
2N3810HR

Datasheet - production data

Hi-Rel PNP dual matched bipolar transistor 60 V, 0.05 A

Figure 1. Internal schematic diagram

Features

BV _{CEO}	60 V
I _C (max)	0.05 A
H _{FE} at 10 V - 150 mA	> 150
Operating temperature range	-65°C to +200°C

- Hi-Rel PNP dual matched bipolar transistor
- Linear gain characteristics
- ESCC qualified
- European preferred part list EPPL
- Radiation level: lot specific total dose contact marketing for specified level

Description

The 2N3810HR is a silicon planar epitaxial PNP transistor in TO-78 and LCC-6 packages. It is specifically designed for aerospace Hi-Rel applications and ESCC qualified according to the 5207-005 specification. In case of conflict between this datasheet and ESCC detailed specification, the latter prevails.

Table 1. Device summary

Device	Qualification system	Agency specification	Package	Radiation level	EPPL
SOC3810HRx	ESCC Flight	5207/005	LCC-6	-	Yes
2N3810HRx	ESCC Flight	5207/005	TO-78	-	-

DocID15385 Rev 4

www.st.com

This is information on a product in full production.

1 Electrical ratings

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-base voltage ($I_E = 0$)	-60	V
V _{CEO}	Collector-emitter voltage $(I_B = 0)$	-60	V
V_{EBO}	Emitter-base voltage (I _C = 0)	-5	V
Ι _C	Collector current	-50	mA
P _{TOT}	Total dissipation at $T_{amb} \le 25 \text{ °C}$ for TO-78 ⁽¹⁾ for TO-78 ⁽²⁾ for LCC-6 ^{(1) (3)} for LCC-6 ^{(2) (3)} Total dissipation at $T_c \le 25 \text{ °C}$ for TO-78 ⁽¹⁾ for TO-78 ⁽²⁾	0.5 0.6 1.2 0.5 0.6	W W W W
TSTG	Storage temperature	-65 to 200	°C
ТJ	Max. operating junction temperature	200	°C

1. One section.

2. Both sections.

3. When mounted on a $15 \times 15 \times 0.6$ mm ceramic substrate.

Table 3.	Thermal d	lata for	through-hole	package
----------	-----------	----------	--------------	---------

Symbol	Parameter		Value	Unit
R _{thJC}	Thermal resistance junction-case ⁽¹⁾	max	350	°C/W
	Thermal resistance junction-case ⁽²⁾	max	292	°C/W
R _{thJA}	Thermal resistance junction-ambient ⁽¹⁾	max	350	°C/W
	Thermal resistance junction-ambient ⁽²⁾	max	292	°C/W

1. One section.

2. Both sections.

Table 4	Thermal	data f	or SMD	package
---------	---------	--------	--------	---------

Parameter		Value	Unit
nermal resistance junction-ambient $^{(1)(3)}$	max	292 146	°C/W °C/W
		ermal resistance junction-ambient ⁽¹⁾⁽³⁾ max	ermal resistance junction-ambient ⁽¹⁾⁽³⁾ max 292

1. One section.

2. Both sections.

3. When mounted on a 15 x 15 x 0.6 mm ceramic substrate.

2 Electrical characteristics

 T_{case} = 25 °C unless otherwise specified.

Symbol	Parameter	Electrical characteristics	Mim	Turn	Мет	l lesit
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{CBO}	Collector-base cut-off current (I _E = 0)	V _{CB} = -50 V V _{CB} = -50 V T _C = 150 °C		-	-10 -10	vA ∝A
I _{EBO}	Emitter-base cut-off current (I _C = 0)	V _{EB} = -4 V		-	-20	νA
V _{(BR)CBO}	Collector-base breakdown voltage (I _E = 0)	I _C = -10 ∝A	-60	-		V
V _{(BR)CEO} ⁽¹⁾	Collector-emitter breakdown voltage (I _B = 0)	I _C = -10 mA	-60	-		V
V _{(BR)EBO}	Emitter-base breakdown voltage (I _C = 0)	I _E = -10 ∝A	-5	-		V
V _{CE(sat)} ⁽¹⁾	Collector-emitter saturation voltage	$I_{C} = -100 \ \mu A$ $I_{B} = -10 \ \mu A$ $I_{C} = -1 \ m A$ $I_{B} = -100 \ \mu A$		-	-0.2 -0.25	V V
V _{BE(sat)} ⁽¹⁾	Base-emitter saturation voltage	$I_{C} = -100 \ \mu A$ $I_{B} = -10 \ \mu A$ $I_{C} = -1 \ m A$ $I_{B} = -100 \ \mu A$		-	-0.7 -0.8	V V
h _{FE} ⁽¹⁾	DC current gain	$\begin{split} I_{C} &= -10 \; \mu A & V_{CE} &= -5 \; V \\ I_{C} &= -100 \; \mu A & V_{CE} &= -5 \; V \\ I_{C} &= -500 \; \mu A & V_{CE} &= -5 \; V \\ I_{C} &= -1 \; m A & V_{CE} &= -5 \; V \\ I_{C} &= -10 \; m A & V_{CE} &= -5 \; V \\ I_{C} &= -100 \; \mu A & V_{CE} &= -5 \; V \\ T_{amb} &= -55 \; ^{\circ}C \end{split}$	100 150 150 150 125 60	-	450 450 450	
h _{FE2-1} / h _{FE2-2}	DC current ratio comparison	$I_{C} = -100 \ \mu A$ $V_{CE} = -5 \ V$	0.91	-	1.1	
h_{FE2-1}/h_{FE2-2}	DC current ratio comparison	$I_{C} = -100 \ \mu A$ $V_{CE} = -5 \ V$ $T_{amb} = -55 \ ^{\circ}C \ to +125 \ ^{\circ}C$	0.85	-	1.18	
$\Delta \left \begin{array}{c} V_{BE1} \\ V_{BE2} \right $	Base-emitter voltage differential	$ \begin{array}{ll} V_{CE} = -5 \ V & I_{C} = -10 \ \mu A \\ V_{CE} = -5 \ V & I_{C} = -100 \ \mu A \\ V_{CE} = -5 \ V & I_{C} = -10 \ m A \end{array} $		-	5 3 5	mV mV mV
$\begin{array}{c c} \Delta & V_{BE1} \\ V_{BE2} \end{array}$	Base-emitter voltage differential	$V_{CE} = -5 V$ $I_{C} = -100 \mu A$ $T_{amb} = -55 \text{ °C to } +25 \text{ °C}$ $T_{amb} = +25 \text{ °C to } +125 \text{ °C}$		-	0.8 1	mV mV
I _{Lk}	Leakage current between active devices	V = -50 V to E_2 , B_2 , C_2 V = 0 V to E_1 , B_1 , C_1		-	-5	μA

Table 5. Electrical	characteristics
---------------------	-----------------

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
h _{fe}	Small signal current gain	$V_{CE} = -5 V$ $I_C = -10 mA$ f = 1 kHz	125	-			
h _{fe}	Small signal current gain	$V_{CE} = -10 V$ $I_{C} = -10 mA$ f = 1 kHz	150	-	600		
f _T	Transition frequency	$I_{\rm C}$ = -1 mA $V_{\rm CE}$ = -5 V	80	-	500	MHz	
Cobo	Output capacitance $(I_E = 0)$	V _{CB} = -5 V 100 kHz ≤ f ≤ 1 MHz		-	6	πΦ	
Cibo	Input capacitance $(I_{C} = 0)$	V _{EB} = -0.5 V 100 kHz ≤ f ≤ 1 MHz		-	15	πΦ	
hie	Input impedance	$I_{C} = -1 \text{ mA}$ $V_{CE} = -10 \text{ V}$ f = 1 kHz	3	-	30	кW	
NF	Noise figure	$ \begin{array}{ll} V_{CE} = \texttt{-5} \; V & I_{C} = \texttt{-200} \; \mu A \\ R_{S} = 2 \; k \Omega & f = \texttt{100} \; Hz \end{array} $		-	7	δB	
NF	Noise figure			-	3	δB	
NF	Noise figure	$V_{CE} = -5 V \qquad I_C = -200 \ \mu A$ $R_S = 2 \ k\Omega$ Bandwidth = 10 Hz to 15.7 kHz	<u>.</u>	-	3.5	δΒ	

Table 5. Electrical characteristics (continued)

1. Pulsed duration = 300 $\mu s,$ duty cycle $\leq 1.5\%$

2.1 Electrical characteristics (curves)

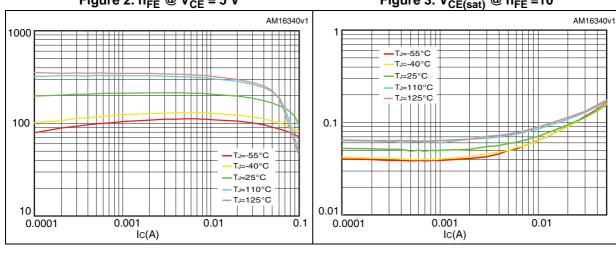
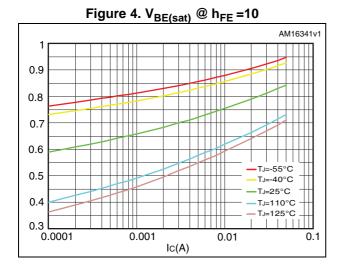
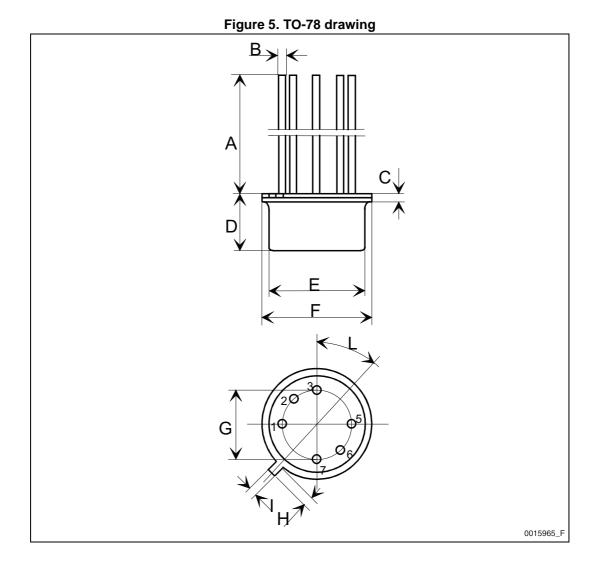



Figure 2. $h_{FE} @ V_{CE} = 5 V$

Figure 3. V_{CE(sat)} @ h_{FE} =10



3 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

3.1 TO-78

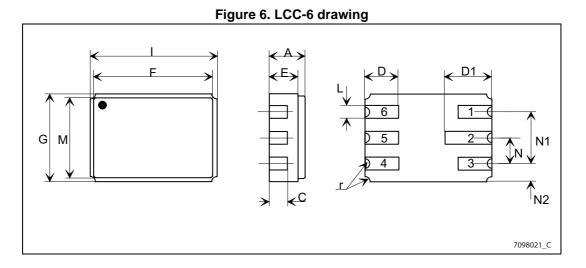


Table 0. 10-76 mechanical data								
Dim	mm inch							
Dim.	Min.	Тур.	Max.	Min.	Тур.	Max.		
А	12.70		13.70	0.500		0.539		
В	0.40		0.47	0.016		0.019		
С	0.55		0.76	0.022		0.030		
D	4.26		4.57	0.168		0.180		
E	8.15		8.25	0.321		0.325		
F	9.05		9.25	0.356		0.364		
G	4.85	5.08	5.31	0.191	0.200	0.209		
Н	0.71		0.85	0.028		0.034		
I	0.90		1.00	0.035		0.040		
L	42°		48°					

Table 6. TO-78 mechanical data

3.2 LCC-6

Table 7. LCC-6 mechanical data						
Dim.	mm					
	Min.	Тур.	Max.			
A	1.53		1.96			
С	0.78	0.89	0.99			
D	1.52	1.65	1.78			
E	12.4	1.40	1.55			
F	5.77	5.84	5.92			
G	4.19	4.31	4.45			
I	6.10	6.22	6.35			
L	0.56	0.63	0.71			
М	3.86	3.94	4.01			
N	1.14	1.27	1.40			
N1	2.41	2.54	2.67			
N2	0.64	0.64 0.89				
r		0.23				
D1	2.08	2.28	2.49			

Table 7. LCC-6 mechanical data

4 ۲

Ordering information

Table 8. Oder codes

CPN	Agency specification	EPPL	Quality level	Radiation level	Package	Lead finish	Marking ⁽¹⁾	Packing
SOC38101	-	-	Engineering model ESCC	-	LCC-6	Gold	SOC38101	WafflePack
SOC3810HRG	5207/005/07	Yes	ESCC Flight	-	LCC-6	Gold	520700507	WafflePack
SOC3810HRT	5207/005/09	Yes	ESCC Flight	-	LCC-6	Solder Dip	520700509	WafflePack
2N3810HRG	5207/005/01	-	ESCC Flight	-	TO-78	Gold	520700501	Strip Pack
2N3810HRT	5207/005/02	-	ESCC Flight	-	TO-78	Solder Dip	520700502	Strip Pack

1. Specific marking only. The full marking includes in addition: For the Engineering Models: ST logo, date code; country of origin (FR). For ESCC flight parts: ST logo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot.

Contact ST sales office for information about the specific conditions for:

- Products in die form
- Tape and reel packing

5 Revision history

Date	Revision	Changes
10-Dec-2008	1	Initial release
08-Jan-2010	2	Modified Table 1 on page 1
14-Nov-2012	3	Added:Section 2.1: Electrical characteristics (curves) Updated: Section 3: Package mechanical data
13-May-2014	13-May-2014 4 Updated Table 1: Device summary. Added Section 4: Ordering information.	

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID15385 Rev 4