is not cleared (0), and the status in which DMA transfer is enabled continues. Also, the next DMA transfer request is acknowledged even if the TCn bit is not read. When DMA transfer is requested by setting the STGn bit, the TCn bit must be read and cleared (0) even if the MLEn bit is set (1). If this bit is cleared (0) when a terminal count is output, the ENn bit is cleared (0), and the status in which DMA transfer is disabled occurs. When the next DMA transfer request is made, if the 											
		INITn		TCn bit is read, the ENn bit must be set (1). If this bit is set (1), the DMA transfer is forcibly terminated.											
2	STGn		lf t	If this bit is set (1) during the status in which DMA transfer is enabled (TCn bit = 0, ENn bit = 1), the DMA transfer begins.											
2			the	e DMA trans	sfer begins.										

for DMA transfer (software DMA) started by setting the STGn bit (1) (the software DMA operation with the MLEn bit set (1) is not guaranteed).

2. Bits 6 to 4 of the DCHC0 to DCHC3 registers must be set to 0. The operation when these bits are set to 1 is not guaranteed.

Remark n = 0 to 3

*


*

*

7.5.6 DMA disable status register (DDIS)

This register maintains the contents of the ENn bit of the DCHCn register when an IDMASTP signal is input (n = 0 to 3).

This register is read-only in 8-bit or 1-bit units.

Figure 7-8. DMA Disable Status Register (DDIS)

7.5.7 DMA restart register (DRST)

This register is used to restart a DMA transfer that was forcibly interrupted by inputting the IDMASTP signal. The ENn bits of this register are linked respectively with the ENn bits of the DCHCn registers (n = 0 to 3). After a DMA transfer was forcibly interrupted by inputting the IDMASTP signal, the DMA channel for which the transfer was interrupted is confirmed from the contents of the DDIS register, and the DMA transfer can be restarted by setting (1) the ENn bit of the corresponding DMA channel.

This register can be read or written in 8-bit or 1-bit units.

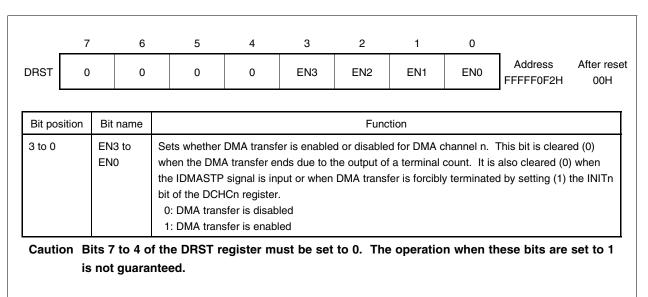


Figure 7-9. DMA Restart Register (DRST)

Remark n = 0 to 3

7.6 Next Address Setting Function

The DMA source address registers (DSAnH and DSAnL), DMA destination address registers (DDAnH and DDAnL), and DMA transfer count registers (DBCn) are two-stage FIFO-configuration buffer registers (n = 0 to 3).

When a terminal count signal (DMTCOn) is output, these registers are automatically rewritten with the values that were set just before the signal was output.

Therefore, if a new DMA transfer is set for these registers during a DMA transfer, the transfer can begin only when the ENn bit of the DCHCn register is set (1).

Figure 7-10 shows the buffer register configuration.

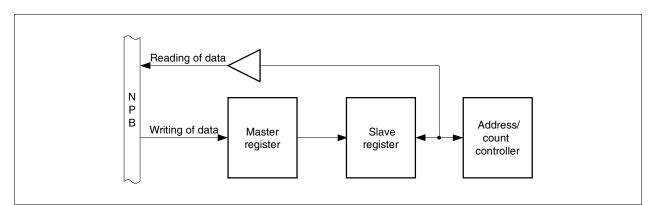


Figure 7-10. Buffer Register Configuration

7.7 DMA Bus State

7.7.1 Bus state types

DMAC bus cycles consist of the 13 states shown below.

(1) TI state

This is an idle state in which there is no access request. The DMARQ3 to DMARQ0 signals are sampled at the rising edge of the VBCLK signal.

(2) T0 state

This is the DMA transfer ready state (there is a DMA transfer request, and the bus access right has been acquired for the first DMA transfer).

(3) T1R state

This is the state to which the DMAC moves first for a 2-cycle transfer read. Address driving begins. After the T1R state, the DMAC always shifts to the T2R state.

(4) T1RI state

This is the state in which the DMAC is awaiting an acknowledge signal for an external memory read request. After the last T1RI state, the DMAC always shifts to the T2R state.

(5) T2R state

This is a wait state or the last state of a 2-cycle transfer read. In the last T2R state, read data is sampled. After the read data is sampled, the DMAC always shifts to the T1W state.

(6) T2RI state

This is the DMA transfer ready state for a DMA transfer to RAM (the bus access right has been acquired for a DMA transfer to RAM).

After the last T2RI state, the DMAC always shifts to the T1W state.

(7) T1W state

This is the state to which the DMAC moves first for a 2-cycle transfer write. Address driving begins. After the T1W state, the DMAC always shifts to the T2W state.

(8) T1WI state

This is the state in which the DMAC is awaiting an acknowledge signal for an external memory write request. After the last T1WI state, the DMAC always shifts to the T2W state.

(9) T2W state

This is a wait state or the last state of a 2-cycle transfer write. In the last T2W state, the write strobe signal is made inactive.

(10) T1FH state

This is the basic state of a flyby transfer and is the execution cycle of that transfer. After the T1FH state, the DMAC shifts to the T2FH state.

(11) T1FHI state

This is the last state of a flyby transfer, and the DMAC is awaiting the end of the transfer. After the T1FHI state, the bus is released, and the DMAC shifts to the TE state.

(12) T2FH state

This is the state in which the DMAC judges whether or not to continue flyby transfers. If the next transfer is executed in block transfer mode, the DMAC shifts to the T1FH state after the T2FH state. In other modes, if a wait has occurred, the DMAC shifts to the T1FHI state. If no wait has occurred, the bus is released, and the DMAC shifts to the TE state.

(13) TE state

This is the state in which the DMA transfer is completed. The DMAC generates a terminal count signal (DMTCOn) and initializes other types of internal signals (n = 3 to 0). After the TE state, the DMAC always shifts to the TI state.

7.7.2 DMAC bus cycle state transitions

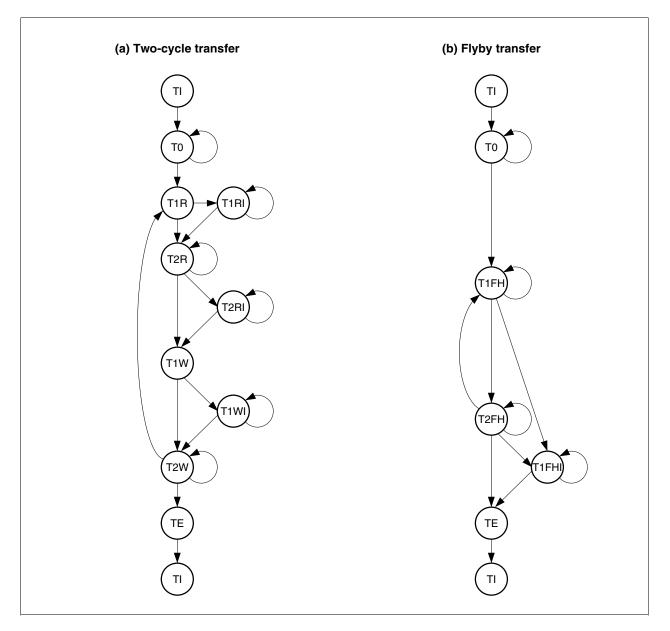


Figure 7-11. DMAC Bus Cycle State Transition Diagram

7.8 Transfer Modes

7.8.1 Single transfer mode

In single transfer mode, the DMAC releases the bus after each byte, halfword, or word transfer. If there is a subsequent DMA transfer request, a single transfer is performed again. This operation continues until a terminal count occurs.

If a higher priority DMA transfer request is generated while the DMAC has released the bus, the higher priority DMA transfer request always takes precedence. However, if a lower priority DMA transfer request is generated within one clock after the end of a single transfer, even if the previous higher priority DMA transfer request signal stays active, this request is not prioritized, and the next DMA transfer after the bus is released for the CPU is a transfer based on the newly generated, lower priority DMA transfer request.

Figures 7-12 to 7-15 show examples of single transfer.

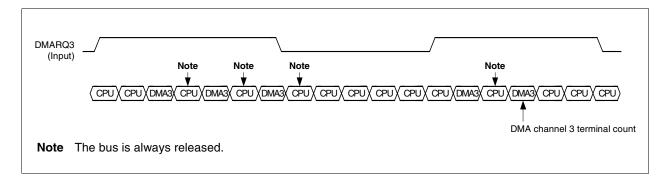


Figure 7-13 shows a single transfer mode example in which a higher priority DMA transfer request is generated. DMA channels 0 to 2 are used for a block transfer, and channel 3 is used for the single transfer.

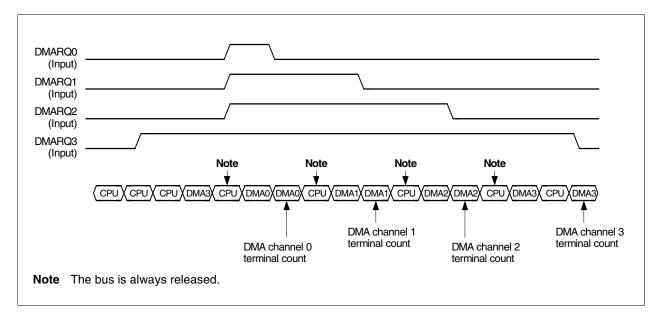


Figure 7-13. Single Transfer Example 2

Figure 7-14 shows a single transfer mode example in which a lower priority DMA transfer request is generated within one clock after the end of a single transfer. DMA channels 0 and 3 are used for the single transfer. When two DMA transfer request signals are activated at the same time, the two DMA transfers are performed alternately.

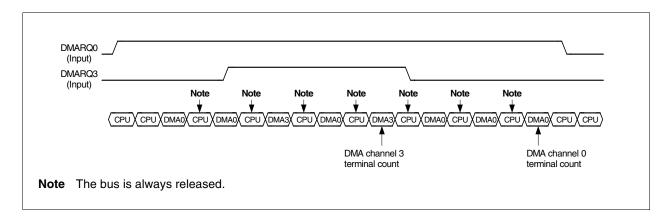
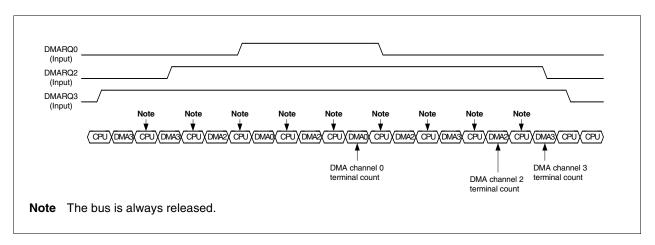
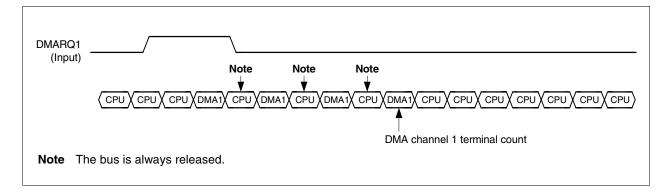
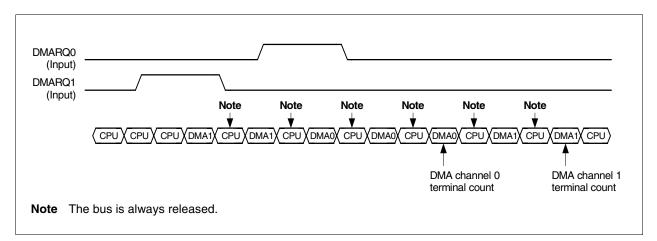



Figure 7-14. Single Transfer Example 3

Figure 7-15 shows a single transfer mode example in which two or more lower priority DMA transfer requests are generated within one clock after the end of a single transfer. DMA channels 0, 2, and 3 are used for the single transfer. When three or more DMA transfer request signals are activated at the same time, always the two highest priority DMA transfers are performed alternately.


7.8.2 Single-step transfer mode

In single-step transfer mode, the DMAC releases the bus after each byte, halfword, or word transfer. Once a DMA transfer request signal (DMARQ3 to DMARQ0) is received, this operation continues until a terminal count occurs.


If a higher priority DMA transfer request is generated while the DMAC has released the bus, the higher priority DMA transfer request always takes precedence.

Figures 7-16 and 7-17 show examples of single-step transfer.

7.8.3 Line transfer mode

In line transfer mode, the DMAC releases the bus after every four byte, halfword, or word transfers. If there is a subsequent DMA transfer request, four transfers are performed again. This operation continues until a terminal count occurs. In 2-cycle transfer, the operation from read to write is repeated four times.

If a higher priority DMA transfer request is generated while the DMAC has released the bus, the higher priority DMA transfer request always takes precedence. However, if a lower priority DMA transfer request is generated within one clock after the end of a line transfer, even if the previous higher priority DMA transfer request signal stays active, this request is not prioritized, and the next DMA transfer after the bus is released for the CPU is a transfer based on the newly generated, lower priority DMA transfer request.

Figures 7-18 to 7-21 show examples of line transfer.

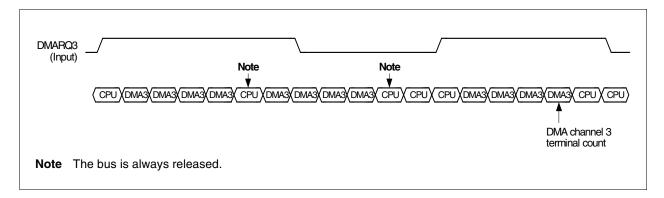


Figure 7-19 shows a line transfer mode example in which a higher priority DMA transfer request is generated. DMA channels 0 to 2 are used for a block transfer, and channel 3 is used for the line transfer.

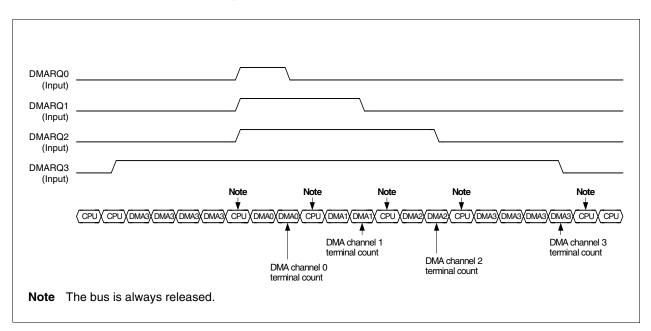
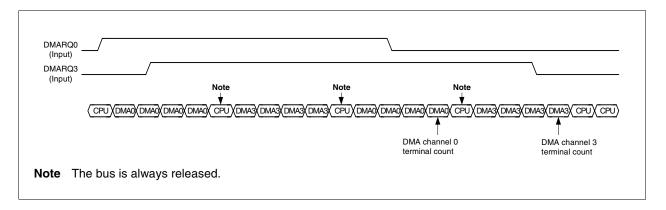



Figure 7-19. Line Transfer Example 2

Figures 7-20 and 7-21 show line transfer mode examples in which a lower priority DMA transfer request is generated within one clock after the end of a line transfer. When two DMA transfer request signals are activated at the same time, the two DMA transfers are performed alternately.

DMA channels 0 and 3 in Figure 7-20 are used for line transfer.

DMA channel 0 in Figure 7-21 is used for a single transfer, and channel 3 is used for the line transfer.

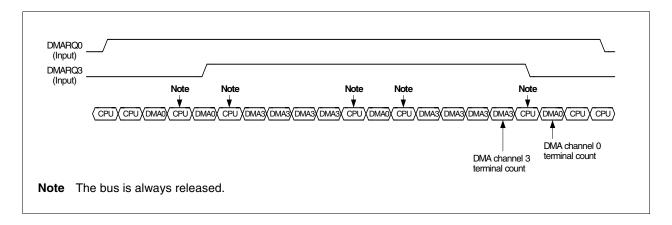


Figure 7-21. Line Transfer Example 4

7.8.4 Block transfer mode

In block transfer mode, once transfer begins, the transfers continue without releasing the bus until a terminal count occurs. No other DMA transfer requests are acknowledged during a block transfer.

After the block transfer ends and the DMAC has released the bus, another DMA transfer can be acknowledged. Although it is prohibited to insert a CPU bus cycle during a block transfer, bus mastership can be transferred even during a block transfer in response to a request by the external bus master (including SDRAM refresh).

Figure 7-22 shows a block transfer mode example in which a higher priority DMA transfer request is generated. DMA channels 2 and 3 are used for the block transfer.

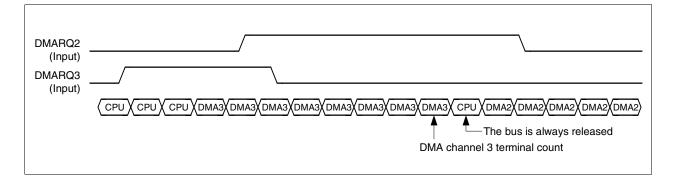


Figure 7-22. Block Transfer Example

7.8.5 One-time transfer when executing single transfers using DMARQn signal

(1) Two-cycle transfer

When executing single transfers to the external memory using the DMARQn signal input, the next DMARQn signal is acknowledged when its sampling is started at the rise of VBCLK at three clocks following the completion of the write cycle of the current 2-cycle transfer. Actually, when the specified DMARQn setup time is satisfied after VBCLK falls at 2.5 clocks after completion of the write cycle, the next DMARQn signal request is acknowledged. Therefore, in order to transfer only once, it is recommended that the DMARQn signal be made inactive within 2 clocks of the end of the write cycle of a 2-cycle single transfer (n = 3 to 0).

During a DMA transfer in which the destination is the RAM connected to the VDB, the DMACTVn signal does not become active during transfer to RAM, so if the transfer destination (write cycle) is RAM, the timing when the write cycle ends cannot be determined (n = 3 to 0). When executing a single transfer, whether from memory to RAM or from RAM to memory, the DMACTVn signal becomes active during the memory transfer. In this case, therefore, it is recommended that the DMARQn signal be made inactive within 2 clocks after the DMACTVn signal becomes inactive.

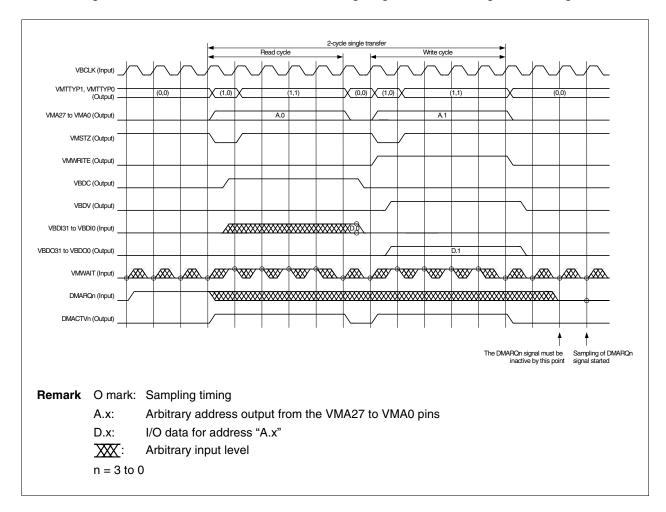


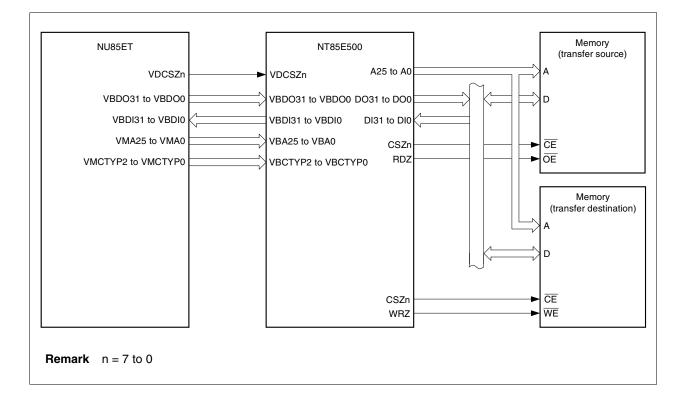
Figure 7-23. One-Time Transfer When Executing Single Transfers Using DMARQn Signal

(2) Flyby transfer

Similar to the 2-cycle transfer, the next DMARQn signal is acknowledged when its sampling is started at the rise of VBCLK three clocks following the completion of the write cycle of the current 2-cycle transfer. Actually, when the specified DMARQn setup time is satisfied after VBCLK falls 2.5 clocks after completion of the write cycle, the next DMARQn signal request is acknowledged. Therefore, in order to transfer only once, it is recommended that the DMARQn signal be made inactive within 2 clocks of the end of the write cycle of a 2-cycle single transfer (n = 3 to 0).

7.9 Transfer Types

7.9.1 Two-cycle transfer

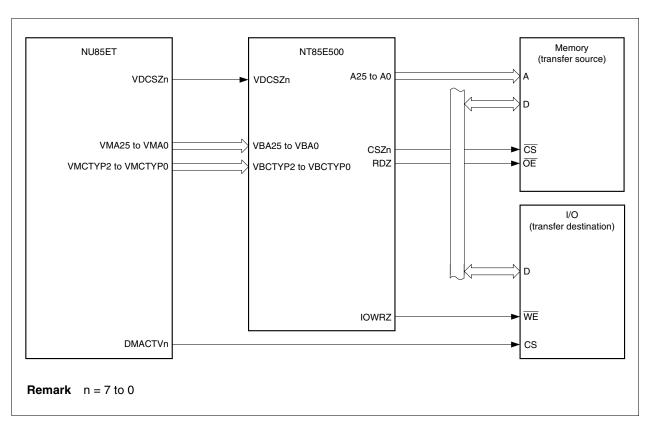

In a 2-cycle transfer, data is transferred in 2 cycles: a read cycle (transfer source to DMAC) and a write cycle (DMAC to transfer destination).

In the first cycle, the transfer source address is output to read data from the transfer source to the DMAC. In the second cycle, the transfer destination address is output to write data from the DMAC to the transfer destination.

The signals indicating 2-cycle DMA transfer (1, 1, 0) are output from the VMCTYP2 to VMCTYP0 pins.

Caution A one-clock idle cycle is always inserted between a read cycle and a write cycle.

7.9.2 Flyby transfer


A flyby transfer can be executed only when the MEMC supports flyby transfers.

Flyby transfer executes a transfer from memory to I/O or from I/O to memory in one cycle. The NU85ET always outputs the address on the memory side set in the DSAnH or DSAnL registers for either transfer from memory to I/O or from I/O to memory (n = 3 to 0).

The strobe signal to the memory or to the external I/O simultaneously makes the RDZ/IOWRZ and WRZ/IORDZ signals active during transfer from memory to I/O and from I/O to memory, respectively. Signals indicating DMA flyby transfer (1, 1, 1) are also output from the VMCTYP2 to VMCTYP0 pins. Only the data bus on the memory side of the memory controller is used for data, so the VBDI31 to VBDI0 and VBDO31 to VBDO0 signals, which are for VSB data, are not used.

The external I/O is selected according to the DMACTV3 to DMACTV0 signals.

Caution When NA85E535 is used as a memory controller, flyby transfer with SDRAM is possible, except in a system in which the SDRAM controller (NT85E502) is connected to the NT85E500.

Figure 7-25. Example of Flyby Transfer (Memory to I/O)

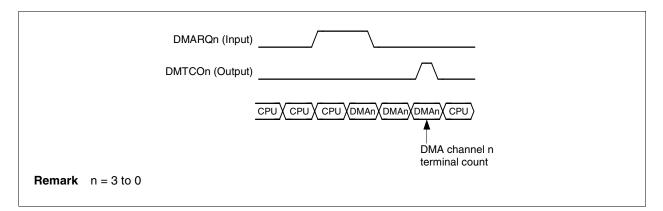
7.10 DMA Transfer Start Factors

DMA transfer can be started by the following two factors.

(1) Request by external pin (DMARQn)

If the ENn bit of the DCHCn register is set to 1 and the TCn bit is set to 0, the DMARQn signal becomes active in TI state (n = 3 to 0). If the DMARQn signal becomes active in TI state, the DMAC moves to T0 state and DMA transfer begins.

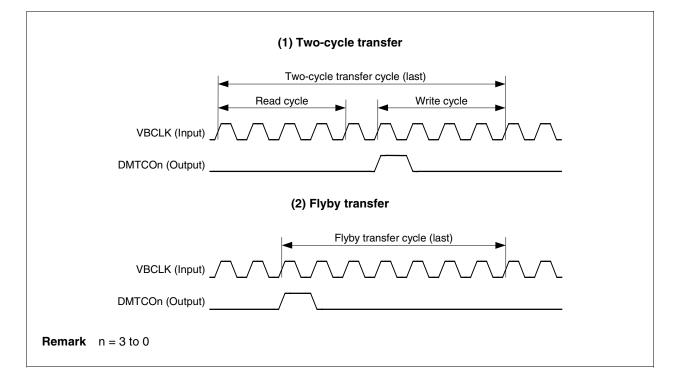
(2) Request by software


If the STGn, ENn, and TCn bits of the DCHCn register are set as follows, DMA transfer begins (n = 0 to 3).

- STGn bit = 1
- ENn bit = 1
- TCn bit = 0

7.11 Terminal Count Output When DMA Transfer Is Complete

The terminal count signal (DMTCOn) becomes active for only one clock in the final DMA transfer cycle (n = 3 to 0).



During 2-cycle transfer, the terminal count signal becomes active for one clock at the beginning of the last write cycle.

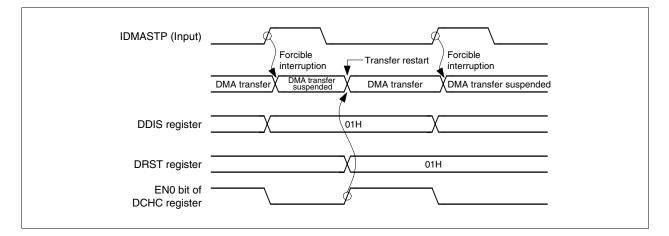
During flyby transfer, the signal becomes active for one clock at the beginning of the last transfer cycle.

*

Figure 7-27. Example of Terminal Count Signal Output (DMTCO3 to DMTCO0)

7.12 Forcible Interruption

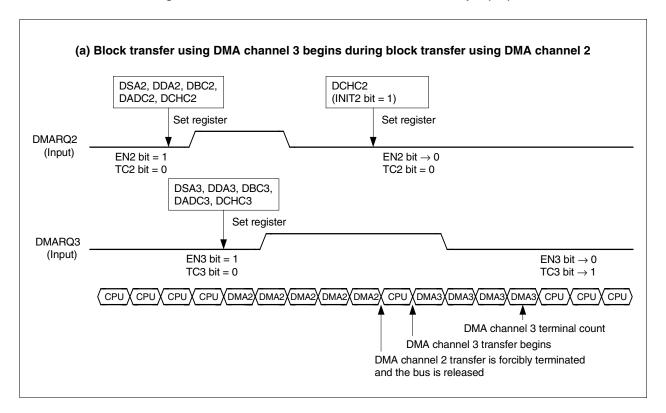
DMA transfer can be forcibly interrupted by inputting the IDMASTP signal during the DMA transfer.

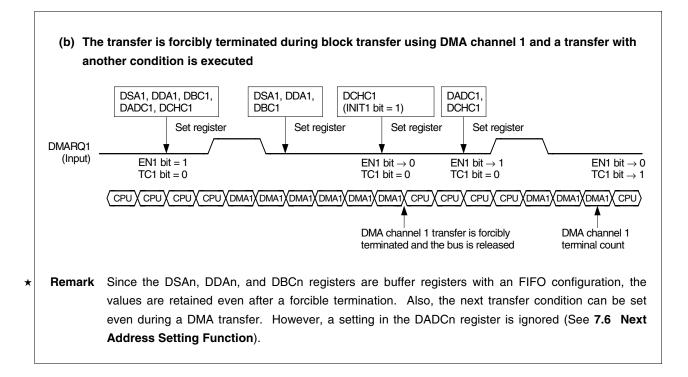

At this time, the DMAC clears (0) the ENn bit of the DCHCn register of all channels to set the state in which DMA transfer is disabled, completes the DMA transfer that was being executed when the IDMASTP signal was input, and releases the bus to the CPU (n = 0 to 3).

For single-step transfer mode, block transfer mode, or line transfer mode, the DMA transfer request is held in the DMAC. When the ENn bit is set (1), the DMA transfer is restarted from the point at which the DMA transfer was interrupted.

For single transfer mode, when the ENn bit is set (1), the next DMA transfer request is acknowledged and DMA transfer begins.

Caution To forcibly interrupt DMA transfer and stop the next transfer from occurring, the IDMASTP signal must be made active before the end of the DMA transfer currently under execution. Moreover, although it is possible to restart DMA transfer following an interruption, this transfer cannot be executed under new settings (new conditions). Execute DMA transfer under new settings either after the end of the current transfer or after transfer has been forcibly terminated by setting the INITn bit of the DCHCn register (n = 0 to 3).




7.13 Forcible Termination

By setting (1) the INITn bit of the DCHCn register during a DMA transfer, it is possible to forcibly terminate the DMA transfer under execution. The following is an example of the operation of a forcible termination (n = 0 to 3).

Caution The setting (1) of the INITn bit is performed when the VSB has been released to the CPU (n = 0 to 3). Therefore, because the VSB is locked until the DMA transfer has completely finished in a block transfer using the VSB, it is not possible to exercise a forcible termination during this transfer.

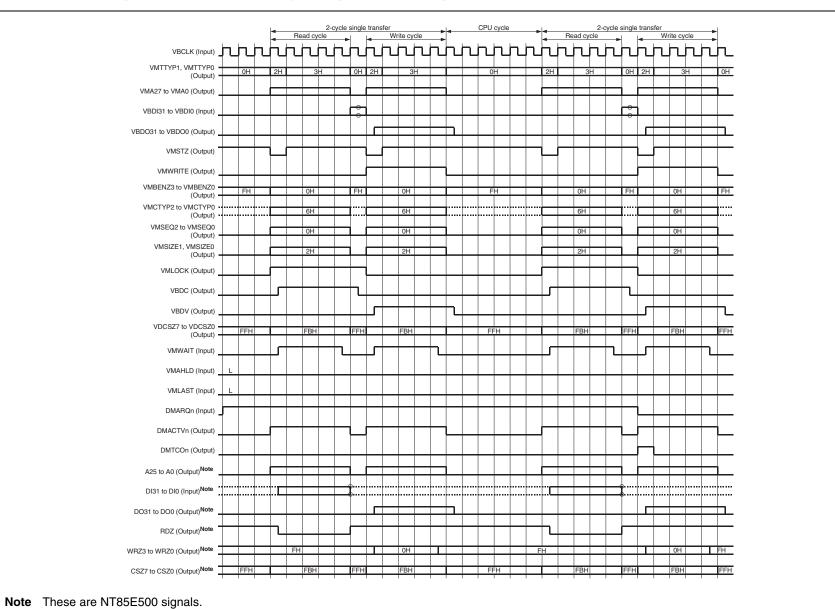
Figure 7-29. DMA Transfer Forcible Termination Example (2/2)

7.14 DMA Transfer Timing Examples

Examples of the DMA transfer timing in each transfer mode are shown in the following pages.

The NT85E500 and the NT85E502 are provided as MEMCs for the NU85ET. This section gives examples of when the NT85E500 and the NT85E502 are used.

(1) Two-cycle transfer


Figures 7-30 to 7-33 show examples of the timing of 2-cycle transfers between external SRAMs connected to the MEMC (NT85E500). Figures 7-34 and 7-35 show examples of the timing of 2-cycle transfers between RAM connected to the VDB and SDRAM connected to the MEMC (NT85E502).

- **Remarks 1.** The levels of the broken-line portions of the VMCTYP2 to VMCTYP0, VMSEQ2 to VMSEQ0, VMSIZE1, VMSIZE0, DI31 to DI0, and DO31 to DO0 signals indicate an undefined state.
 - 2. The O marks indicate the sampling timing.
 - **3.** n = 3 to 0

Figure 7-30 shows an example of the timing of a 2-cycle single transfer (between external SRAMs connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

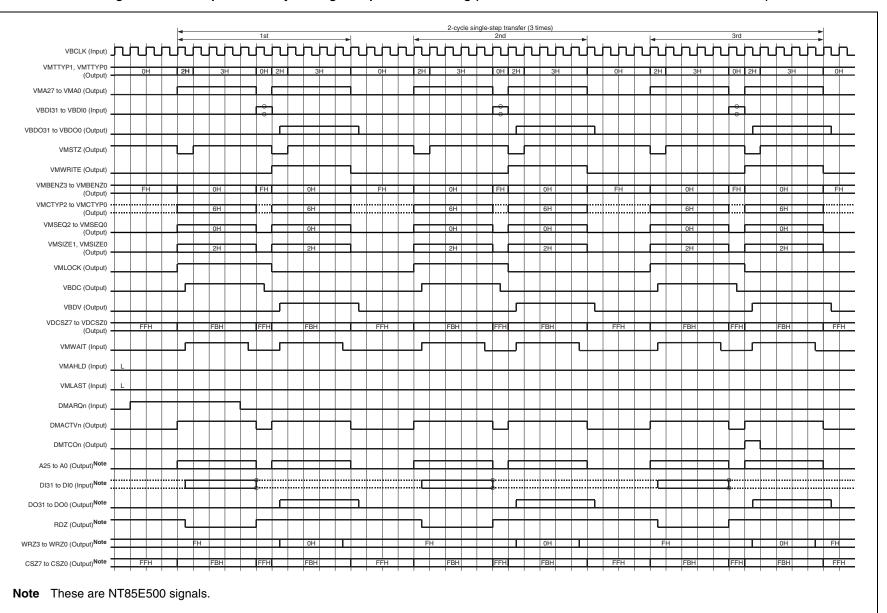


Figure 7-30. Example of Two-Cycle Single Transfer Timing (Between External SRAMs Connected to NT85E500)

Figure 7-31 shows an example of the timing of a 2-cycle single-step transfer (between external SRAMs connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0002H (3 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

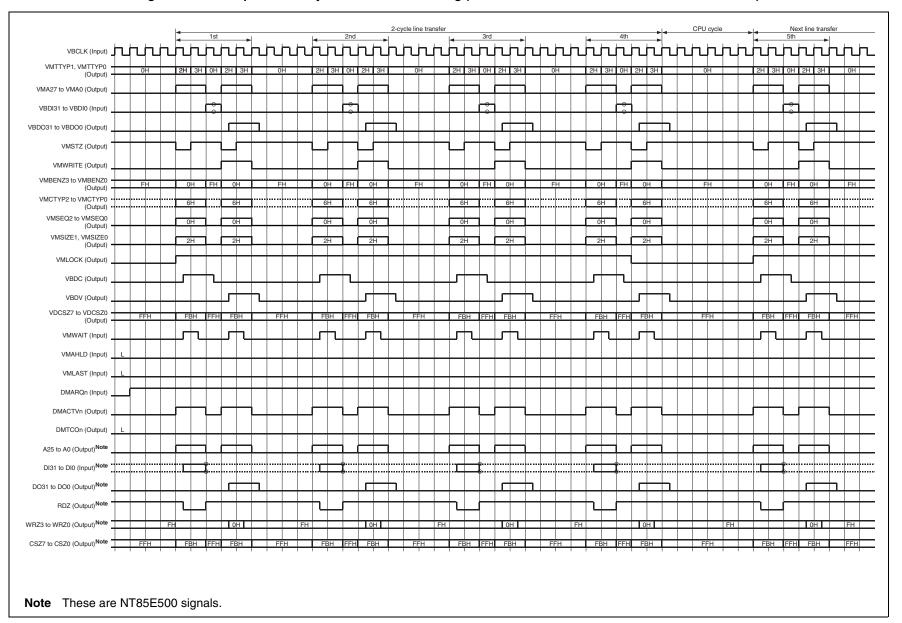


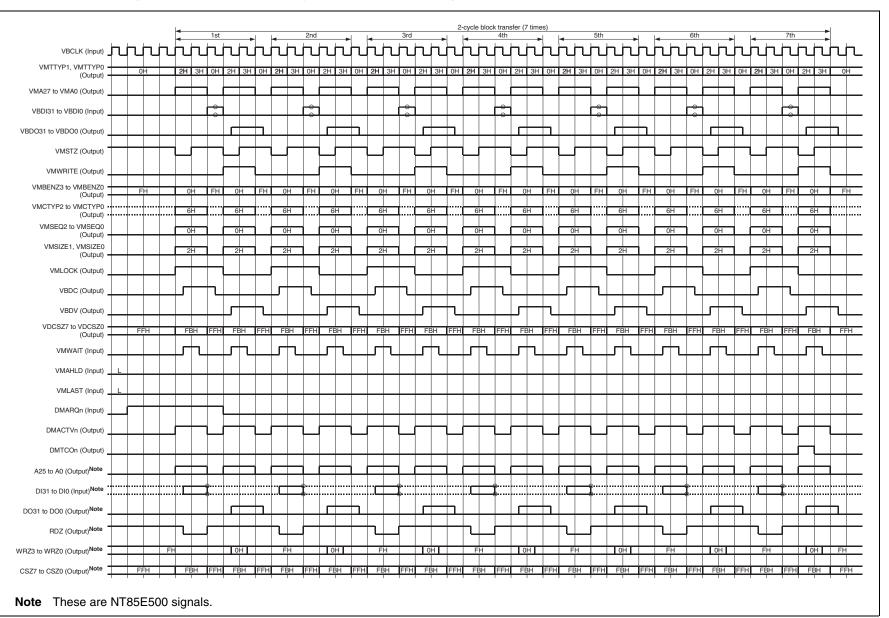
Figure 7-31. Example of Two-Cycle Single-Step Transfer Timing (Between External SRAMs Connected to NT85E500)

Figure 7-32 shows an example of the timing of a 2-cycle line transfer (between the external SRAMs connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0007H (8 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 7077H (No CS2 wait states)

Figure 7-32. Example of Two-Cycle Line Transfer Timing (Between External SRAMs Connected to NT85E500)


190

CHAPTER 7 DMAC

Figure 7-33 shows an example of the timing of a 2-cycle block transfer (between the external SRAMs connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0006H (7 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 7077H (No CS2 wait states)

CHAPTER 7 DMAC

Figure 7-33. Example of Two-Cycle Block Transfer Timing (Between External SRAMs Connected to NT85E500)

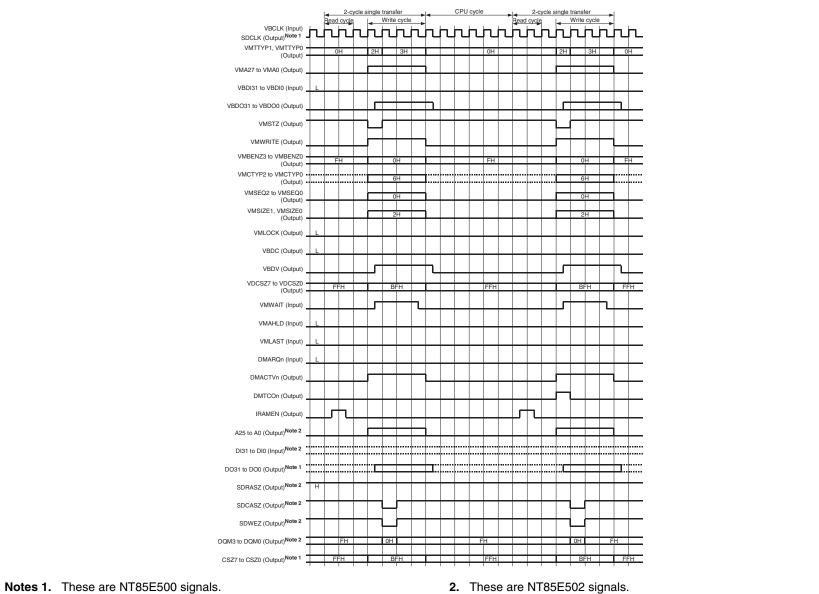
Preliminary User's Manual A15015EJ3V0UM

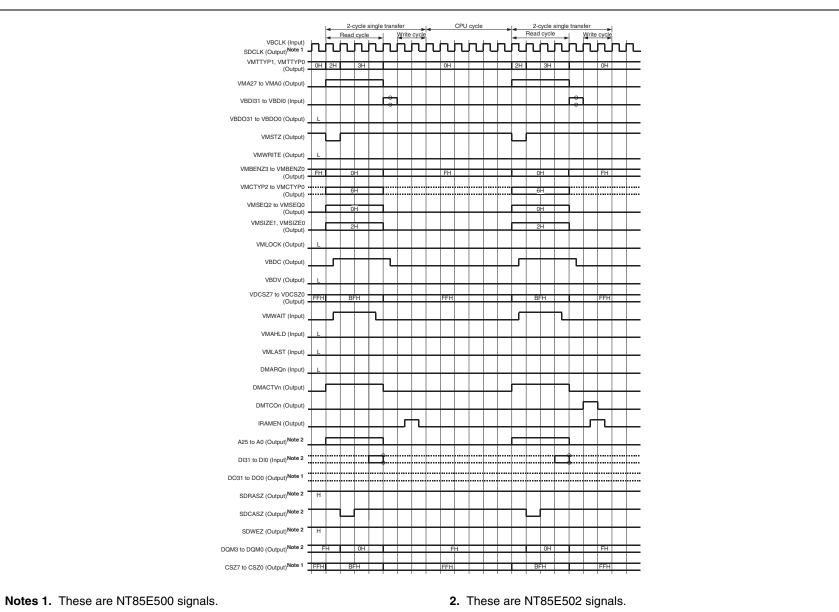
Figure 7-34 shows an example of the timing of a 2-cycle single transfer (from RAM connected to the VDB to SDRAM connected to the NT85E502). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- SCRn register^{Note} = 2062H (CAS latency = 2,

number of wait states = 1, address shift width = 2 bits (32-bit data bus), low address width = 11 bits, address multiplexed width = 10 bits)




Figure 7-35 shows an example of the timing of a 2-cycle single transfer (from SDRAM connected to the NT85E502 to RAM connected to the VDB). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- SCRn register^{Note} = 2062H (CAS latency = 2,

number of wait states = 1, address shift width = 2 bits (32-bit data bus), low address width = 11 bits, address multiplexed width = 10 bits)

(2) Flyby transfers

Figures 7-36 to 7-41 show examples of the timing of flyby transfers between external SRAM and external I/O connected to the MEMC (NT85E500). The flyby transfer consists of the following states.

- T1, T2 states: These are basic states for accessing the NT85E500.
- T3 state: This is a basic state added for flyby transfer.
- TA state: This is an address setting wait state inserted by means of a setting in the NT85E500's ASC register.
- TI state: This is an idle state inserted by means of a setting in the NT85E500's BCC register.
- TW state: This is a wait state inserted by means of a setting in the NT85E500's DWC0 register.

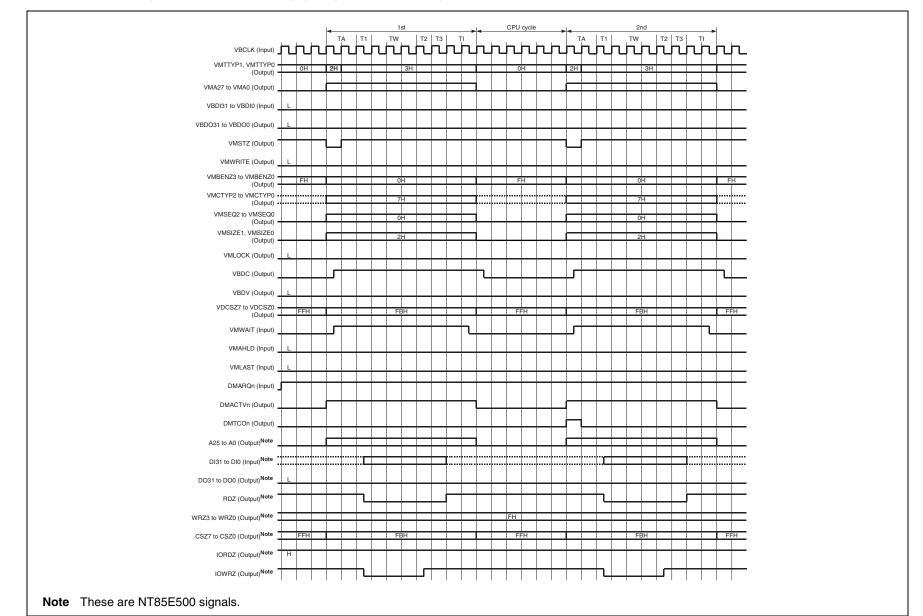
Remarks 1. The levels of the broken-line portions of the VMCTYP2 to VMCTYP0, VMSEQ2 to VMSEQ0, VMSIZE1, VMSIZE0, and DI31 to DI0 signals indicate an undefined state.

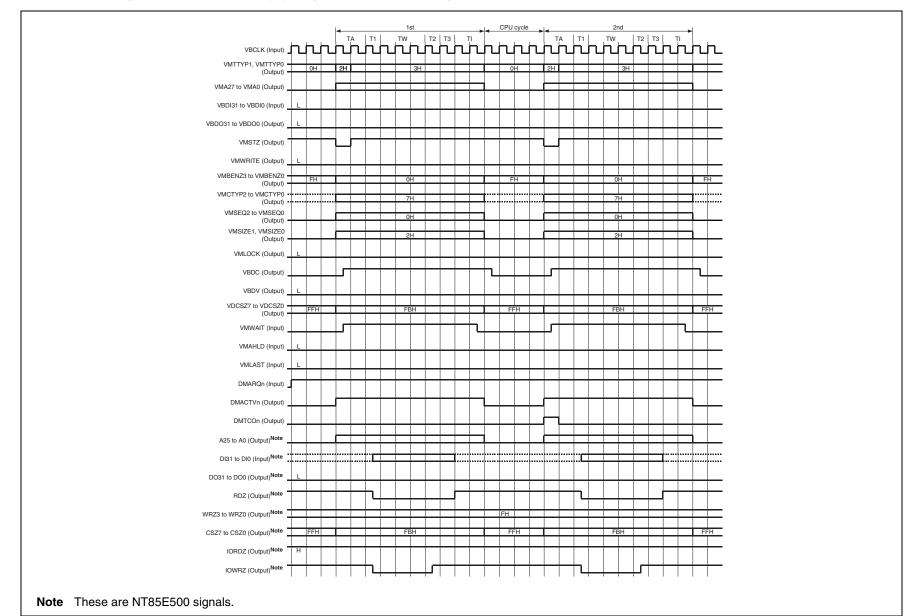
2. n = 3 to 0

Figure 7-36 shows an example of the timing of a flyby single transfer (from external SRAM to external I/O connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- ASC register^{Note} = FFEFH (CS2 address setting wait states = 2)
- BCC register^{Note} = FFEFH (CS2 idle states = 2)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)




Figure 7-36. Example of Flyby Single Transfer Timing (from External SRAM to External I/O Connected to NT85E500)

CHAPTER 7 DMAC

Figure 7-37 shows an example of the timing of a flyby single-step transfer (from external SRAM to external I/O connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- ASC register^{Note} = FFEFH (CS2 address setting wait states = 2)
- BCC register^{Note} = FFEFH (CS2 idle states = 2)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

Figure 7-37. Example of Flyby Single-Step Transfer Timing (from External SRAM to External I/O Connected to NT85E500)

Preliminary User's Manual A15015EJ3V0UM

Figure 7-38 shows an example of the timing of a flyby single-step transfer (from external I/O to external SRAM connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0001H (2 transfers)
- ASC register^{Note} = FFEFH (CS2 address setting wait states = 2)
- BCC register^{Note} = FFEFH (CS2 idle states = 2)
- DWC0 register^{Note} = 7377H (CS2 wait states = 3)

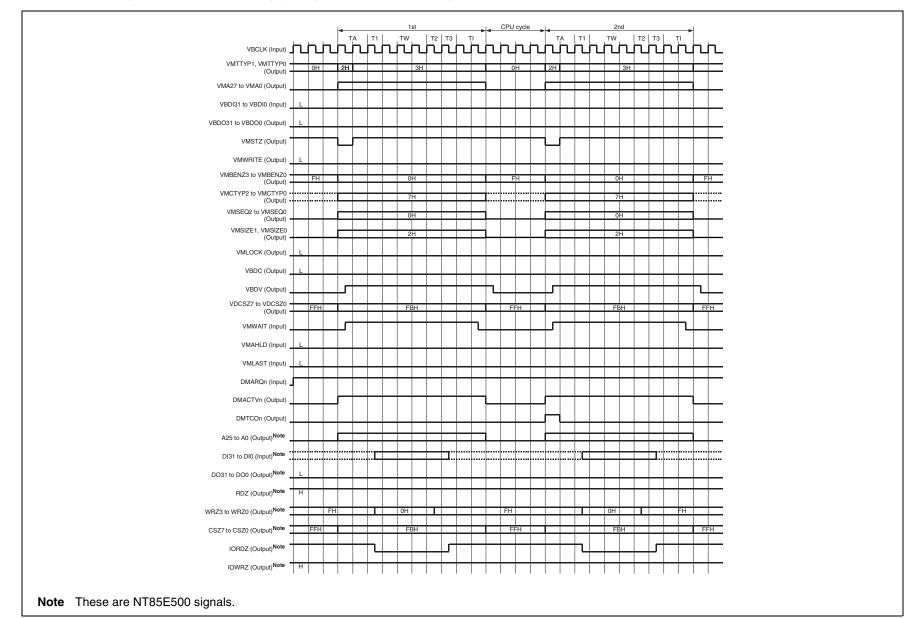
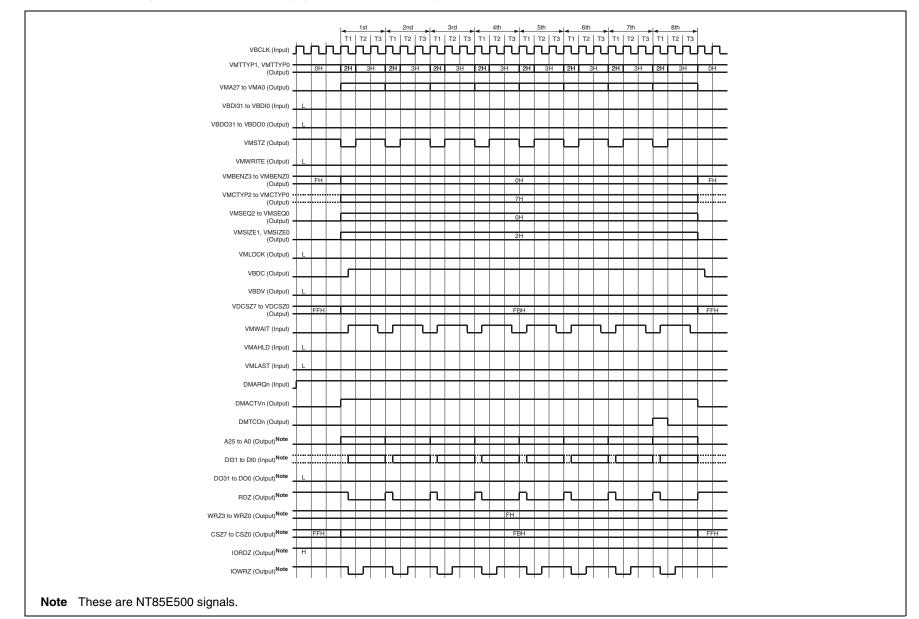


Figure 7-38. Example of Flyby Single-Step Transfer Timing (from External I/O to External SRAM Connected to NT85E500)

Figure 7-39 shows an example of the timing of a flyby line transfer (from external SRAM to external I/O connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0007H (8 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 0000H (No wait states)


Figure 7-39. Example of Flyby Line Transfer Timing (from External SRAM to External I/O Connected to NT85E500)

Preliminary User's Manual A15015EJ3V0UM

Figure 7-40 shows an example of the timing of a flyby block transfer (from external SRAM to external I/O connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0007H (8 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 0000H (No wait states)

Preliminary User's Manual A15015EJ3V0UM

Figure 7-41 shows an example of the timing of a flyby block transfer (from external I/O to external SRAM connected to the NT85E500). The settings of the registers in this figure are as follows.

[Register settings]

- DBCn register = 0007H (8 transfers)
- ASC register^{Note} = 0000H (No address setting wait states)
- BCC register^{Note} = 0000H (No idle states)
- DWC0 register^{Note} = 0000H (No wait states)

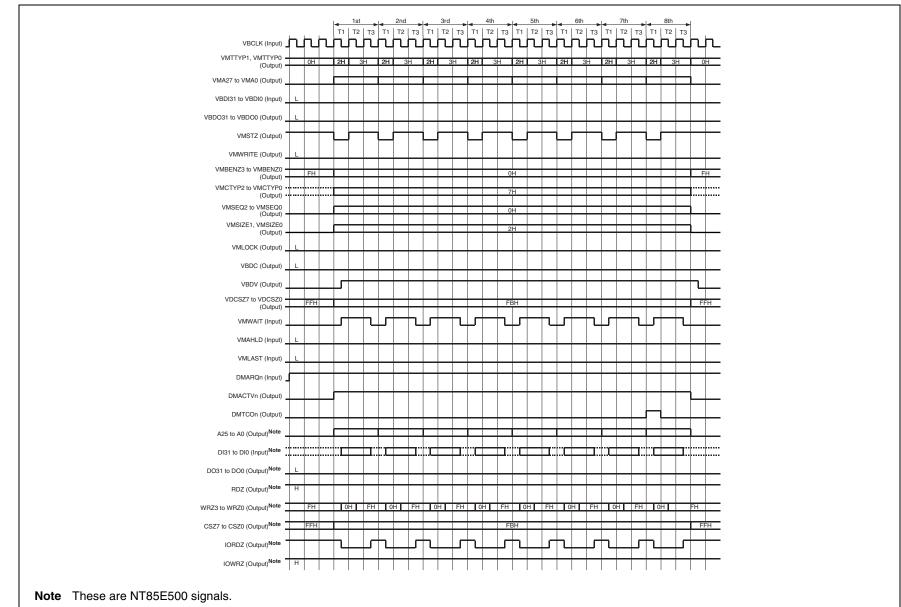


Figure 7-41. Example of Flyby Block Transfer Timing (from External I/O to External SRAM Connected to NT85E500)

Preliminary User's Manual A15015EJ3V0UM

7.15 Precautions

(1) Memory boundary

Operation is not guaranteed if the address of the transfer source or transfer destination is outside of the area for the DMA object (external memory, RAM, or peripheral macro) during a DMA transfer.

(2) Misalign data transfer

*

DMA transfer of misalign data with a 32-bit or 16-bit bus width is not supported.

(3) Intervals related to DMA transfer

The overhead before a DMA transfer and the minimum number of clocks required for a DMA transfer are shown below.

- From the acknowledgement of the DMARQn signal until the rising edge of the DMACTVn signal (n = 3 to 0): 3 clocks
- From when the DMARQn signal is acknowledged until the rising edge of the IRAMEN signal for transfer from RAM to VSB (n = 3 to 0): 3.5 clocks
- Access to RAM connected to VDB: 1 clock

In the case of external memory access, these depend on the connected MEMC and the external memory. An example is shown below.

Transfer Type	Conditions	Transfer Mode	Minimum Clock Number	
Two-cycle	• Time between start of read cycle and end of write cycle	Single	5 clocks	
	 The transfer time of one transfer for single and single-step transfers, and four transfers for a line transfer. 	Single-step	5 clocks	
	 The combinations of transfer sources and destinations are as follows. 	Line	32 clocks	
	<transfer source=""> <transfer destination=""></transfer></transfer>			
	$VSB \rightarrow VSB$			
	$VSB \rightarrow RAM$			
	$RAM \rightarrow VSB$			
	$RAM \rightarrow RAM$			
	Time in which bus is released to CPU	Single	6 clocks	
		Single-step	4 clocks	
		Line	6 clocks	
Flyby	Transfer time of one transfer from SRAM to I/O, and from I/O to SRAM	-	3 clocks	

Example When SRAM is accessed using the MEMC (NT85E500)

(4) CPU access during DMA transfer

The CPU can access external memory, peripheral macros, or RAM for which no DMA transfer is being performed.

The DMAC has a higher VSB bus access right priority than the CPU, so the access from the CPU to the VSB generated during the DMA transfer must wait until the DMA transfer is complete and the bus is available for the CPU. However, while DMA transfer is being performed between the external memory and peripheral macro, the CPU can access the RAM. Also, the CPU can access the external memory and peripheral macro using the VSB when DMA transfer is being performed between RAMs that are directly connected to the VDB.

(5) DMA transfer end interrupt

The DMA transfer end interrupt is not generated when DMA transfer is complete. If the generation of an interrupt coinciding with the completion of transfer is required, input the DMATCOn signal to the INTm pin and perform maskable interrupt servicing (n = 3 to 0, m = 63 to 0).

* (6) DMARQn signal retention

The DMARQn signal must retain the request until the DMACTVn signal becomes active.

If the DMARQn signal is made inactive before the DMACTVn signal becomes active, DMA transfer may not be executed (n = 3 to 0).

* (7) VMLOCK signal

If the destination of the DMA transfer is the RAM connected to the VDB, the VMLOCK signal will not become active in any transfer mode (single transfer, etc.) (the VMLOCK signal becomes active only when two or more VSB cycles are generated during 2-cycle transfer).

If the destination of the DMA transfer is the VSB, the VMLOCK signal stays active in the line transfer mode, in either 2-cycle transfer or flyby transfer, until the fourth DMA transfer is performed. Therefore, during a DMA line transfer in which the destination is the VSB, the VSB is locked until one line transfer is complete and the bus is retained. During 2-cycle single transfer, single-step transfer, or block transfer, the VMLOCK signal becomes inactive for each DMA transfer, therefore other VSB requests (VAREQ), such as SDRAM refresh, that have a higher priority are acknowledged and the bus can be released. During block transfer, the VSB bus access right is relinquished in the middle of transfer, and the remaining transfer is executed when the bus access right becomes available again.

CHAPTER 8 INTC

The interrupt control unit (INTC) processes various types of interrupt requests generated from at total of 67 external sources. In addition, exception processing can be started by a TRAP instruction (software exception) or due to the generation of an exception event (fetching of an illegal opcode) (exception trap).

An interrupt is an event that is generated independently of program execution, and an exception is an event that is generated dependent on program execution. Generally, the processing of an exception takes precedence over the processing of an interrupt.

Remark When the number of maskable interrupt sources required by the system exceeds 64, connect the interrupt controller (INTC) externally (maximum of 117 maskable interrupt sources can be supported).

8.1 Features

• Interrupts

Non-maskable interrupts: 3 sources Maskable interrupts: 64 sources 8 levels of programmable priorities (maskable interrupts) Multiple interrupt control according to priority Mask specification to each maskable interrupt request

Exceptions
 Software exceptions: 32 sources
 Exception traps: 1 source (illegal opcode exception)

These interrupt/exception sources are listed in Table 8-1.

Туре	Classifi-	Interrupt/Exception Source			Default	Exception	Handler	Restored
cation	Name	Control Register	Generating Source	Priority	Code	Address	PC	
Reset	Interrupt	RESET	_	RESETZ input	-	0000H	00000000H	Undefined
Non-maskable	Interrupt	NMI0	-	NMI0 input	_	0010H	00000010H	nextPC
	Interrupt	NMI1	_	NMI1 input	_	0020H	00000020H	nextPC
	Interrupt	NMI2	-	NMI2 input	_	0030H	00000030H	nextPC
Software	Exception	TRAP0n ^{Note}	_	TRAP instruction	_	004nH	00000040H	nextPC
exception	Exception	TRAP1n ^{Note}	-	TRAP instruction	_	005nH	00000050H	nextPC
Exception trap	Exception	ILGOP	-	Illegal opcode	_	0060H	00000060H	nextPC
Maskable	Interrupt	INT0	PIC0	INT0 input	0	0080H	00000080H	nextPC
	Interrupt	INT1	PIC1	INT1 input	1	0090H	00000090H	nextPC
	Interrupt	INT2	PIC2	INT2 input	2	00A0H	000000A0H	nextPC
	Interrupt	INT3	PIC3	INT3 input	3	00B0H	000000B0H	nextPC
	Interrupt	INT4	PIC4	INT4 input	4	00C0H	000000C0H	nextPC
	Interrupt	INT5	PIC5	INT5 input	5	00D0H	000000D0H	nextPC
	Interrupt	INT6	PIC6	INT6 input	6	00E0H	000000E0H	nextPC

Table 8-1. Interrupt/Exception List (1/3)

Note n: value of 0 to FH

Туре	Classifi- cation	Interrupt/Exception Source			Default	Exception	Handler	Restored
		Name	Control Register	Generating Source	Priority	Code	Address	PC
Maskable	Interrupt	INT7	PIC7	INT7 input	7	00F0H	000000F0H	nextPC
	Interrupt	INT8	PIC8	INT8 input	8	0100H	00000100H	nextPC
	Interrupt	INT9	PIC9	INT9 input	9	0110H	00000110H	nextPC
	Interrupt	INT10	PIC10	INT10 input	10	0120H	00000120H	nextPC
	Interrupt	INT11	PIC11	INT11 input	11	0130H	00000130H	nextPC
	Interrupt	INT12	PIC12	INT12 input	12	0140H	00000140H	nextPC
	Interrupt	INT13	PIC13	INT13 input	13	0150H	00000150H	nextPC
	Interrupt	INT14	PIC14	INT14 input	14	0160H	00000160H	nextPC
	Interrupt	INT15	PIC15	INT15 input	15	0170H	00000170H	nextPC
	Interrupt	INT16	PIC16	INT16 input	16	0180H	00000180H	nextPC
	Interrupt	INT17	PIC17	INT17 input	17	0190H	00000190H	nextPC
	Interrupt	INT18	PIC18	INT18 input	18	01A0H	000001A0H	nextPC
	Interrupt	INT19	PIC19	INT19 input	19	01B0H	000001B0H	nextPC
	Interrupt	INT20	PIC20	INT20 input	20	01C0H	000001C0H	nextPC
	Interrupt	INT21	PIC21	INT21 input	21	01D0H	000001D0H	nextPC
	Interrupt	INT22	PIC22	INT22 input	22	01E0H	000001E0H	nextPC
	Interrupt	INT23	PIC23	INT23 input	23	01F0H	000001F0H	nextPC
	Interrupt	INT24	PIC24	INT24 input	24	0200H	00000200H	nextPC
	Interrupt	INT25	PIC25	INT25 input	25	0210H	00000210H	nextPC
	Interrupt	INT26	PIC26	INT26 input	26	0220H	00000220H	nextPC
	Interrupt	INT27	PIC27	INT27 input	27	0230H	00000230H	nextPC
	Interrupt	INT28	PIC28	INT28 input	28	0240H	00000240H	nextPC
	Interrupt	INT29	PIC29	INT29 input	29	0250H	00000250H	nextPC
	Interrupt	INT30	PIC30	INT30 input	30	0260H	00000260H	nextPC
	Interrupt	INT31	PIC31	INT31 input	31	0270H	00000270H	nextPC
	Interrupt	INT32	PIC32	INT32 input	32	0280H	00000280H	nextPC
	Interrupt	INT33	PIC33	INT33 input	33	0290H	00000290H	nextPC
	Interrupt	INT34	PIC34	INT34 input	34	02A0H	000002A0H	nextPC
	Interrupt	INT35	PIC35	INT35 input	35	02B0H	000002B0H	nextPC
	Interrupt	INT36	PIC36	INT36 input	36	02C0H	000002C0H	nextPC
	Interrupt	INT37	PIC37	INT37 input	37	02D0H	000002D0H	nextPC
	Interrupt	INT38	PIC38	INT38 input	38	02E0H	000002E0H	nextPC
	Interrupt	INT39	PIC39	INT39 input	39	02F0H	000002F0H	nextPC
	Interrupt	INT40	PIC40	INT40 input	40	0300H	00000300H	nextPC
	Interrupt	INT41	PIC41	INT41 input	41	0310H	00000310H	nextPC
	Interrupt	INT42	PIC42	INT42 input	42	0320H	00000320H	nextPC
	Interrupt	INT43	PIC43	INT43 input	43	0330H	00000330H	nextPC

Table 8-1. Interrupt/Exception List (2/3)

Туре	Classifi- cation	Interrupt/Exception Source			Default	Exception	Handler	Restored
		Name	Control Register	Generating Source	Priority	Code	Address	PC
Maskable	Interrupt	INT44	PIC44	INT44 input	44	0340H	00000340H	nextPC
	Interrupt	INT45	PIC45	INT45 input	45	0350H	00000350H	nextPC
	Interrupt	INT46	PIC46	INT46 input	46	0360H	00000360H	nextPC
	Interrupt	INT47	PIC47	INT47 input	47	0370H	00000370H	nextPC
	Interrupt	INT48	PIC48	INT48 input	48	0380H	00000380H	nextPC
	Interrupt	INT49	PIC49	INT49 input	49	0390H	00000390H	nextPC
	Interrupt	INT50	PIC50	INT50 input	50	03A0H	000003A0H	nextPC
	Interrupt	INT51	PIC51	INT51 input	51	03B0H	000003B0H	nextPC
	Interrupt	INT52	PIC52	INT52 input	52	03C0H	000003C0H	nextPC
	Interrupt	INT53	PIC53	INT53 input	53	03D0H	000003D0H	nextPC
	Interrupt	INT54	PIC54	INT54 input	54	03E0H	000003E0H	nextPC
	Interrupt	INT55	PIC55	INT55 input	55	03F0H	000003F0H	nextPC
	Interrupt	INT56	PIC56	INT56 input	56	0400H	00000400H	nextPC
	Interrupt	INT57	PIC57	INT57 input	57	0410H	00000410H	nextPC
	Interrupt	INT58	PIC58	INT58 input	58	0420H	00000420H	nextPC
	Interrupt	INT59	PIC59	INT59 input	59	0430H	00000430H	nextPC
	Interrupt	INT60	PIC60	INT60 input	60	0440H	00000440H	nextPC
	Interrupt	INT61	PIC61	INT61 input	61	0450H	00000450H	nextPC
	Interrupt	INT62	PIC62	INT62 input	62	0460H	00000460H	nextPC
	Interrupt	INT63	PIC63	INT63 input	63	0470H	00000470H	nextPC

Table 8-1. Interrupt/Exception List (3/3)

Remarks 1. Default Priority: Priority of servicing when two or more maskable interrupt requests with the same priority level occur at the same time. The highest priority is 0.

Restored PC: This is the PC value saved in EIPC or FEPC upon activation of interrupt servicing or exception processing. Note, however, that the restored PC when a nonmaskable or maskable interrupt is acknowledged while one of the following instructions is being executed does not become the nextPC (if an interrupt is acknowledged during instruction execution, execution stops, and then resumes after the interrupt servicing has finished).

- Load instructions (SLD.B, SLD.BU, SLD.H, SLD.HU, SLD.W)
- Division instructions (DIV, DIVH, DIVU, DIVHU)
- PREPARE, DISPOSE instructions (only if an interrupt is generated before the stack pointer is updated)

nextPC: The PC value that starts the processing following the completion of interrupt/exception processing.

2. The execution address of the illegal instruction when an illegal opcode exception occurs is calculated as follows: (Restored PC – 4)

8.2 Non-Maskable Interrupts (NMI)

A non-maskable interrupt request (NMI) is acknowledged unconditionally even if the NU85ET is in an interrupt disabled (DI) state.

A non-maskable interrupt request is generated according to NMIn pin input (n = 2 to 0). When a rising edge is input to the NMIn pin, a non-maskable interrupt (NMIn) is generated.

If multiple non-maskable interrupts are generated at the same time, servicing is executed according to the following priority order (the lower priority interrupts are ignored).

NMI2 > NMI1 > NMI0

Note that if an NMI0, NMI1, or NMI2 request is generated while NMI0 is being serviced, the servicing is executed as follows.

(1) If an NMI0 request is generated while NMI0 is being serviced

The new NMI0 request is held pending regardless of the value of the PSW's NP bit. The pending NMI0 request is acknowledged after servicing of the current NMI0 request has finished (after execution of the RETI instruction).

(2) If an NMI1 request is generated while NMI0 is being serviced

If the PSW's NP bit remains set (1) while NMI0 is being serviced, the new NMI1 request is held pending. The pending NMI1 request is acknowledged after servicing of the current NMI0 request has finished (after execution of the RETI instruction).

If the PSW's NP bit is cleared (0) while NMI0 is being serviced, the newly generated NMI1 request is executed (NMI0 servicing is halted).

(3) If an NMI2 request is generated while NMI0 is being serviced

The new NMI2 request is executed, regardless of the value of the PSW's NP bit (NMI0 servicing is halted).

Cautions 1. When a non-maskable interrupt request (NMI) is generated, the values of the PC and PSW are saved in the registers (FEPC and FEPSW) for saving the status when an NMI occurs, but in this case, only NMI0 can be normally restored by the RETI instruction. Even if NMI1 and NMI2, which assume an emergency use such as watchdog, are restored by the RETI instruction, the INTC cannot determine the priority of the following interrupts. Therefore, when NMI1 or NMI2, and other maskable interrupts are input with a miniscule time lag, maskable interrupt requests other than NMI1 and NMI2 may be deleted.

When NMI1 or NMI2 is generated while NMI0 is being serviced, FEPC is overwritten. When NMI0 servicing has been restored after the NMI1 and NMI2 servicing, the main routine cannot successfully be restored from the NMI0 servicing and an endless loop occurs. In the case of NMI2, a newly generated NMI2 request is executed regardless of the value of the NP bit in the PSW.

Therefore, NMI1 and NMI2 cannot be restored.

2. If interrupt servicing by NMI1 or NMI2 is continued without the RETI instruction being executed, hang up will not occur, but none of the following interrupt requests will be acknowledged because multiple interrupts are disabled.

*

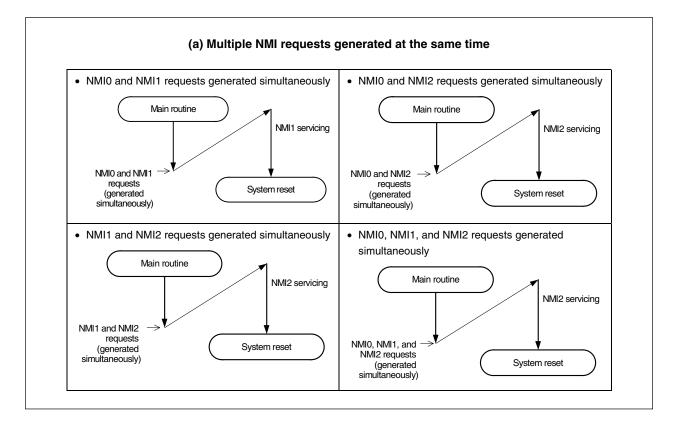
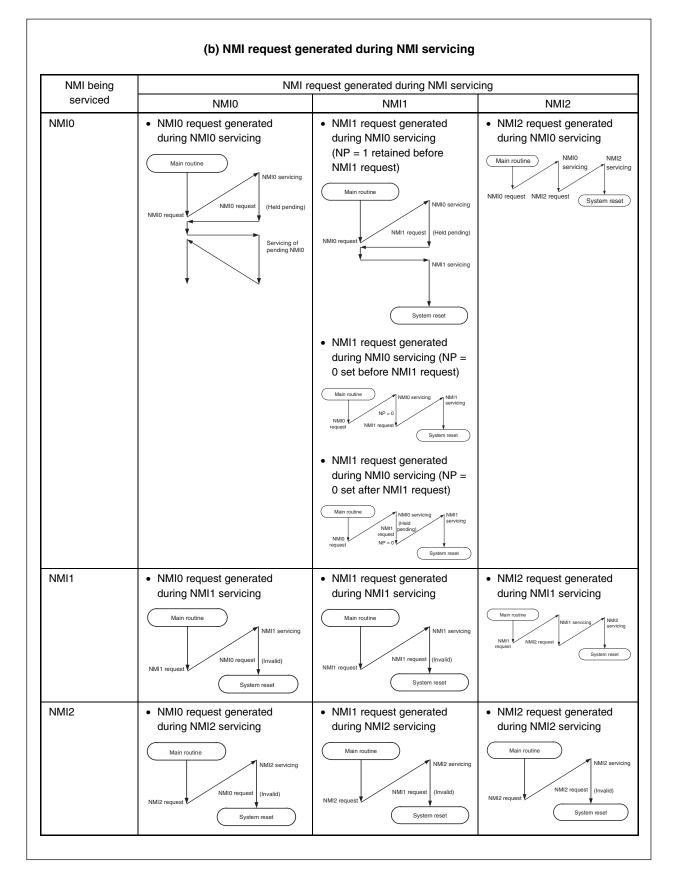



Figure 8-1. Example of Non-Maskable Interrupt Request Acknowledgement Operation (1/2)

8.2.1 Operation

If a non-maskable interrupt is generated according to NMIn input, the CPU performs the following processing and shifts control to the handler routine (n = 2 to 0).

- <1> Saves the restored PC in the FEPC.
- <2> Saves the current PSW in the FEPSW.
- <3> Writes the exception code in the higher halfword (FECC) of the ECR.
- <4> Sets the NP and ID bits of the PSW and clears the EP bit.
- <5> Sets the handler address for the non-maskable interrupt in the PC and shifts control.

Figure 8-2 shows the processing format of non-maskable interrupt service.

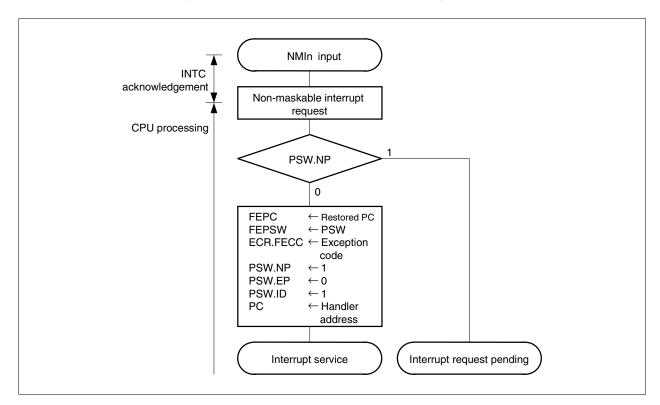


Figure 8-2. Non-Maskable Interrupt Processing Format

8.2.2 Restore

(1) NMI0

Control is returned from NMI0 servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and shifts control to the restored PC address.

- <1> Since the EP bit of the PSW is 0 and the NP bit is 1, the restored PC and PSW are fetched from the FEPC and FEPSW.
- <2> Shifts control to the fetched restored PC address and PSW status.

Figure 8-3 shows the processing format of the RETI instruction.

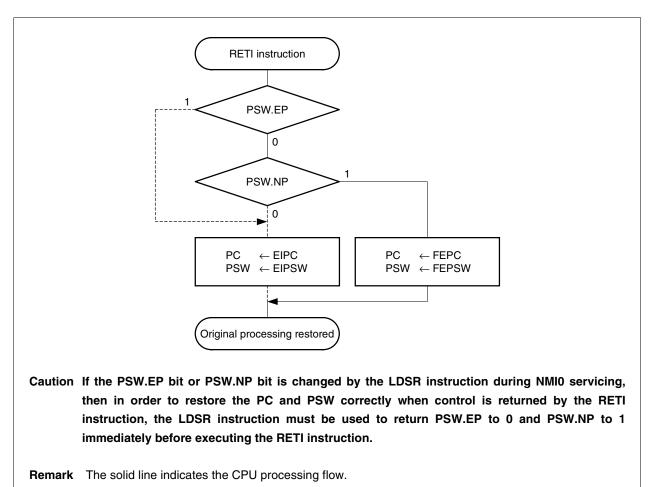


Figure 8-3. RETI Instruction Processing Format

(2) NMI1, NMI2

Restoring by RETI instruction is not possible. Perform a system reset by RESETZ input after interrupt servicing.

8.3 Maskable Interrupts

A maskable interrupt request is an interrupt request for which the acknowledgement of the interrupt can be masked according to the interrupt control register. There are 64 interrupt sources for maskable interrupts.

A maskable interrupt request is generated by INTn pin input (n = 63 to 0). When a rising edge is input to the INTn pin, a maskable interrupt (INTn) is generated.

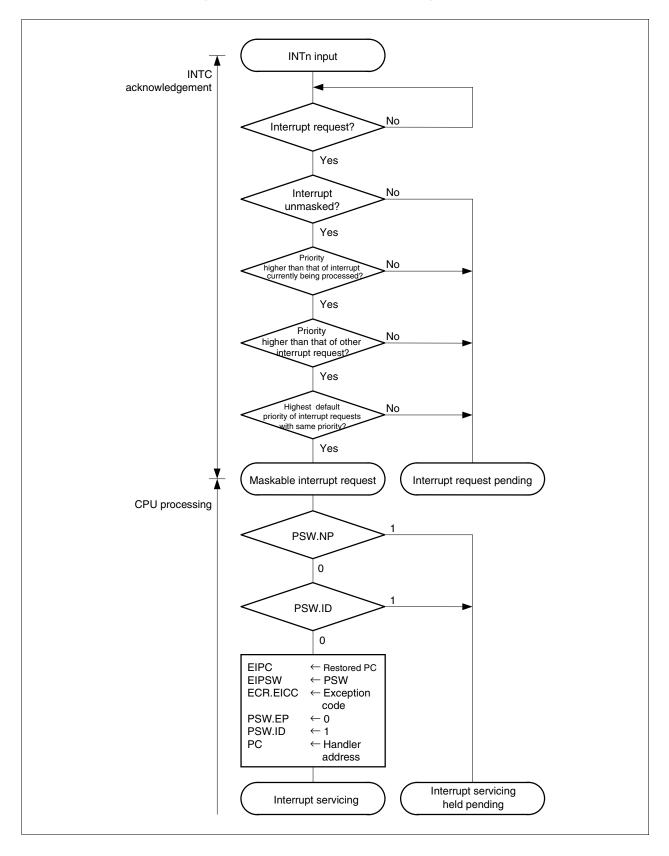
If multiple maskable interrupt requests are generated at the same time, their priorities are determined according to the default priorities. In addition to the default priority, eight interrupt priority levels can be set using the interrupt control register (programmable priority control).

When an interrupt request is acknowledged, interrupt disabled (DI) state is set, and the acknowledgement of subsequent maskable interrupt requests is disabled.

If the El instruction is executed during an interrupt service routine, the interrupt enabled (El) state is set, and the acknowledgement of interrupt requests having higher priorities than the priority level of the currently acknowledged interrupt request (specified by the interrupt control register) is enabled. Interrupts having the same priority level cannot be nested.

However, the following processing is required for multiple interrupt servicing.

- <1> Save the EIPC and EIPSW in memory or general-purpose registers before executing the EI instruction.
- <2> Before executing the RETI instruction, execute the DI instruction and return the values that were saved in step <1> to the EIPC and EIPSW.


8.3.1 Operation

If a maskable interrupt is generated by INTn input, the CPU performs the following processing and shifts control to the handler routine.

- <1> Saves the restored PC in the EIPC.
- <2> Saves the current PSW in the EIPSW.
- <3> Writes the exception code in the lower halfword (EICC) of the ECR.
- <4> Sets the ID bit of the PSW and clears the EP bit.
- <5> Sets the handler address for the interrupt in the PC and shifts control.

An INTn input that is masked by the INTC and an INTn input that was generated while another interrupt was being serviced (PSW.NP = 1 or PSW.ID = 1) are held pending within the INTC. In this case, if the mask is canceled or the RETI and LDSR instructions are used to set PSW.NP to 0 and PSW.ID to 0, new maskable interrupt servicing is started by the INTn input that was pending.

Figure 8-4 shows the processing format of maskable interrupt service.

8.3.2 Restore

Control is returned from maskable interrupt servicing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and shifts control to the restored PC address.

- <1> Since the EP bit of the PSW is 0 and the NP bit is 0, the restored PC and PSW are fetched from the EIPC and EIPSW.
- <2> Shifts control to the fetched restored PC address and PSW status.

Figure 8-5 shows the processing format of the RETI instruction.

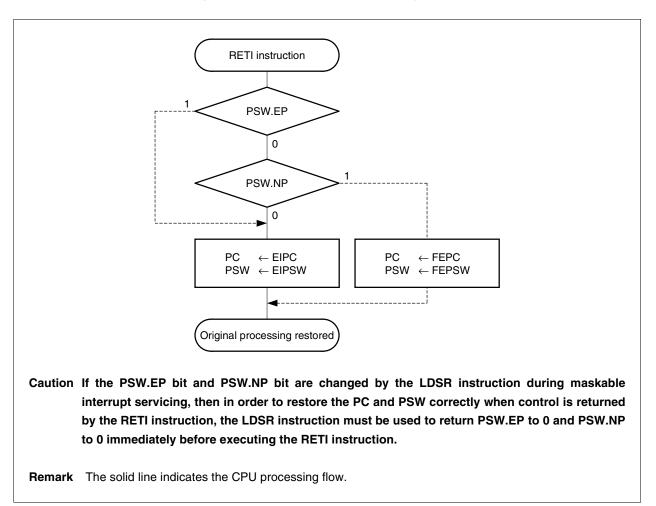
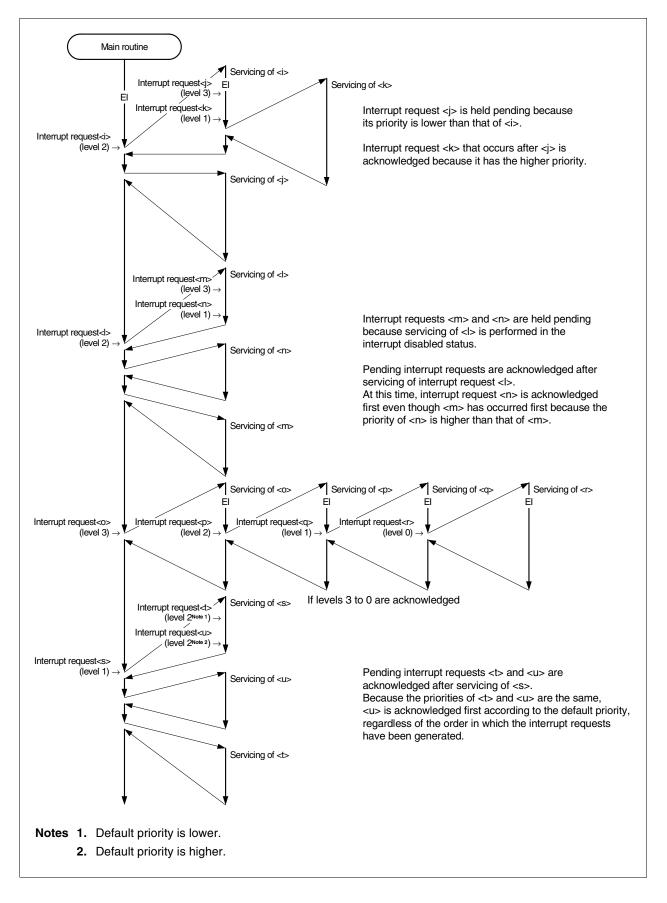



Figure 8-5. RETI Instruction Processing Format

8.3.3 Maskable interrupt priorities


The INTC provides multiple interrupt servicing in which another interrupt is acknowledged while an interrupt is being serviced. Multiple interrupts can be controlled according to priorities.

Priority control includes control according to default priorities and programmable priority control by the interrupt control register (PICn). For priority control according to default priorities, if multiple interrupts having the same priority level according to the PICn register are generated at the same time, the interrupts are serviced according to the priorities (default priorities) that have been assigned in advance to each interrupt request (see **Table 8-1 Interrupt/Exception List**). For programmable priority control, the interrupt requests are divided into eight levels according to PICn register settings.

When an interrupt is acknowledged, the ID flag of the PSW is automatically set (1). Therefore, to use multiple interrupt servicing, clear (0) the ID flag (such as by executing the EI instruction during the interrupt servicing program) to set the interrupt enabled state.

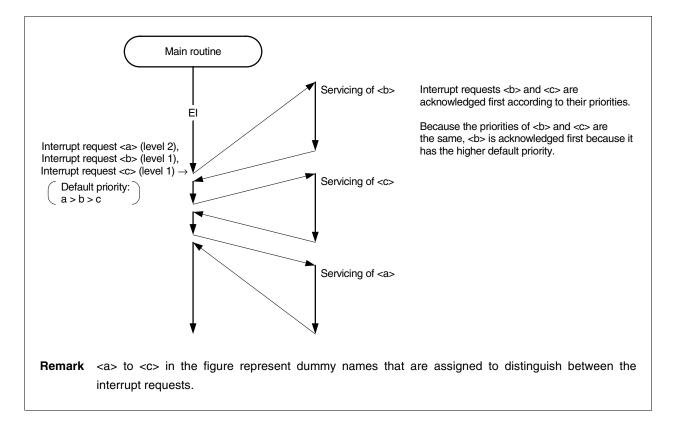


Figure 8-7. Servicing Example for Simultaneously Issued Interrupt Requests

8.3.4 Control registers

(1) Interrupt control registers 0 to 63 (PIC0 to PIC63)

The interrupt control registers, which are assigned to each interrupt request (maskable interrupt), set control conditions for each interrupt.

These registers can be read or written in 8-bit or 1-bit units.

Figure 8-8. Interrupt Control Registers 0 to 63 (PIC0 to PIC63)

	7		6	5	4	;	3	2	1	0		
PICn	PIF	'n	PMKn	0	0	()	PPRn2	PPRn1	PPRn0	Address FFFFF110H to	After res 47H
											FFFFF18EH	
Bit position Bit name 7 PIFn		1	Function This is the interrupt request flag. 0: No interrupt request issued 1: Interrupt request issued When the interrupt request is acknowledged, this is automatically cleared (0).									
6 PMKn				This is the interrupt mask flag. 0: Interrupt service enabled 1: Interrupt service disabled (pending)								
2 to 0		PPF PPF		Specifies e	ight priorit	y levels fo	r each	n interrupt.				
				PPRn2	PPRn1	PPRn0			Inter	rupt priority		
				0	0	0	Spe	cifies level () (highest)			
				0	0	1	Spe	cifies level 1	I			
				0	1	0	Spe	cifies level 2	2			
				0	1	1	Spe	cifies level 3	3			
				1	0	0	Spe	cifies level 4	1			
				1	0	1	Spe	cifies level 5	5			
				1	1	0	Spe	cifies level 6	6			
				1	1	1	Spe	cifies level 7	7 (lowest)			
				-			•					
Rema	rk n	_ 0 1	0.62									

(2) Interrupt mask registers 0 to 3 (IMR0 to IMR3)

The interrupt mask registers hold the mask status of each maskable interrupt.

The PMKn bit of this register and the PMKn bit of the PICn register are linked (n = 0 to 63).

The IMRm register can be read or written in 16-bit units (m = 0 to 3).

When using the higher 8 bits of the IMRm register as the IMRmH register, and the lower 8 bits as the IMRmL register, the IMRm register can be read or written in 8-bit or 1-bit units.

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
MR0	PMK	Address	After res															
IVINU	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	FFFFF100H	FFFFF
MR1	PMK	PMK	PMK	PMK	РМК	РМК	PMK	Address	After res									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	FFFFF102H	FFFFF
	-																	
MR2	РМК	РМК	РМК	РМК	РМК	РМК	PMK	РМК	Address	After res								
IVINZ	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	FFFFF104H	FFFFF
MR3	PMK	РМК	PMK	РМК	РМК	PMK	Address	After res										
งกาง	63	62	61	60	59	58	57	56	55	54	53	52	51	50	49	48	FFFFF106H	FFFFF

Figure 8-9. Interrupt Mask Registers 0 to 3 (IMR0 to IMR3)

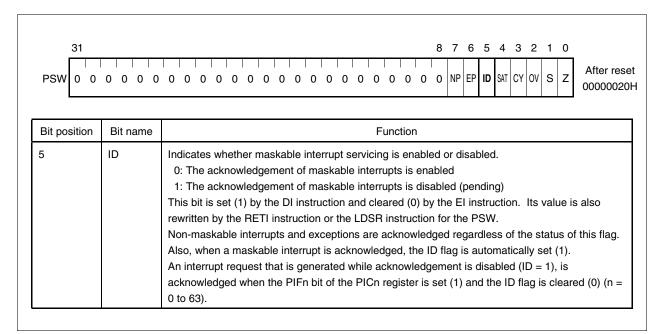
(3) In-service priority register (ISPR)

This register holds the priority level of the maskable interrupt that is being acknowledged. When an interrupt request is acknowledged, the bit corresponding to the priority level of that interrupt request is set (1) and held while the interrupt is being serviced.

When the RETI instruction is executed, the bit corresponding to the interrupt request having the highest priority among the bits that are set (1) within the ISPR register is automatically cleared (0). However, it is not cleared (0) when control returns from non-maskable interrupt service or exception processing.

This register is read-only in 8-bit or 1-bit units.

7 ISPR6	ISPR5	1000					_	
		ISPR4	ISPR3	ISPR2	ISPR1	ISPR0	Address FFFFF1FAH	After reset 00H
Bit name				Func	tion			
Y to 0 ISPR7 to Indicates the priority of the interrupt that is being acknowledged. ISPR0 0: Interrupt request having priority n has not been acknowledged 1: Interrupt request having priority n is being acknowledged								
	ISPR7 to ISPR0	ISPR7 to Indicates the p ISPR0 0: Interrupt re	ISPR7 to Indicates the priority of the ISPR0 0: Interrupt request havin 1: Interrupt request havin	ISPR7 to Indicates the priority of the interrupt the ISPR0 0: Interrupt request having priority not 1: Interrupt reques	ISPR7 to Indicates the priority of the interrupt that is being ISPR0 0: Interrupt request having priority n has not been 1: Interrupt request having priority n is being action	ISPR7 toIndicates the priority of the interrupt that is being acknowledgeISPR00: Interrupt request having priority n has not been acknowledged1: Interrupt request having priority n is being acknowledged	ISPR7 toIndicates the priority of the interrupt that is being acknowledged.ISPR00: Interrupt request having priority n has not been acknowledged1: Interrupt request having priority n is being acknowledged	ISPR7 toIndicates the priority of the interrupt that is being acknowledged.ISPR00: Interrupt request having priority n has not been acknowledged1: Interrupt request having priority n is being acknowledged


Figure 8-10. In-Service Priority Register (ISPR)

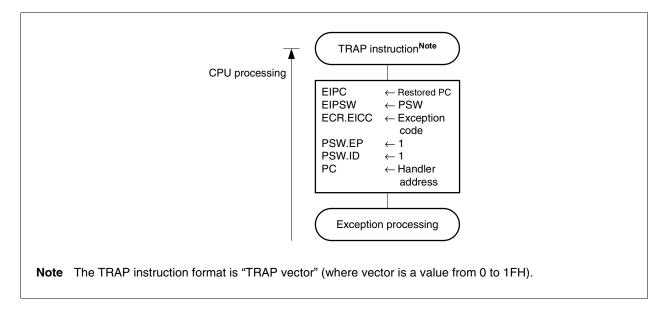
8.3.5 Maskable interrupt status flag (ID)

This flag, which controls the operation status of maskable interrupts, stores information indicating whether the acknowledgement of interrupt requests is enabled or disabled.

It is assigned to bit 5 of the program status word (PSW).

8.4 Software Exceptions

A software exception, which is an exception that is generated when the CPU executes the TRAP instruction, can always be acknowledged.

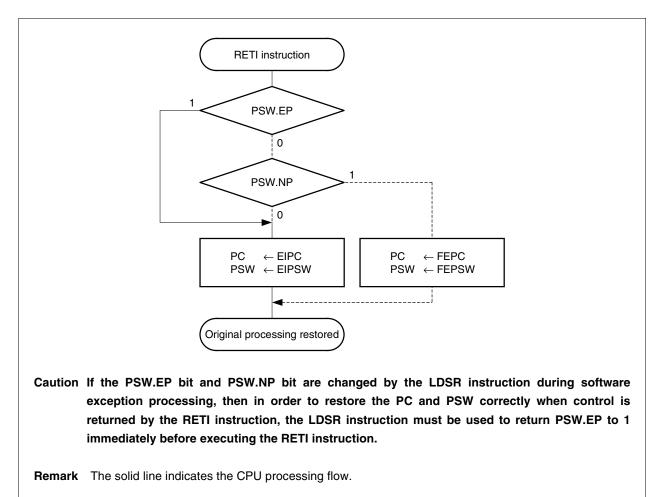

8.4.1 Operation

If a software exception is generated, the CPU performs the following processing and shifts control to the handler routine.

- <1> Saves the restored PC in the EIPC.
- <2> Saves the current PSW in the EIPSW.
- <3> Writes the exception code in the lower 16 bits (EICC) of the ECR (interrupt source).
- <4> Sets the EP and ID bits of the PSW.
- <5> Sets the handler address (00000040H or 00000050H) for the software exception in the PC and shifts control.

Figure 8-12 shows the processing format of software exception processing.

The handler address is determined by the TRAP instruction operand (vector). When vector is 0 to 0FH, the address is 00000040H. When vector is 10H to 1FH, the address is 00000050H.


8.4.2 Restore

Control is returned from software exception processing by the RETI instruction.

When the RETI instruction is executed, the CPU performs the following processing and shifts control to the restored PC address.

- <1> Since the EP bit of the PSW is 1, the restored PC and PSW are fetched from the EIPC and EIPSW.
- <2> Shifts control to the fetched restored PC address and PSW status.

Figure 8-13 shows the processing format of the RETI instruction.

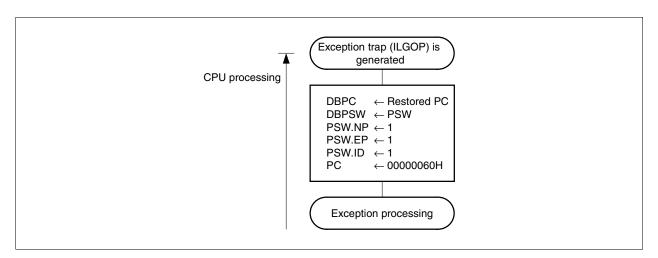
8.5 Exception Trap

The exception trap is an interrupt that is requested when the illegal execution of an instruction occurs. In the NU85ET, the illegal opcode exception (ILGOP: Illegal opcode trap) is assigned for the exception trap.

An illegal opcode exception is generated when the sub-opcode of the instruction to be executed next is an illegal opcode.

8.5.1 Illegal opcode

The illegal opcode, which has a 32-bit long instruction format, is defined as an arbitrary opcode in which bits 10 to 5 are 111111B, bits 26 to 23 are 0111B to 1111B, and bit 16 is 0B.


Caution Since a new instruction may be assigned in the future for the illegal opcode, we recommend that this opcode not be used.

8.5.2 Operation

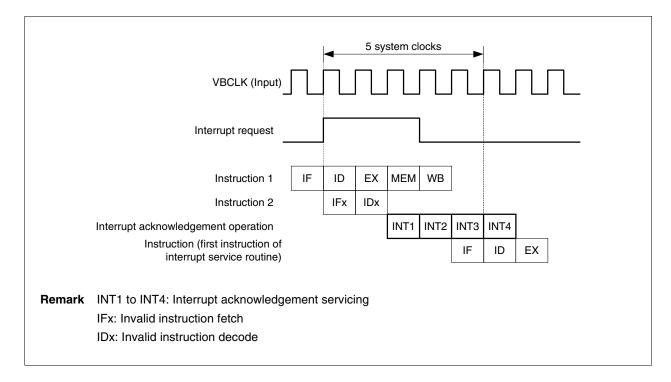
If an exception trap is generated, the CPU performs the following processing and shifts control to the handler routine.

- <1> Saves the restored PC in the DBPC.
- <2> Saves the current PSW in the DBPSW.
- <3> Sets the NP, EP, and ID bits of the PSW.
- <4> Sets the handler address (0000060H) for the exception trap in the PC and shifts control.

Figure 8-15 shows the processing format of exception trap processing.

Figure 8-15. Exception Trap Processing Format

8.5.3 Restore


Control cannot be returned from an exception trap. Perform a system reset according to RESETZ input.

8.6 Interrupt Response Time

Except in the following cases, the interrupt response time is a minimum of 5 clocks. To input interrupt requests continuously, leave a space of at least 5 clocks between interrupt request inputs.

- In software or hardware STOP mode
- When an external bus is accessed
- When there are two or more successive interrupt request non-sampling instructions (see 8.7 Periods When Interrupts Cannot Be Acknowledged).
- When the interrupt control register is accessed

Figure 8-16. Example of Pipeline Operation When Interrupt Request Is Acknowledged (Outline)

8.7 Periods When Interrupts Cannot Be Acknowledged

An interrupt is acknowledged while an instruction is being executed. However, an interrupt is not acknowledged between an interrupt request non-sampling instruction and the subsequent instruction (interrupt will be held pending). The interrupt request non-sampling instructions are as follows.

- El instruction
- DI instruction
- LDSR reg2, 0x5 instruction (for PSW)
- Store instruction for specific area (×FFF100H to ×FFF1FFH^{Note}, ×FFF900H to ×FFF9FFH)

Note The IMR0 to IMR3, PIC0 to PIC63, ISPR, PRCMD, and PSC registers are allocated to a part of this area.

CHAPTER 9 TEST FUNCTION

The NU85ET is equipped with an on-chip test interface control unit (TIC) for testing the NU85ET itself or connected peripheral macros via the test buses (TBI39 to TBI0 and TBO34 to TBO0). The test buses are enabled when the TEST and BUNRI signals are active.

9.1 Test Pins

9.1.1 Test bus pins (TBI39 to TBI0 and TBO34 to TBO0)

The test bus pins are used in place of normal pins when the NU85ET is in unit test mode. Always extend these pins outside of the ASIC (they can be used as normal pins). For details, refer to the various cell-based IC family design manuals.

9.1.2 BUNRI and TEST pins

These pins are used to select normal, unit test, or standby test mode.

BUNRI Pin Input Level TEST Pin Input Level Mode Low level Arbitrary Normal mode High level Low level Standby test mode High level High level Unit test mode

Table 9-1. List of Test Mode Settings

(1) Normal mode

This is the mode the user normally uses.

When a low-level signal is being input to the BUNRI pin, the pins other than the test pins are enabled, and the NU85ET is in normal mode. At this time, input to the TBI39 to TBI0 pins is ignored, and the TBO34 to TBO0 pins are set to high impedance.

(2) Unit test mode and standby test mode

When a high-level signal is being input to the BUNRI pin, the NU85ET is in test mode. The two types of test modes are unit test mode and standby test mode.

Circuits should be designed so that floating or bus contention does not occur for the pins constituting the bus (excluding test pins) in unit or standby test mode (for the pin status in each mode, see **2.4 Pin Status**).

(a) Unit test mode

When a high-level signal is being input to the BUNRI and TEST pins, the NU85ET is in unit test mode and the input from the TBI39 to TBI0 pins is enabled in their place. Also, the test result is output from the TBO34 to TBO0 pins.

Input/output signals from the following pins are also valid in test mode, and operate in the same way as in normal mode. Accordingly, in test mode, be sure to handle these pins as indicated in **9.4 Handling of Each Pin in Test Mode**.

- VSB pins
- NPB pins
- VFB pins
- VDB pins
- Instruction cache pins
- Data cache pins
- DCU pins

Caution Unit test mode is the mode used by NEC to perform testing. Test patterns are provided by NEC.

(b) Standby test mode

When a high-level signal is being input to the BUNRI pin and a low-level signal is being input to the TEST pin, the NU85ET is in standby test mode.

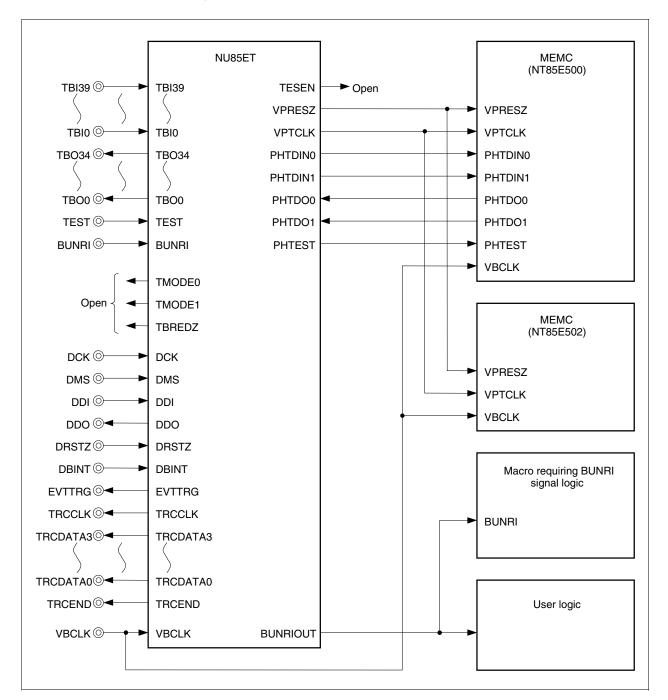
The input to the TBI39 to TBI0 pins is ignored, and the TBO34 to TBO0 pins are set to high impedance.

9.1.3 BUNRIOUT pin

The level input to the BUNRI pin is output as is from the BUNRIOUT pin. To support the test bus automatic connection tool, use the output from the BUNRIOUT pin and not that from the BUNRI pin if BUNRI signal logic is required for user circuit separation during the core testing or in places that are not targets of test bus automatic connection such as the cache.

Signal Name	I/O	Function
PHTDIN1, PHTDIN0	Output	Dedicated test signals output to peripheral macros
PHTDO1, PHTDO0	Input	Dedicated test signals input from peripheral macros
TESEN	Output	Enable signal output for setting peripheral macros to test mode
VPTCLK	Output	Peripheral macro test clock output
PHTEST	Output	Status signal output pin indicating peripheral test mode status
TMODE1, TMODE0	Output	These are NEC reserved pins. Leave them open.
TBREDZ	Output	

9.2 List of Test Interface Signals


Caution The above signals are only required for tests performed at NEC.

9.3 Example of Connection of Peripheral Macro in Test Mode

The NPB peripheral macro, MEMC, instruction cache, and data cache supported by NEC are tested via the NU85ET.

An example of the connections between the test mode pins for the NU85ET, the macros, and the user logic is shown below.

 \star

Figure 9-1. Peripheral Macro Connection Example

9.4 Handling of Each Pin in Test Mode

(1) Pins other than those for test mode

(a) Input pins

Input a low level to the VAREQ pin. Special handling is not required for pins other than the VAREQ pin (handle as in normal mode).

(b) Output pins

Special handling is not required (handle as in normal mode).

(2) Test mode pins (except TBI39 to TBI0, TBO34 to TBO0, BUNRI, TEST, and BUNRIOUT)

Handle the pins for test mode as indicated below.

	Pin Name	I/O		Connection Method	
*			When MEMC Is Connected	When Cache Is Connected	When Neither MEMC nor Cache Is Connected
	PHTDOn	Input	Connect to the PHTDOn pin of the NT85E500.	I	Input low level.
	PHTDINn	Output	Connect to the PHTDINn pin of the NT85E500.	I	Leave open.
*	VPRESZ	Output	Connect to the VPRESZ pin of the NT85E500, NT85E502.	Connect to the VPRESZ pin.	
	VPTCLK	Output	Connect to the VPTCLK pin of the NT85E500, NT85E502.	Connect to the VPTCLK pin.	
	TESEN	Output	_	_	
	PHTEST	Output	Connect to the PHTEST pin of the NT85E500.	-	
	TMODEn, TBREDZ	Output	Leave open.		

Remark n = 1, 0

(3) N-Wire type IE connection pins

Thirteen N-Wire type IE connection pins (DCK, DRSTZ, DMS, DDI, DDO, DBINT, EVTTRG, TRCCLK, TRCDATA3 to TRCDATA0, and TRCEND) must be output off the chip as external pins since they are used in the unit test mode. Do not use these pins as alternate function pins (however, the EVTTRG and DBINT pins can be used as alternate function pins for other than the test bus (TBI39 to TBI0, TBO34 to TBO0)).

CHAPTER 10 DCU

The debug control unit (DCU) consists of three function units: a run control unit (RCU) for realizing communication using JTAG and executing debug processing, a trace control unit (TRCU) for realizing trace functions, and a trigger event unit (TEU) for realizing event detection functions. By connecting an N-Wire type IE (IE-70000-MC-NW-A), on-chip debugging using a single NU85ET can be realized.

10.1 Outline of Functions

10.1.1 Debug functions

(1) Debug interface

Communication with the host machine is performed via the N-Wire type IE using the DRSTZ, DCK, DMS, DDI, and DDO signals. JTAG communication specification is used for the interface. The boundary scan function is not supported.

(2) On-chip debug

By preparing wiring and a connector for debugging on the target system board, on-chip debugging becomes possible.

An N-Wire type IE is connected to the debug connector. For regulations concerning the wiring or connector, refer to **10.2 Connection with N-Wire Type IE (IE-70000-MC-NW-A)**.

(3) Forcible reset function

The NU85ET unit can be forcibly reset.

(4) Break reset function

The CPU can be started in debug mode immediately after CPU reset release.

(5) Forcible break function

Execution of the user program can be forcibly interrupted. (Note that the illegal opcode exception handler (start address: 00000060H) cannot be used).

(6) Debug interrupt interface

The forcible break function can be executed by inputting a high level to the DBINT pin.

Remark It is also possible to release the HALT, software STOP, and hardware STOP modes by DBINT input.

(7) Debug monitor function

A debug-dedicated memory space, which is different to the user memory space, is used during debugging (background monitor format). Execution of the user program can be started from an arbitrary address. It is also possible to read/write the user resources (such as memory and I/O) and download the user program during a user program interruption.

(8) Mask function

The external input signals (RESETZ, STOPZ, VAREQ, NMI2 to NMI0, INT63 to INT0) can be masked.

10.1.2 Trace functions

(1) PC trace (branch trace) function

This function allows all branches (transition of processing) generated during execution of the user program to be traced.

The trace source can be selected from 12 types of branch sources classified according to function, and a PC trace can be started, or a trace source switched from an instruction execution of an arbitrary address. Two trace start triggers are provided.

(2) Data trace function

This function allows a data access to an arbitrary address within the range of 1 KB (max) and 4 bytes (min) issued by the CPU to be traced.

Two data trace points can be set, and both read and write data is traceable.

Note that data accesses issued by the DMAC cannot be traced.

(3) Real-time trace mode

In this mode, branches and data accesses occurring while the user program is being executed in real time can be traced.

The trace packet of the detected trace source is stored in the trace buffer and output from the trace interface pins (TRCCLK, TRCDATA3 to TRCDATA0, and TRCEND) (Note that if the trace buffer reaches full capacity, trace packets may be left unfetched).

(4) Complete trace mode (non real-time trace mode)

In this mode, all branches and data accesses of the user program can be traced.

To secure the time required to output the trace data from the trace interface pins in this mode and avoid leaving trace packets unfetched, put the CPU pipeline on hold and temporarily stop instruction execution.

10.1.3 Event functions

(1) Event trigger interface

Notification of event detection can be sent off chip via the EVTTRG pin.

(2) Instruction event detection function

This function allows event detection (10 events) through comparison with the size of the execution PC, as well as execution PC range event detection (up to 4 sets of two events per set).

Note that if the instruction event source is the break source, 2 breaks can be detected prior to execution of the event-detected instruction, and 8 breaks following instruction execution.

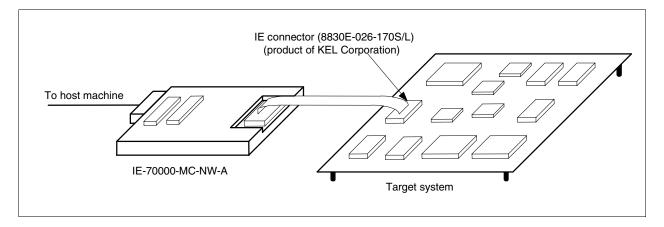
(3) Access event detection function

Events based on the following can be detected.

- Size comparison with access address (4 events)
- Range based on access address (up to 2 sets of two events per set)
- Match, mismatch with access data
- Data of a specific bit via data masking
- Access size

Note that the access event source is detected after access. If the access event source is the break source, the break will occur after the execution of a number of instructions following the instruction that issued the event-detected access.

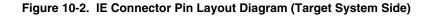
(4) Sequential event detection function


This function allows event detection based on the continuous generation of up to 4 levels of events, and event detection that clears continuous event generation.

Sequential events can also be counted using a 12-bit bus counter.

10.2 Connection with N-Wire Type IE (IE-70000-MC-NW-A)

In order to connect the N-Wire type IE (IE-70000-MC-NW-A), it is necessary to mount an IE connector and a connection circuit on the target system.



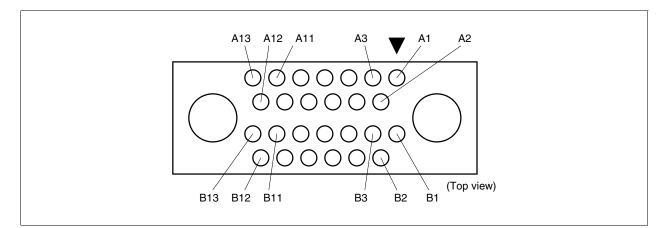

10.2.1 IE connector (target system side)

Figure 10-2 shows the pin layout of the IE connector (target system side), and Table 10-1 describes the pin functions.

Remark The recommended connectors are as follows.

- 8830E-026-170S (product of KEL Corporation): 26-pin straight type
- 8830E-026-170L (product of KEL Corporation): 26-pin right-angle type

Pin No.	Pin Name	I/O	Pin Function
A1	TRCCLK	Input	Trace clock input
A2	TRCDATA0	Input	Trace data 0 input
A3	TRCDATA1	Input	Trace data 1 input
A4	TRCDATA2	Input	Trace data 2 input
A5	TRCDATA3	Input	Trace data 3 input
A6	TRCEND	Input	Trace data end input
A7	DDI	Output	Debug serial interface data output
A8	DCK	Output	Debug serial interface clock output
A9	DMS	Output	Debug serial interface transfer mode selection output
A10	DDO	Input	Debug serial interface data input
A11	DRSTZ	Output	DCU reset output
A12	(Reserved)	_	(Leave open)
A13	(Reserved)	-	(Leave open)
B1	GND	-	_
B2	GND	-	_
B3	GND	-	-
B4	GND	_	_
B5	GND	-	_
B6	GND	-	-
B7	GND	-	-
B8	GND	-	-
B9	GND	-	_
B10	GND	_	-
B11	(Reserved)	_	(Leave open)
B12	(Reserved)	_	(Leave open)
B13	VDD	_	+3.3 V input (for monitoring target power supply application)

Table 10-1. IE Connector Pin Functions (Target System Side)

10.2.2 Example of recommended circuit when connecting NU85ET

Figure 10-3 shows an example of the circuit recommended for IE connector section (target system side).

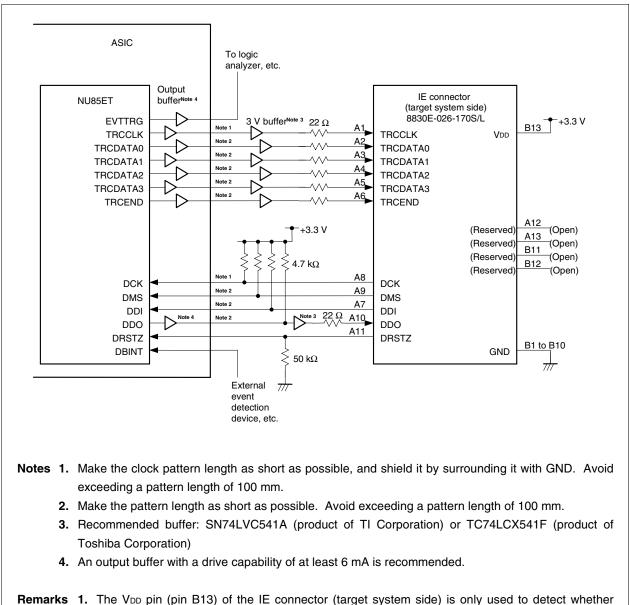


Figure 10-3. Example of Recommended Circuit for IE Connection (NU85ET)

- **Remarks 1.** The V_{DD} pin (pin B13) of the IE connector (target system side) is only used to detect whether power has been applied to the target system.
 - **2.** The DBINT pin is optional. When it is unnecessary to input a debug interrupt externally, input a low level to this pin.
 - **3.** The EVTTRG pin is optional. It mainly is used as trigger output of measurement devices such as a logic analyzer. When trigger output is not needed, leave it open.

10.2.3 Precautions when using N-Wire type IE

When debugging using an N-Wire type IE, the 13 N-Wire type IE connection pins are also used as test pins, so be sure to output all these pins off the ASIC chip and not use them as alternate function pins (the EVTTRG and DBINT pins can, however, be used as alternate function pins for other than the test bus (TBI39 to TBI0, TBO34 to TBO0)).

APPENDIX A ROM/RAM ACCESS TIMING

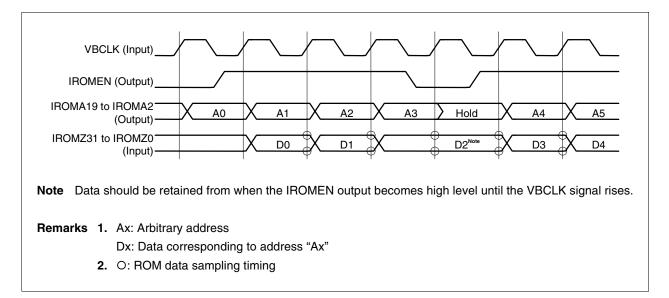
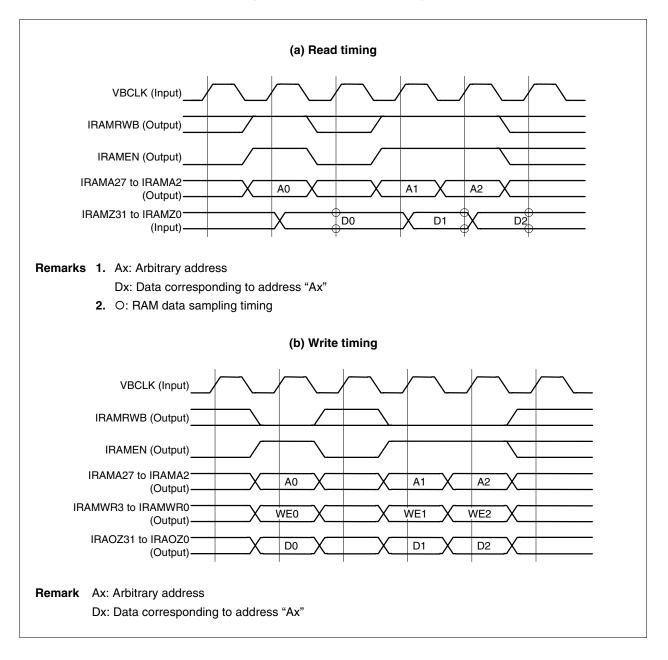



Figure A-1. ROM Access Timing

Figure A-2. RAM Access Timing

APPENDIX B INDEX

[A]

Address space	64
Application system example	18

[B]

BBR	124
BC15 to BC0	162
BCU	80
BCUNCH	40
BCU-related register setting examples	
BEC	93
BEn0	
BHC	
BHn0	
BHn1	
Block transfer mode	176
BPC	91, 127
BSC	92
BSn1, BSn0	
BUNRI	49
BUNRIOUT	49
Bus size configuration register	
Bus size setting function	

[C]

Cache configuration	
Cache configuration register	
CGREL	
CH3 to CH0	166
Chip area select control register 0	83
Chip area select control register 1	84
CLKB1	
Clock control	150
Command register	145
Connection with N-Wire Type IE	
(IE-70000-MC-NW-A)	
CPU	57
CSC0	83
CSC1	84
CSn3 to CSn0	83, 84
СТВР	61
CTPC	61
CTPSW	61
CY	63

[D]

DA15 to DA0	161
DA27 to DA16	160
DAD1, DAD0	164
DADC0 to DADC3	163
Data area	66
Data cache control registers	79
Data transfer using VSB	100
DBC0 to DBC3	162
DBINT	45
DBPC	61
DBPSW	61
DBRDY	45
DBRESZ	45
DCHC0 to DCHC3	165
DCK	45
DCRESZ	45
DCU	239
DCU pin	45
DCWAIT	45
DDA0 to DDA3	160
DDI	45
DDIS	166
DDO	45
DDOENB	45
DDOOUT	45
Debug functions	239
DMA addressing control registers 0 to 3	163
DMA bus state	
DMA channel control registers 0 to 3	165
DMA channel priorities	
DMA destination address registers 0 to 3	
DMA disable status register	
DMA restart register	
DMA source address registers 0 to 3	
DMA transfer count registers 0 to 3	
DMA transfer start factors	
DMA transfer timing examples	
DMAC	
DMAC bus cycle state transitions	
DMACTV3 to DMACTV0	
DMARQ3 to DMARQ0	
DMS	
DMTCO3 to DMTCO0	

DRST	
DRSTZ	
DS1, DS0	
DSA0 to DSA3	158

[E]

ECLRIP	44
ECR	61, 62
EICC	62
EINTAK	
EINTLV6 to EINTLV0	
EINTRQ	
EIPC	61
EIPSW	61
EN3 to EN0	166
Endian configuration register	
Endian setting function	
ENn	165
EP	63
EVAD15 to EVAD0	
EVASTB	
EVCLRIP	
EVDSTB	
Event functions	241
EVIEN	
EVINTAK	
EVINTLV6 to EVINTLV0	
EVINTRQ	
EVIREL	
EVLKRT	
EVOEN	
EVTTRG	45
Example of connection of peripheral macro in	test
mode	237
Exception trap	232
EXHLT	
External INTC pins	
External memory	
External memory area	73

[F]

FCOMB	49
FECC	
FEPC	61
FEPSW	61
Flyby transfer	
Forcible interruption	
Forcible termination	183

[G]

[H]

HALT mode	146
Handling of each pin in test mode	238
Hardware STOP mode	149
HWSTOPRQ	36

[I]

IBAACK	30
IBBTFT	
IBDLE3 to IBDLE0	
IBDRDY	
IBDRRQ	
IBEA25 to IBEA2	
IBEDI31 to IBEDI0	
ID	63, 229
IDAACK	40
IDBR2 to IDBR0	45
IDDARQ	40
IDDRDY	41
IDDRRQ	40
IDDWRQ	40
IDEA27 to IDEA0	41
IDED31 to IDED0	41
IDES	41
IDHUM	41
IDMASTP	37
IDRETR	41
IDRRDY	41
IDSEQ2	40
IDSEQ4	40
IDUNCH	41
IFID256	48
IFIEVA	49
IFIMAEN	48
IFIMODE3, IFIMODE2	49
IFINSZ1, IFINSZ0	48
IFIRA64, IFIRA32, IFIRA16	47
IFIRABE	49
IFIRASE	49
IFIROB2	
IFIROBE	49
IFIROME	47
IFIROPR	49
IFIUNCH0	49
IFIUNCH1	48

IFIUSWE
IFIWRTH 48
IIAACK
IIBTFT
IIDLEF
IIDRRQ
IIEA25 to IIEA2
IIEDI31 to IIEDI0
IIRCAN
Illegal opcode
IMR0 to IMR3
INITn
In-service priority register
Instruction cache control registers
INT63 to INT0
INTC
INTC pins
Internal block diagram
Internal units
Interrupt control registers 0 to 63 226
Interrupt mask registers 0 to 3 227
Interrupt response time
Interrupt/exception list
Interrupt/exception table
INTM
IR
IRAMA27 to IRAMA2
IRAMEN
IRAMRWB
IRAMWR3 to IRAMWR0 38
IRAMWT
IRAMZ31 to IRAMZ0
IRAOZ31 to IRAOZ0
IROMA19 to IROMA2
IROMAE
IROMCS
IROMEN
IROMIA
IROMWT
IROMZ31 to IROMZ0
IRRSA
ISPR
ISPR7 to ISPR0
[L]

Line transfer mode	174
List of pin functions	

[M]

Maskable interrupt priorities	.222
Maskable interrupt status flag	.229
Maskable interrupts	.219
Memory banks	80
Memory controller control registers	78
MLEn	. 165
MSKHRQ	45
MSKNMI2 to MSKNMI0	45
MSKSTP	45
MWAIT	45

Ν

Next address setting function	167
NMI	214
NMIOM	143
NMI1M	143
NMI2 to NMI0	
NMI2M	143
Non-maskable interrupts	214
Normal mode	235
NP	63
NPB	17
NPB read/write timing	132
NPB strobe wait control register	129
NU85ET control registers	75

[0]

Operation mode setting pins4	7
OV	3

[P]

PA13 to PA00	91, 127
PA15	91, 127
PC	59, 60
Periods when interrupts cannot be	
acknowledged	234
Peripheral EVA chip mode pins	46
Peripheral I/O area	72
Peripheral I/O area select control register	91, 127
Peripheral I/O registers	74
PHEVA	49
PHTDIN1, PHTDIN0	50
PHTDO1, PHTDO0	49
PHTEST	50
PIC0 to PIC63	226
PIFn	226
Pin functions	25

Pin status	53
PMKn	. 226, 227
Power save control register	143
Power save function	142
PPRn2 to PPRn0	226
PRCMD	145
Program area	65
Program counter	59, 60
Program registers	59
Programmable chip select function	83
Programmable peripheral I/O area	126
Programmable peripheral I/O area selection	
function	89
PSC	143
PSW	61, 63

[R]

r0 to r31	59
RAM	18
RAM area	71
Recommended connection of unused pins	51
REG7 to REG0	145
Registers	58
RESETZ	35
RESMK	45
Retry function	131
ROM	18
ROM area	68
ROM relocation function	68
ROM/RAM access timing	
ROMTYPE	45

[S]

S	63
SA15 to SA0	159
SA27 to SA16	158
SAD1, SAD0	164
SAT	63
Single transfer mode	171
Single-step transfer mode	173
Software exception	
Software STOP mode	147
Standby test mode	
STBC	142
STGn	165
STOPZ	
STP	
STPAK	

37
129
36
21
61

[T]

TAPSM3 to TAPSM0	45
TBI39 to TBI0	49
TBO34 to TBO0	49
TBREDZ	50
TCn	165
TDIR	164
Terminal count output when DMA transfer is	;
complete	181
TESEN	49
TEST	49
Test function	235
Test mode pins	49
Test Pins	235
TM1, TM0	164
TMODE1, TMODE0	50
Trace functions	240
Transfer objects	157
TRCCLK	45
TRCDATA3 to TRCDATA0	45
TRCEND	45
TRG1, TRG0	45
ТТҮР	164
Two-cycle transfer	178

[U]

Unit test	mode	 	 	236

[V]

VAACK	31
VAPREQ	31
VAREQ	31
VBCLK	
VBDC	35
VBDI31 to VBDI0	31
VBDO31 to VBDO0	31
VBDV	35
VDB	18
VDCSZ7 to VDCSZ0	35
VDSELPZ	34
VFB	18
VMA27 to VMA0	31

VMAHLD	
VMBENZ3 to VMBENZ0	
VMBSTR	
VMCTYP2 to VMCTYP0	
VMLAST	
VMLOCK	
VMSEQ2 to VMSEQ0	33
VMSIZE1, VMSIZE0	32
VMSTZ	
VMTTYP1, VMTTYP0	
VMWAIT	
VMWRITE	32
VPA13 to VPA0	
VPDACT	
VPDI15 to VPDI0	30
VPDO15 to VPDO0	
VPDV	30
VPLOCK	
VPRESZ	50
VPRETR	30
VPSTB	
VPTCLK	49

VPUBENZ	
VPWRITE	
VSA13 to VSA0	31
VSAHLD	34
VSB	17
VSBENZ1	32
VSLAST	34
VSLOCK	32
VSSELPZ	34
VSSTZ	31
VSWAIT	34
VSWC	129
VSWL2 to VSWL0	130
VSWRITE	32
[W]	

[Z]

Z63

APPENDIX C REVISION HISTORY

The following shows the major revisions in the previous edition (2nd edition). The numbers in the Pages column indicate those in the previous edition.

(1) From 1st to 2nd

Pages	Description	
Throughout	Change of DCRESZ pin to NEC reserved pin	
p.25	Modification of 2.1 List of Pin Functions	
p.30	Modification of 2.2.1 (4) VPWRITE	
p.37	Modification of 2.2.4 (1) IDMASTP	
p.50	Modification of 2.2.14 (10) VPRESZ	
p.120	Addition of bus priority in 4.9.6 Bus master transition timing	
p.130	Modification of Table 5-1 Setting of Setup Wait, VPSTB Wait Lengths at Each Operation Frequency	
p.140	Modification of Figure 5-15 NPB Write Timing (Example of Timing of Data Write to CSC0 and CSC1 Registers)	
p.143	Addition of Caution 2 in 6.2.1 Power save control register (PSC)	
p.147	Modification of 6.4 (2) (a) Cancellation by interrupt request	
p.149	Modification of Remark in 6.5 (1) Setting and operation status	
p.154	Modification of Figure 6-6 Hardware STOP Mode Set/Cancel Timing Example	
p.176	Modification of 7.8.4 Block transfer mode	
p.179	Modification of 7.9.2 Flyby transfer	
pp.181 to 184, 186, 188, 190, 192, 194, 196, 198, 200, 202	Modification of VMSEQ2 to VMSEQ0, VMSIZE1, and VMSIZE0 timing in Figures 7-27 to 7-38	
p.238	Modification of 9.4 (2) Test mode pins	

NEC

Facsimile Message

Although NEC has taken all possible steps to ensure that the documentation supplied to our customers is complete, bug free and up-to-date, we readily accept that errors may occur. Despite all the care and precautions we've taken, you may encounter problems in the documentation. Please complete this form whenever you'd like to report errors or suggest improvements to us.

Company	
Tel.	FAX

Thank you for your kind support.

North America NEC Electronics Inc. Corporate Communications Dept. Fax: +1-800-729-9288 +1-408-588-6130	Hong Kong, Philippines, Oceania NEC Electronics Hong Kong Ltd. Fax: +852-2886-9022/9044	Asian Nations except Philippines NEC Electronics Singapore Pte. Ltd. Fax: +65-250-3583	
Europe NEC Electronics (Europe) GmbH Market Communication Dept. Fax: +49-211-6503-274	Korea NEC Electronics Hong Kong Ltd. Seoul Branch Fax: +82-2-528-4411	Japan NEC Semiconductor Technical Hotline Fax: +81- 44-435-9608	
South America NEC do Brasil S.A. Fax: +55-11-6462-6829	Taiwan NEC Electronics Taiwan Ltd. Fax: +886-2-2719-5951		

I would like to report the following error/make the following suggestion:

Document title:

From:

Name

Address

Document number: ____

Page number: _____

If possible, please fax the referenced page or drawing.

Document Rating	Excellent	Good	Acceptable	Poor
Clarity				
Technical Accuracy				
Organization				