5 W to 7 W high power factor offline LED driver based on VIPer devices

Introduction

The driving idea behind this application note is to exploit the possibility of implementing an LED power supply module characterized by a high power factor, based on devices from the VIPer family in flyback configuration and with a TSM1052 as a constant current controller.

The other key point is to avoid using high voltage electrolytic capacitors, evaluate the influence of the output bulk electrolytic capacitor on overall performance, and consider its replacement with much smaller ceramic components, eventually implementing a non electrolytic configuration.

The STEVAL-ISA120V1 demonstration board has been designed as a platform to perform this evaluation.

Figure 1. STEVAL-ISA120V1 VIPer27 LED driver module

Contents

1 Main characteristics 5
1.1 Initial configuration 5
1.2 Requirements 5
2 Circuit description 6
2.1 Primary side 6
2.2 Secondary side 9
2.3 Circuit variants 11
3 Waveforms 12
3.1 Input 12
3.2 Output 14
3.3 Startup sequence 15
3.4 Short-circuit protection 16
3.5 Open circuit protection 18
4 Measurements 20
4.1 7.0 W NO EL_CAP configuration 21
4.2 7.0 W EL_CAP configuration 25
4.3 EMI filter 28
4.4 Thermal maps 29
5 Electrical diagram 30
6 BOM list 31
$7 \quad 7$ W transformer specifications 33
7.1 Mechanical specifications 33
7.2 Electrical specifications 34
8 Revision history 35

List of figures

Figure 1. STEVAL-ISA120V1 VIPer27 LED driver module 1
Figure 2. Initial configuration 4
Figure 3. Primary side schematic. 5
Figure 4. $\quad \mathrm{ID}_{\mathrm{LIM}}$ vs $\mathrm{R}_{\mathrm{LIM}}$ - VIPer17 6
Figure 5. $\quad \mathrm{ID}_{\mathrm{LIM}}$ vs $\mathrm{R}_{\mathrm{LIM}}$ - VIPer27 6
Figure 6. No feedback on FB pin 7
Figure 7. Feedback on FB pin 7
Figure 8. Feedback voltage V_fb vs. VAC and Vout 7
Figure 9. Secondary side equivalent schematic 8
Figure 10. V_drain, I_drain at Vin= 75 V 11
Figure 11. V_drain, I_drain at Vin= 100 V 11
Figure 12. V_drain, I_drain at Vin= 120 V 11
Figure 13. V_drain, I_drain at Vin= 162 V 11
Figure 14. V_drain, I_drain at Vin= 254 V 12
Figure 15. V_drain, I_drain at Vin= 325 V 12
Figure 16. V_drain, I_drain at Vin= 391 V 12
Figure 17. V_drain, I_drain at Vin= 50 V 12
Figure 18. Vin and lin at Vin $=230$ VAC 13
Figure 19. Vin and lin at Vin $=115$ VAC 13
Figure 20. V_out, I_out at Vin = 230 VAC, no El_cap 13
Figure 21. V_out, I_out at Vin = 115 VAC, no El_cap 13
Figure 22. V_out, I_out at Vin = 230 VAC, $1000 \mu \mathrm{~F}$ El_cap. 14
Figure 23. V_out, I_out at Vin = 115 VAC, $1000 \mu \mathrm{~F}$ El_cap. 14
Figure 24. Startup sequence at Vin $=230$ VAC, no El_cap 14
Figure 25. Startup sequence at $\mathrm{Vin}=115$ VAC, no El_cap 14
Figure 26. Startup sequence at Vin = 230 VAC, $1000 \mu \mathrm{~F}$ El_cap 15
Figure 27. Startup sequence at Vin = 115 VAC, 1000μ F El_cap 15
Figure 28. Short-circuit protection 16
Figure 29. Short circuit application 16
Figure 30. Short circuit removal 16
Figure 31. Open circuit protection Vin $=277$ VAC 17
Figure 32. Open circuit protection Vin $=90$ VAC 17
Figure 33. Open circuit application 18
Figure 34. Open circuit removal 18
Figure 35. Test setup 19
Figure 36. NO_El_Cap output voltage (average) 20
Figure 37. NO_El_Cap output current (average) 21
Figure 38. NO_El_Cap output current (peak) 21
Figure 39. NO_El_Cap output power 22
Figure 40. NO_El_Cap efficiency 22
Figure 41. NO El_Cap power factor 23
Figure 42. $1000 \mu \mathrm{~F}$ output voltage (average) 24
Figure 43. $1000 \mu \mathrm{~F}$ output current (average) 24
Figure 44. $1000 \mu \mathrm{~F}$ output current (peak) 25
Figure 45. $1000 \mu \mathrm{~F}$ output power 25
Figure 46. $1000 \mu \mathrm{~F}$ efficiency 26
Figure 47. $1000 \mu \mathrm{~F}$ power factor 26
Figure 48. EMI (PI filter) 230 VAC 27
Figure 49. EMI (PI filter) 115 VAC 27
Figure 50. EMI (L + PI filter) 230 VAC 27
Figure 51. EMI (L + PI filter) 115 VAC 27
Figure 52. Thermal map at 90 VAC 28
Figure 53. Thermal map at 115 VAC 28
Figure 54. Thermal map at 230 VAC 28
Figure 55. Thermal map at 277 VAC 28
Figure 56. Electrical diagram 29
Figure 57. Coil former mechanical drawing 32
Figure 58. Transformer assembly 32
Figure 59. Transformer electrical drawing 33

1 Main characteristics

1.1 Initial configuration

Several demonstration boards already exist which accept the mains input voltage, wide or local voltage range, and generate a regulated output current to drive an LED "string" with an output power in the range of 3 W to 7 W , but none are expressly intended to achieve a high power factor and/or avoid the use of electrolytic capacitors.
For this reason a "standard" flyback configuration was developed, based on a VIPer device and with a TSM1052 as the constant current controller, then, some changes were introduced in order to address the key points indicated above.

Figure 2. Initial configuration

1.2 Requirements

The design was started taking the following key points into account:

- Input voltage: 100 to $264 \mathrm{~V}_{\mathrm{AC}}$
- Power factor: > 0.9 @ 115 V and 230 V
- Output power: 3.5 W to $7 \mathrm{~W}(3 \times 1 \mathrm{~W} / 3 \times 2.5 \mathrm{~W}$ LED series)
- Output current (average): 0.35 A to 0.7 A
- Input/output isolation
- No high voltage electrolytic capacitors
- Possibility of no low voltage electrolytic capacitors
- Open/short-circuit protection
- Minimal part count
- No dimming required

2 Circuit description

$2.1 \quad$ Primary side

In order to keep the part count to a minimum, the primary side of the converter is based on a device from the VIPer family, a VIPer17 for the 3.5 W and a VIPer27 for the 7 W version.

As can be seen in Figure 3, the circuit is similar to a standard flyback, with:

- Input section with X2 capacitor, diode bridge, EMI filter
- RCD snubber in parallel to the primary winding of the transformer
- Auxiliary power supply
- Optocoupler insulated feedback loop
- VIPer converter

Figure 3. Primary side schematic

The more "unusual" points are:

- The relatively small values of the EMI filter capacitors
- The circuitry related to the VIPer "cont" pin

The first is dictated from the high power factor requirement; usually these capacitors have a much higher value in order to get a low output ripple and reduced EMI emissions, but this inevitably leads to a poor power factor. For this reason their value must be set as a compromise starting with usual values and reducing them until the required PF can be reached.

Care should be taken in designing the EMI filter due to the constraints indicated above. In Section 4: Measurements two versions are presented, with their different responses.
The main drawback to this configuration is that it lacks a bulk capacitor which stores energy on the primary side, and then the output current is affected by a high ripple, unless a large electrolytic capacitor is used on the secondary side.

The second point is the true way to get a good power factor.
Referring to the VIPer17/27; Off-line high voltage converters datasheets, the cont pin is the control that allows reducing the MOS peak current setting from the internally fixed point to about $1 / 10$ of that value. This can be accomplished by means of a resistor Rlim connected between this pin and ground. Figure 4 and 5 represent the current ratio iDlim/(iDlim @ 100k) as a function of Rlim. As can be seen, changing Rlim from 100 Kohm to a few kohms progressively limits the corresponding MOSFET peak current.

Figure 4. ID LIM vs R $_{\text {LIM }}$ - VIPer17

Figure 5. ID LIM vs R $_{\text {LIM }}$ - VIPer27

An equivalent function can be implemented connecting the cont pin to a variable voltage through a fixed resistor; in this way the peak current can be modulated simply varying the control voltage: reducing the voltage, lowers the current.
Then, if the rectified mains voltage is scaled and applied to the cont input, the resulting MOSFET peak current, and also the corresponding average input current, are shaped just like Vin, obtaining the required high power factor.

The resistor array made up of R2, R6 and R13 implements this function, where R13 is the lower practical value that fixes the minimum peak current, and R2 + R6 come out as a consequence to guarantee a sufficient power transfer to the output (the lower the value, the higher the output power).

On the other hand, to maintain a constant (average) output current, some kind of regulation is required and for this reason, on the secondary side, there is an error amplifier which senses the LED current and drives an optocoupler (see Section 2.2). On the primary section the corresponding phototransistor is connected to the "FB" pin, and through this input the voltage of the VIPer's PWM comparator is modulated.

In this way, the MOSFET peak current envelope follows the shape of Vin until it is somehow limited by the clipping action of the feedback.

It is worth noting that the bandwidth of this loop must be very low, otherwise it would counteract the Vin modulation.

Figure 6 and 7 show the results of a simulation which represent the behavior of the circuit. Figure 6 is in the case of no feedback on the FB pin: only Vin is applied to the cont pin. The average output current is 1.12 A .

Figure 7 represents the condition when also the feedback is forced on the FB pin (lout_avg $=0.7 \mathrm{~A}$). Please note that it is a rough approximation to show how the configuration works.

Figure 6. No feedback on FB pin

Figure 7. Feedback on FB pin

One limit of this solution is that the voltage applied to the cont pin is directly proportional to the AC input voltage, and then at higher Vin the "clipping" is more evident and the PF is worse.

To overcome this, a possible solution may be to feed part of the FB voltage to the cont pin; in this way an offset voltage that is higher at lower AC input is provided, obtaining a more constant modulation shape, and a better PF.

Figure 8. Feedback voltage V_fb vs. VAC and Vout

Unfortunately it is not possible to simply connect a resistor between the FB and cont pins: to adapt the impedance levels it is necessary to buffer the feedback signal before driving the cont input. To do this, the NPN transistor Q1 is employed in an emitter follower configuration and the R10 resistor provides the correct balancing between the Vin and V_fb actions.

Reducing its value increases the influence of $\mathrm{V}_{\text {_ }}$ fb, obtaining a better control of the output current even at the extreme mains and load values; on the other hand, increasing it makes predominant the influence of Vin optimizing the power factor.

2.2 Secondary side

On the secondary side a TSM1052 is employed as a voltage reference and error amplifier for the constant current control loop, while the CV operational amplifier is simply used as a comparator for output overvoltage protection.

The configuration is quite common, with the two op amp outputs tied in wired_or to drive the optocoupler's photodiode.

The equivalent circuit is represented in Figure 9.
Figure 9. Secondary side equivalent schematic

The first point which is worth noting is the decoupling of the supply voltage ($\mathrm{R} 3, \mathrm{D} 5, \mathrm{C} 5, \mathrm{C} 7$, etc.) It protects the TMS1052 in the case of overvoltage due to LED "open" fault, and filters the noise that may eventually be picked up from the output wire connection.

Moreover, it avoids that the output voltage and its ripple modulate the photodiode current (while this action can be useful in CV applications, in this case it isn't, because it would introduce a voltage feedback in the current loop path).

The second point is related to the TSM1052 grounding; in this configuration the reference GND is on the left-hand side of the sense resistor (R16, R17, R18 in parallel), the TSM1052 GND pin and the lower side of R14 are connected to this point.

Looking at the component values, it can be noted that:

- The time constant of the voltage op_amp is quite short (R9 = $0 \Omega, \mathrm{C} 10=560 \mathrm{pF}$); this is because the circuit has to react as fast as possible to output overvoltage
- The time constant of the current op_amp is very long ($\mathrm{R} 12=5.6 \mathrm{k} \Omega, \mathrm{C} 20=1 \mu \mathrm{~F}$), as already stated, the reason for this is in the way in which the current control is implemented; while Vin modulates the cont pin cycle by cycle, the current feedback op_amp simply evaluates the average output current and drives the FB (and cont) pins with a voltage that varies very slowly. For the same reason, also the capacitor C21, on primary side, has a very high value of $10 \mu \mathrm{~F}$
- The resistor on the optocoupler's photodiode anode (R4) is a mere 220Ω, this is in order to achieve a high DC loop gain, and so a good current regulation
- The voltage divider, made up of R5 and R14, is dimensioned in order to fix an overvoltage cut-off of:

Equation 1

$$
\text { Vout }_{\text {coff }}=(1.21 \mathrm{~V}) \cdot\left(\frac{\mathrm{R} 5+\mathrm{R} 14}{\mathrm{R} 14}\right)=15.97 \mathrm{~V}
$$

Slightly higher than the maximum output voltage:

Equation 2

$$
\text { Vout }_{\text {max }}=\left(\mathrm{VLED}_{\mathrm{avg}}+\frac{1}{2} \mathrm{VLED}_{\text {rip }}+\mathrm{VRsense}_{\mathrm{pk}}\right)
$$

But not too high, so as to avoid the possibility that Vaux too could reach a critical voltage.

- The sense resistor is implemented with R16, R17 and R18 in parallel. Due to the configuration with GND on the "transformer side" of Rsense, its value must be evaluated taking into account that the threshold level is 172 mV instead of 200 mV .

Equation 3

$$
\text { Vsense' }=\text { Vsense } \cdot\left(\frac{\text { Vref }}{\text { Vref }+ \text { Vsense }}\right)
$$

Equation 4

$$
\text { Vsense' }=0.2 \cdot\left(\frac{1.21}{1.41}\right) V=0.2 \cdot(0.858) V=0.1716 \mathrm{~V}
$$

Equation 5

$$
\text { Rsense }=\frac{\text { Vsense' }}{I_{\text {LED }}}
$$

Equation 6

$$
\text { Rsense }=\frac{0.1716}{0.7}=0.245 \Omega
$$

2.3 Circuit variants

Up to now the "basic" 7 W configuration has been referenced, but as indicated in the introduction to the document, the goal was also to investigate the influence of the requirements on the design, with special attention to:

- Output Power: 3.5 W/7.0 W
- Input voltage: wide range ($90 \mathrm{~V}-277 \mathrm{~V}_{\mathrm{AC}}$) / European range (170 V to $277 \mathrm{~V}_{\mathrm{AC}}$)
- Power factor: > 0.7/>0.9
- Electrolytic capacitors: yes/no (ripple current)

Output power: to change this, it is enough to change the value of some components:
Table 1. Changes

Components/power	$3.5 \mathbf{W}$	7.0 W
Rsense	0.5Ω	0.25Ω
Transformer primary inductance	2 mH	1.5 mH
VIPer	VIPer17	VIPer27

Even though, to obtain the best performance also at 3.5 W , some kind of fine tuning may be required in the current shaping circuitry and in the EMI filter section, and probably a smaller transformer would be sufficient.

Input voltage range: this impacts the voltage rating of the devices directly connected to the rectified input voltage. The demonstration board is provided with the indicated components to sustain the max value of $\mathrm{Vin}=277 \mathrm{~V}$, and, of course, in the case of a $90 \mathrm{~V}-130 \mathrm{~V}$ range they can be derated. On the other hand, the max input current occurs at the lower input voltage and then the transformer must be dimensioned as a consequence; for this reason, if the board is targeted to the high line range, the transformer may be reduced (to be carefully verified). That is to say that the wide range is the worst condition, and the demonstration board design reflects this fact.

Power factor: if it is sufficient to reach a PF > 0.7, the transistor Q1, and the associated R8, R10, and C13, can be avoided.

In any case, if this parameter must be optimized, R2+R6, R13, and R10 must be modified, even though it's not a straightforward task, because the best shape of the peak current envelope must be found, as a function of input and output voltage ranges.

Electrolytic capacitors: the question is slightly more complicated; as LEDs have a very long life, also the electronics should have a comparable MTBF, but el_caps with this property, despite being very expensive, are difficult to find, for this reason they should be avoided, but without them, in this configuration, the output current ripple is inevitably high. Therefore, special care must be taken in selecting the LEDs: their max. allowed current must be higher than the output peak current. Moreover, this ripple is almost equivalent to a sort of dimming at twice the line frequency which should be carefully considered from the optical point of view.

In any case the board allows all these variations in order to carry out the tests without any major changes.

3 Waveforms

To take a look at the behavior of the board, the 7 W configuration has been selected and analyzed in the main characteristic conditions, capturing the relevant signals.

$3.1 \quad$ Input

With the first series of waveforms the intention was to give a representation of the VIPer's drain voltage and current at nominal output ($10.5 \mathrm{~V} / 0.7 \mathrm{~A}$) with several input voltages. Because of the difficulty of taking a stable snapshot of these measurements with an AC input, use of a DC source was chosen, and the voltage fixed at: 75 V (the minimum level at which the circuit starts switching), $100 \mathrm{~V}, 120 \mathrm{~V}, 162 \mathrm{~V}, 254 \mathrm{~V}, 325 \mathrm{~V}, 391 \mathrm{~V}$, and then 50 V (the minimum level at which the converter stops switching.

Figure 10. V_drain, I_drain at Vin= 75 V

CH 1 (brown) $=$ Vdrain, CH 3 (red)= Vout, CH 4 (green)= Idrain

Figure 11. V_drain, I_drain at Vin= 100 V

Figure 13. V_drain, I_drain at Vin= 162 V

Figure 12. V_drain, I_drain at Vin= 120 V

CH 1 (brown) $=$ Vdrain, CH 3 (red) $=$ Vout,
CH4 (green)= Idrain

Figure 14. V_drain, I_drain at Vin= 254 V

Figure 16. V_drain, I_drain at Vin= 391 V

And to give an idea of the AC input voltage and current, Figure 18 and 19 show the plot of these waveforms.

Figure 18. Vin and lin at Vin $=230 \mathrm{~V}_{\mathrm{AC}}$

Figure 19. Vin and lin at Vin $=115 \mathrm{~V}_{\mathrm{AC}}$

$3.2 \quad$ Output

The following images represent the output current and voltage waveforms at nominal load (10.5 V, 0.7 A) in the case of input voltage of 230 and $115 \mathrm{~V}_{\mathrm{AC}}$.

Without an output electrolytic capacitor:

Figure 20. V_out, I_out at Vin = $230 \mathrm{~V}_{\mathrm{AC}}$, no El_cap

Figure 21. V_out, I_out at Vin = $115 \mathrm{~V}_{\mathrm{AC}}$, no El_cap

With an output electrolytic capacitor of $1000 \mu \mathrm{~F}$:
Figure 22. V_out, I_out at Vin = 230 V $_{\text {AC }}, 1000 \boldsymbol{\mu F}$ Figure 23. V_out, I_out at Vin = $115 \mathrm{~V}_{\mathrm{AC}}, 1000 \mu \mathrm{~F}$ El_cap

El_cap

Of course in the case of no el_cap, the ripple current is much higher, it is up to the application to decide if it can be tolerated or a capacitor is required.

3.3 Startup sequence

Oscilloscope screenshots were taken at 230 V and 115 V , with the nominal load without and with - a $1000 \mu \mathrm{~F}$ output capacitor.

Figure 24. Startup sequence at $\mathrm{Vin}=230 \mathrm{~V}_{\mathrm{AC}}$, no El_cap

CH 1 (brown)=lout CH 3 (blue) $=\mathrm{Vfb}$
CH 2 (red) $=$ Vout $\quad \mathrm{CH} 4$ (green) $=\mathrm{Vdd}$

Figure 25. Startup sequence at $\mathrm{Vin}=115 \mathrm{~V}_{\mathrm{AC}}$, no El_cap

CH 1 (brown)=lout CH 3 (blue) $=\mathrm{Vfb}$
CH 2 (red) $=$ Vout $\quad \mathrm{CH} 4$ (green) $=\mathrm{Vdd}$

Figure 26. Startup sequence at $\mathrm{Vin}=\mathbf{2 3 0} \mathrm{V}_{\mathrm{AC}}$, $1000 \mu \mathrm{~F}$ El_cap

CH 1 (brown)=lout CH 3 (blue) $=\mathrm{Vfb}$
CH 2 (red) $=$ Vout $\quad \mathrm{CH} 4$ (green) $=\mathrm{Vdd}$

Figure 27. Startup sequence at $\mathrm{Vin}=115 \mathrm{~V}_{\mathrm{AC}}$, $1000 \mu \mathrm{~F}$ El_cap

CH 1 (brown)=lout CH 3 (blue) $=\mathrm{Vfb}$
$\mathrm{CH} 2($ red $)=$ Vout $\quad \mathrm{CH} 4$ (green) $=\mathrm{Vdd}$

The circuit is relatively under damped, but this is intentional in order to guarantee a sure startup, while minimizing the short-circuit detection time and providing a good average current regulation.

Increasing R12 leads to a better startup current envelope and lower overshoot, but care should be taken regarding the overload protection and DC current regulation, which slightly worsens.

With output capacitors of very high value, it is possible that the circuit doesn't start at the "first shot", in this case it is enough to increase the Vaux capacitors C16 and C17, but also in this case the short-circuit protection must be evaluated very carefully.

3.4 Short-circuit protection

The primary application of this board is as a "bulb replacement", and therefore short-circuit failure is not critical: provided that the circuit survives without any damage. There are no stringent requirements on maximum output current during shorts, so simplicity and minimal part count are privileged at the expense of higher current pulses.
As the feedback circuit is too slow to react to the short-circuit, the protection is based on the fact that, in case of overload, the output voltage drops, and as a consequence, also the auxiliary power Vdd reaches the shutdown voltage of the controller (8 V nom).

The time required for the intervention is directly proportional to the capacitance of C16 and C17, and then, the lower their value, the shorter the output current pulses. But, on the other hand, it cannot be reduced too much, otherwise the startup sequence becomes critical.

Figure 28. Short-circuit protection

As the most severe condition appears at the highest input voltage, the snapshot is taken with $\mathrm{V}_{\mathrm{AC}}=277 \mathrm{~V}$, and with a total capacitance value (C16 + C17) of $44 \mu \mathrm{~F}$.
As can be seen, even though the current pulses are quite high (6.6 A max) the output voltage and the repetition rate are low, for this reason also the power involved is not critical (181 mW average) and therefore, this condition can be sustained indefinitely.
Figure 29 and 30 show the conditions when the short-circuit is applied and removed.
It is worth noting that the very short and high current pulse, which appears when the short circuit is forced, is due to the discharge of the ceramic output capacitors; even though no electrolytic is present this current can reach a very high value.

Figure 29. Short-circuit application
Figure 30. Short-circuit removal

3.5 Open circuit protection

As already indicated, the TSM1052 in the secondary section contains an op amp that senses the output, and in the case of overvoltage, drives the optocoupler photodiode, which in turn forces the VIPer's FB pin to ground. As a result the VIPer stops switching, and enters the burst mode if Vfb drops below the 0.6 V threshold. If Vdd goes under $8 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{Ac}}\right.$ higher then 140 V), a restart cycle is initiated.

Figure 31. Open circuit protection Vin $=277 \mathrm{~V}_{\text {AC }}$

Otherwise a continuous burst mode is sustained.

Figure 32. Open circuit protection Vin $=90 \mathrm{~V}_{\mathrm{AC}}$

Figure 33. Open circuit application
Figure 34. Open circuit removal

4 Measurements

For all the board configurations, a common test setup was defined with:

- A HP6812B programmable AC mains voltage source
- A Yokogawa WT210 wattmeter to measure input voltage, current, power, and PF
- A string of several diodes to simulate the LED load
- A couple of Keithley 2000 multimeters to measure output (average) voltage and current, or alternatively, a WT210 Wattmeter to measure output power and efficiency
- An Agilent E7402A spectrum analyzer plus LISN for EMI conducted emission tests

The test procedure consisted of connecting the module output to a string of 10 diodes (STTH108) to emulate an LED load with a forward voltage of approximately 8.75 V , and then taking the measurements while the input voltage was set at several values from 90 to 277 V_{AC}.

The procedure was repeated increasing the number of diodes (12 and 14 devices) in order to simulate an LED load with a voltage of about 10.5 V and 12.0 V .

The first run was without any electrolytic, and then the measurements were repeated with a $1000 \mu \mathrm{~F}$ capacitor directly connected to the output.

In both conditions relevant data were collected and the results summarized in the following graphs: the first shows the output voltage as a function of the input AC voltage with the number of load diodes as the parameter, the others represent:

- the output current (average)
- the output current (peak)
- the output power
- the efficiency
- the power factor
as a function of the input voltage and with the output voltage approximately corresponding to 10,12 , and 14 diodes load, as the parameter.

Figure 35. Test setup

Special consideration must be paid to output power and efficiency measurements.

Usually, in making these evaluations on standard power supplies, it is enough to take the average values, as read out from the Voltmeter (V_Led) and Ammeter (I_Led) and simply calculate the output power as their product.

This approach is correct whenever these values are constant, but in this application, due to the high ripple present, especially if no electrolytic capacitor is employed, these waveforms cannot be considered DC values at all. Therefore a more accurate way to take the measurements, at least from the AC-DC converter point of view, is to connect a true wattmeter also to the output.

For this reason, as indicated above, the two Keithley 2000s were replaced with a WT210 then the input/output power measurements were repeated and the efficiency evaluated.

4.1 7.0 W NO EL_CAP configuration

Figure 36. NO_El_Cap output voltage (average)

Figure 37. NO_El_Cap output current (average)

Figure 38. NO_EI_Cap output current (peak)

Figure 39. NO_El_Cap output power

Figure 40. NO_El_Cap efficiency

Figure 41. NO_El_Cap power factor

4.2 7.0 W EL_CAP configuration

The following measurements were taken with a $1000 \mu \mathrm{~F}$ electrolytic capacitor connected to the module output.

Figure 42. $1000 \mu \mathrm{~F}$ output voltage (average)

Figure 43. $1000 \mu \mathrm{~F}$ output current (average)

Figure 44. $1000 \mu \mathrm{~F}$ output current (peak)

Figure 45. $1000 \mu \mathrm{~F}$ output power

Figure 46. 1000μ F efficiency

Figure 47. $1000 \mu \mathrm{~F}$ power factor

4.3 EMI filter

The first version of the EMI filter has been implemented with the classic PI cell:

- $\quad \mathrm{C} 4(22 \mathrm{nF})$ capacitor before the diode bridge plus $\mathrm{C} 3(22 \mathrm{nF})$ capacitor
- L1 coil (1 mH)
- \quad C1 (100 nF) capacitor

Figure 48 and 49 show the plots taken at 230 V and 115 V with an LED load ($0.7 \mathrm{~A} / 10.5 \mathrm{~V}$).
Figure 48. EMI (PI filter) $230 \mathrm{~V}_{\mathrm{AC}}$
Figure 49. EMI (PI filter) $115 \mathrm{~V}_{\mathrm{AC}}$

As can be seen, there wasn't a lot of margin, so the inductance value was increased. It is not possible to increment the capacitances, unless at the expenses of a worse PF, and with limited improvement. Then, to be safe, a second coil (L3-1 mH) was introduced in the AC path, actually adding an L cell just before the diode bridge and the PI section.

The result obtained is clearly better and is indicated in Figure 50 and 51.
Figure 50. EMI (L + PI filter) $230 \mathrm{~V}_{\mathrm{AC}}$
Figure 51. EMI (L + PI filter) $115 \mathrm{~V}_{\mathrm{AC}}$

4.4 Thermal maps

The following images were taken with a thermo camera under the following conditions:

- Ambient temperature: $27^{\circ} \mathrm{C}$
- Load: 7 W LED
- AC input voltage: $90 \mathrm{~V}, 115 \mathrm{~V}, 230 \mathrm{~V}$, and 277 V

The three highlighted areas correspond to the devices:

1. VIPer27
2. Transformer
3. STPS3L60 output diode

Figure 52. Thermal map at $90 \mathrm{~V}_{\mathrm{AC}}$

Figure 53. Thermal map at $115 \mathrm{~V}_{\mathrm{AC}}$

Figure 54. Thermal map at $230 \mathrm{~V}_{\mathrm{AC}}$

Figure 55. Thermal map at $277 \mathrm{~V}_{\mathrm{AC}}$

Table 2. Components max. temperature

Device	$\mathbf{T}\left[{ }^{\mathbf{0}} \mathbf{C}\right] @ \mathbf{9 0} \mathbf{~ V}$	$\mathbf{T}\left[{ }^{\mathbf{0}} \mathbf{C}\right] @ \mathbf{1 1 5} \mathbf{V}$	$\mathrm{~T}\left[{ }^{0} \mathbf{C}\right] @ \mathbf{2 3 0} \mathbf{~ V}$	$\mathrm{~T}\left[{ }^{0} \mathbf{C}\right] @ \mathbf{2 7 7} \mathbf{~ V}$
VIPer27	70.2	68.2	61.2	76.8
Transformer	56.5	55.5	57.3	61.0
STPS3L60	69.4	67.7	69.9	71.6

As can be seen, the circuit is well within safe conditions.

5 Electrical diagram

Figure 56. Electrical diagram

6 BOM list

Table 3. BOM 7.0 W version

Reference	Part	VL	PCB footprint	note
CN1	Header 2		5.08 mm	
CN2	Header 2		3.81 mm	
C1	100 nF	400	5.0×13.0	EPCOS B32921
C2	680 pF	1 kV	5.08 mm	1KV CERCAP DIA. 4×7 mm PITCH 5.08 mm MURATA
C3	22 nF	400	5.0×13.0	EPCOS B32921
C4	22 nF	X2	5.0×13.0	EPCOS B32921
$\begin{gathered} \text { C5,C6,C7,C8,C9,C12 } \\ \text { C14,C15,C16,C17 } \end{gathered}$	$22 \mu \mathrm{~F}$	25	1210	
C10	560 pF	25	0603	
C11,C21	$10 \mu \mathrm{~F}$	25	1210	
C13,C23, C24	$0.1 \mu \mathrm{~F}$	16	0603	
C18	$1 \mu \mathrm{~F}$	16	0603	
C19	$4.7 \mu \mathrm{~F}$	16	0603	
C20	$1.0 \mu \mathrm{~F}$	16	0603	
C22	2.2 nF	Y1	10 mm	Y1 SAFETY CAP DE1E3KX222M MURATA
C25	1.8 nF	50	0603	
D1	STPS3L60U		SMB	
D2,D6	BAS316		SOD-323	
D3	MB6S		SOIC-4	
D4	STTH1L06U		SMB	
D5	MMSZ4687T1		SOD-123	
D7	MMSZ4708T1		SOD-123	
F1	Fuse	250 V	$8.5 \times 4 \mathrm{~mm}$	800 mA
L1,L3	1.0 mH		$5.2 \times 12 \mathrm{~mm}$	0.1 A axial lead
L2	$33 \mu \mathrm{H}$		1206	
Q1	BC847C		SOT-23	
R1	$330 \mathrm{k} \Omega$		1206	
R2	$750 \mathrm{k} \Omega$		1206	
R3	$1.2 \mathrm{k} \Omega$		1206	
R4	220Ω		0805	

Table 3. BOM 7.0 W version (continued)

Reference	Part	VL	PCB footprint	note
R5,R8	$100 \mathrm{k} \Omega$		0805	
R6	$680 \mathrm{k} \Omega$		1206	
R7,R13	$2.2 \mathrm{k} \Omega$		0805	
R9	0		0805	
R10	$10 \mathrm{k} \Omega$		0805	
R11	330Ω		1206	
R12	$5.6 \mathrm{k} \Omega$		0805	
R14	$8.2 \mathrm{k} \Omega$		0805	
R15	$3.0 \mathrm{k} \Omega$		0805	
R16	0.82Ω		1206	
R17,R18	0.68 ת		1206	
R19,R20	0		0805	
R21	$2.2 \mathrm{k} \Omega$		AX/RC05	
T1	T1		E16	
U1	TSM1052		SOT23-6	
U2	VIPer27H		DIP-7	
U3	OPTO-PC817-A		4-SMD	

$7 \quad 7$ W transformer specifications

7.1 Mechanical specifications

Figure 57. Coil former mechanical drawing

Figure 58. Transformer assembly

7.2 Electrical specifications

1. $\operatorname{BOBBIN}: \operatorname{EE} 16(4+4 \mathrm{pin})$
2. CORE: EE16 AL:1140 +/-25\%nH/N*N (TDK PC40 MATERIAL or equivalent)
3. Primary inductance (P1-P2): $1.5 \mathrm{mH}+/-10 \%$ (at $100 \mathrm{kHz}, 1 \mathrm{~V}$)
4. Leakage inductance (P1-P2): < $50 \mu \mathrm{H}$ (at $100 \mathrm{kHz}, 1 \mathrm{~V}$) with other pins shorted

Figure 59. Transformer electrical drawing

Table 4. Transformer winding data

Winding	Pins	Wire type	Wire size	\# turns
N1	P2----A	2UEW	$\Phi 0.15 \mathrm{~mm}{ }^{*} 2$	54T 2Layer
N2	P4	Copper foil	$0.025 \mathrm{mmT}^{*} 7 \mathrm{mmW}$	
N3	FLY1 ---- FLY2	Triple insulation winding wire Totoku TIW-3 UL FILE no. E66483 or equivalent	$\Phi 0.55 \mathrm{~mm}$	10T
N4	P4	Copper foil	$0.025 \mathrm{mmT}^{*} 7 \mathrm{mmW}$	
N5	A----P1	2UEW	$\Phi 0.15 \mathrm{~mm} * 2$	54T 2Layer
N6	P3----P4	2UEW	$\Phi 0.22 \mathrm{~mm}$	14T

Note: 1 HIPOT: $3 K V_{A C}$ primary to secondary 1 min .10 mA
2 Start winding from the pin marked "." (especially for N5 and point A)
3 Cut off pin 5, 6, 7, 8
4 Attach a copper foil 3M \#1245 tape (4 mm width*10 mm length) to the Core,
5 Make sure the foil maintains good contact with the ferrite core, and solder a UL xpvc wire to pin 4 as short as possible.

8 Revision history

Table 5. Document revision history

Date	Revision	Changes
19-Oct-2010	1	Initial release.
15-Mar-2013	2	Replaced part number EVLVIP27-7WLED with STEVAL- ISA120V1.

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

