
2N2920AHR

Datasheet - production data

Hi-Rel NPN dual matched bipolar transistor 60 V, 0.03 A

Figure 1. Internal schematic diagram

Features

BV _{CEO}	60 V
I _C (max)	0.03 A
H _{FE} at 10 V - 150 mA	> 300
Operating temperature range	-65°C to +200°C

- Hi-Rel NPN dual matched bipolar transistor
- Linear gain characteristics
- ESCC qualified
- European preferred part list EPPL
- Radiation level: lot specific total dose contact marketing for specified level

Description

The 2N2920AHR is a silicon planar epitaxial NPN transistor in TO-77 and LCC-6 packages. It is specifically designed for aerospace Hi-Rel applications and ESCC qualified according to the 5207-002 specification. In case of conflict between this datasheet and ESCC detailed specification, the latter prevails.

Table 1. Device summary

Device	Qualification system	Agency specification	Package	Radiation level	EPPL
SOC2920AHRx	ESCC Flight	5207/002	LCC-6	-	Yes
2N2920AHRx	ESCC Flight	5207/002	TO-77	-	-

This is information on a product in full production.

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base voltage ($I_E = 0$)	60	V
V _{CEO}	Collector-emitter voltage ($I_B = 0$)	60	V
V _{EBO}	Emitter-base voltage (I _C = 0)	6	V
Ι _C	Collector current	30	mA
P _{TOT}	Total dissipation at $T_{amb} \le 25 \text{ °C}$ for LCC-6 ⁽¹⁾ for LCC-6 ⁽²⁾ for TO-77 ^{(1) (3)} for TO-77 ^{(2) (3)} Total dissipation at $T_c \le 25 \text{ °C}$ for LCC-6 ⁽¹⁾ for LCC-6 ⁽²⁾	0.3 0.5 0.6 1 0.75 1.25	W W W W
TSTG	Storage temperature	-65 to 200	°C
TJ	Max. operating junction temperature	200	°C

1. One section.

2. Both sections.

3. When mounted on a $15 \times 15 \times 0.6$ mm ceramic substrate.

Symbol	bol Parameter			Unit
R _{thJC}	Thermal resistance junction-case (1)maThermal resistance junction-case (2)ma	-	233 140	°C/W °C/W
R _{thJA}	Thermal resistance junction-ambient ⁽¹⁾ maThermal resistance junction-ambient ⁽²⁾ ma		583 350	°C/W °C/W

1. One section.

2. Both sections.

Table 4	Thermal	data for	SMD	package
---------	---------	----------	-----	---------

Symbol	Parameter	Value	Unit
R _{thJA}	Thermal resistance junction-ambient ⁽¹⁾⁽³⁾ max	291	°C/W
' 'thJA	Thermal resistance junction-ambient ⁽²⁾⁽³⁾ max	175	°C/W

1. One section.

2. Both sections.

3. When mounted on a $15 \times 15 \times 0.6$ mm ceramic substrate.

2 Electrical characteristics

 $T_{case} = 25$ °C unless otherwise specified

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector-base cut-off current (I _E = 0)	$V_{CB} = 45 V$ $V_{CB} = 45 V$ $T_{C} = 150 °C$			2 10	nΑ μΑ
I _{CEO}	Collector cut-off current (I _B = 0)	V _{CE} = 5 V			2	nA
I _{EBO}	Emitter-base cut-off current (I _C = 0)	V _{EB} = 5 V			2	nA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = 10 μA	60			V
V _{(BR)CEO} ⁽¹⁾	Collector-emitter breakdown voltage $(I_B = 0)$	I _C = 10 mA	60			V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = 10 μA	6			V
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	$I_{\rm C} = 1 \text{ mA}$ $I_{\rm B} = 0.1 \text{ mA}$			0.35	V
V _{BE(sat)} ⁽¹⁾	Base-emitter saturation voltage	$I_{\rm C} = 1 \text{ mA}$ $I_{\rm B} = 0.1 \text{ mA}$	0.5		1	V
h _{FE} ⁽¹⁾	DC current gain	$\begin{split} I_{C} &= 10 \; \mu A & V_{CE} &= 5 \; V \\ I_{C} &= 100 \; \mu A & V_{CE} &= 5 \; V \\ I_{C} &= 1 \; m A & V_{CE} &= 5 \; V \\ I_{C} &= 10 \; \mu A & V_{CE} &= 5 \; V \\ T_{amb} &= -55 \; ^{\circ} C \end{split}$	150 225 300 50		600	
h_{FE2-1}/h_{FE2-2}	DC current transfer ratio comparison	$I_{C} = 100 \ \mu A$ $V_{CE} = 5 \ V$ $T_{amb} = -55 \ ^{\circ}C \ to +25 \ ^{\circ}C$	0.91		1.1	
h_{FE2-1}/h_{FE2-2}	DC current transfer ratio comparison	$I_{C} = 100 \ \mu A$ $V_{CE} = 5 \ V$ $T_{amb} = -55 \ ^{\circ}C \ to +125 \ ^{\circ}C$	0.85		1.18	
$\begin{array}{c c} \Delta & V_{BE_1} \\ V_{BE_2} \end{array}$	Base-emitter voltage differential				2 1.5 2	mV mV mV
$\Delta \left \begin{array}{c} V_{BE1} \\ V_{BE2} \right $	Base-emitter voltage differential	$V_{CE} = 5 V$ $I_{C} = 100 \mu A$ $T_{amb} = -55 \ ^{\circ}C \text{ to } +25 \ ^{\circ}C$ $T_{amb} = +25 \ ^{\circ}C \text{ to } +125 \ ^{\circ}C$			0.4 0.5	mV mV
I _{Lk}	Leakage current between active devices	V = 50 V to E_2 , B_2 , C_2 V = 0 V to E_1 , B_1 , C_1			5	μΑ

Table 5.	Electrical	characteristics
----------	------------	-----------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
f _T	Transition frequency	$I_{C} = 0.5 \text{ mA}$ $V_{CE} = 5 \text{ V}$	60			MHz
h _{ob}	Output admittance	$V_{CE} = 5 V$ $I_C = 1 mA$ f = 1 kHz			1	µmho
h _{ib}	Input impedance	$V_{CB} = 5 V$ $I_C = 1 mA$ f = 1 kHz	25		32	W
Cobo	Output capacitance (I _E = 0)	V _{CB} = 5 V 100 kHz > f > 1 MHz			6	pF
NF	Noise figure	$V_{CE} = 5 V \qquad I_C = 10 \ \mu A$ R _S = 10 kW f = 1 kHz Bandwidth = 200 Hz			3	dB
NF	Noise figure	$V_{CE} = 5 V$ $I_{C} = 10 \mu A$ $R_{S} = 10 kW$ $10 Hz \pounds f \pounds 15.7 kHz$ Bandwidth = 200 Hz			3	dB

Table 5. Electrical characteristics (continued)

1. Pulsed duration = $300 \ \mu$ s, duty cycle > 1.5%

2.1 Electrical characteristics (curves)

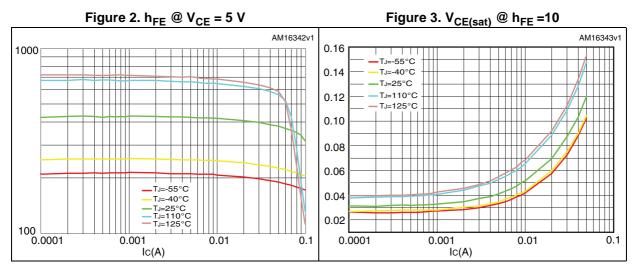
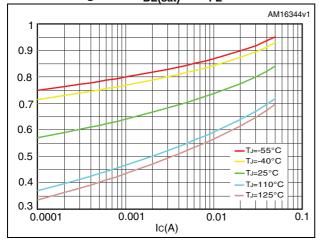
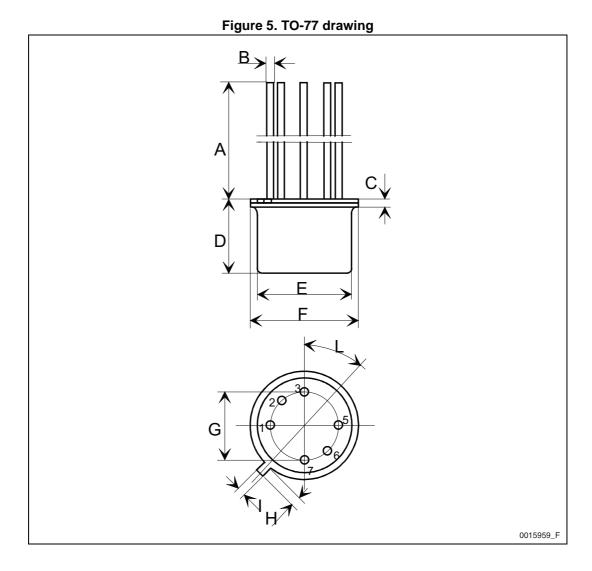



Figure 4. V_{BE(sat)} @ h_{FE} =10



3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

3.1 TO-77

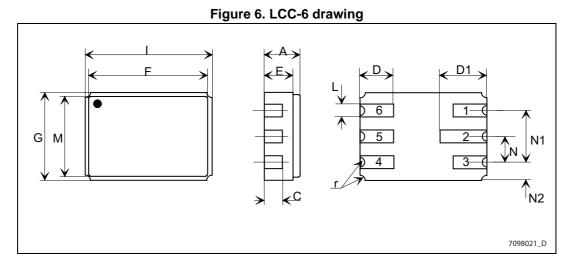


Table 6. TO-77 mechanical data						
Dim		mm				
Dim.	Min	Тур	Мах			
A	12.70					
В	0.40					
С	0.55		0.76			
D	6.11		6.47			
E	8.15		8.25			
F	9.05		9.25			
G	4.85		5.31			
Н	0.71	5.08	0.85			
I	0.90		1.00			
L	42°		48°			

Table 6. TO-77 mechanical data

3.2 LCC-6

Dim.	mm					
	Min.	Тур.	Max.			
A	1.53		1.96			
С	0.78	0.78 0.89				
D	1.52	1.65	1.78			
E	12.4	1.40	1.55			
F	5.77	5.84	5.92			
G	4.19	4.31	4.45			
I	6.10	6.22	6.35			
L	0.56	0.63	0.71			
М	3.86	3.94	4.01			
N	1.14	1.27	1.40			
N1	2.41 2.54 2.6		2.67			
N2	0.64	0.89 1.14				
r		0.23				
D1	2.08	2.08 2.28 2.49				

Ordering information 4

CPN	Agency specification	EPPL	Quality level	Radiation level	Package	Lead finish	Marking ⁽¹⁾	Packing
SOC2920A1	-	-	Engineering model ESCC	-	LCC-6	Gold	SOC2920A1	Waffle pack
SOC2920AHRG	5207/002/12	Yes	ESCC flight	-	LCC-6	Gold	520700212	Waffle pack
SOC2920AHRT	5207/002/15	Yes	ESCC flight	-	LCC-6	Solder dip	520700215	Waffle pack
2N2920AHRG	5207/002/03	-	ESCC fight	-	TO-77	Gold	520700203	Strip pack
2N2920AHRT	5207/002/06	-	ESCC Flight	-	TO-77	Solder dip	520700206	Strip pack

Table 8. Ordering information

Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: ST logo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

Contact ST sales office for information about the specific conditions for:

- Product in die form
- Tape and reel packaging .

5 Revision history

Date	Revision	Changes	
10-Dec-2008	1	Initial release	
05-Jan-2010	2	Modified Table 1 on page 1	
15-Nov-2012	3	Added: Section 2.1: Electrical characteristics (curves) Updated: Section 3: Package mechanical data	
04-Apr-2014	4	Updated: <i>Table 1: Device summary</i> and <i>Table 2: Absolute maximum ratings</i> . Minor text changes.	
14-May-2014	5	Updated Section 3.2: LCC-6.	

Table 9. Document revision history

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID15383 Rev 5