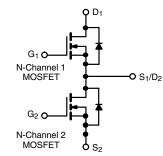
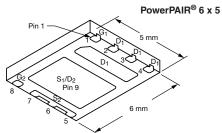


Dual N-Channel 30 V (D-S) MOSFETs

PRODUCT SUMMARY							
	V _{DS} (V)	$R_{DS(on)}$ (Ω) (Max.)	I _D (A)	Q _g (Typ.)			
Channel-1	30	0.0058 at $V_{GS} = 10 \text{ V}$	40 ^a	12.5 nC			
Channel-1	30	0.0075 at $V_{GS} = 4.5 \text{ V}$	40 ^a	12.5110			
Channel-2	30	0.0030 at V _{GS} = 10 V	40 ^a	29 nC			
Orialinei-2	30	0.0035 at $V_{GS} = 4.5 \text{ V}$	40 ^a	29110			


FEATURES


- Halogen-free According to IEC 61249-2-21 Definition
- TrenchFET® Power MOSFETs
- 100 % R_q and UIS Tested
- Compliant to RoHS Directive 2002/95/EC

HALOGEN FREE

APPLICATIONS

- Notebook System Power
- POL
- Synchronous Buck Converter

Ordering Information: SiZ910DT-T1-GE3 (Lead (Pb)-free and Halogen-free)

Parameter		Symbol	Channel-1	Channel-2	Unit
Drain-Source Voltage		V_{DS}	30		V
Gate-Source Voltage		V_{GS}	± 20		V
Continuous Drain Current ($T_J = 150 ^{\circ}\text{C}$) $\frac{T_C}{T_A}$. I _D	40 ^a 40 ^a 22 ^{b, c} 17 ^{b, c}	40 ^a 40 ^a 32 ^{b, c} 26 ^{b, c}	A
T _A = 70 °C Pulsed Drain Current (t = 300 μs)		I _{DM}	100	120	
Continuous Source Drain Diode Current	$T_C = 25 ^{\circ}C$ $T_A = 25 ^{\circ}C$	Is	24 ^a 3.8 ^{b, c}	28 ^a 4.3 ^{b, c}	
Single Pulse Avalanche Current	L = 0.1 mH	I _{AS}	25	40	
Single Pulse Avalanche Energy		E _{AS}	31	80	mJ
	T _C = 25 °C		48	100	
Maximum Power Dissipation	$T_C = 70 ^{\circ}\text{C}$ $T_A = 25 ^{\circ}\text{C}$ $T_A = 70 ^{\circ}\text{C}$	P _D	31 4.6 ^{b, c} 3 ^{b, c}	64 5.2 ^{b, c} 3.3 ^{b, c}	W
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 150		°C
Soldering Recommendations (Peak Temperature) ^{d, e}			26	60	

THERMAL RESISTANCE RATIN	GS						
Parameter			Char	nel-1	Chan	nel-2	
		Symbol	Тур. Мах.		Тур.	Max.	Unit
Maximum Junction-to-Ambient ^{b, f}	t ≤ 10 s	R _{thJA}	22	27	19	24	°C/W
Maximum Junction-to-Case (Drain)	Steady State	R_{thJC}	2.1	2.6	1	1.25	J/ V V

Notes:

- a. Package limited T_C = 25 °C.
- b. Surface mounted on 1" x 1" FR4 board.
- d. See solder profile (www.vishay.com/doc?73257). The PowerPAIR is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper tip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.
- e. Rework conditions: manual soldering with a soldering iron is not recommended for leadless components.
- f. Maximum under steady state conditions is 62 °C/W for channel-1 and 55 °C/W for channel-2.

Document Number: 63539 S11-2380-Rev. C, 28-Nov-11

Vishay Siliconix

Parameter	Symbol	Test Conditions		Min.	Тур.	Max.	Unit	
Static				ı		I		
D : 0		$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-1	30			.,	
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A}$	Ch-2	30			V	
V Tananayahun Caaffiniant	A)/ /T	I _D = 250 μA	Ch-1		33			
V _{DS} Temperature Coefficient	$\Delta V_{DS}/T_{J}$	I _D = 250 μA	Ch-2		31		mV/°C	
V Tompovotive Coefficient	A)/ /T	I _D = 250 μA	Ch-1		- 5.4			
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$	I _D = 250 μA	Ch-2		- 6.1			
Cata Threshold Voltage	V	$V_{DS} = V_{GS}, I_D = 250 \mu A$	Ch-1	1.2		2.2	V	
Gate Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	Ch-2	1		2.2	V	
Gate Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$	Ch-1			± 100	nA	
date Gource Leakage	GSS		Ch-2			± 100	ПА	
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-1			1		
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}$	Ch-2			1	μΑ	
Zoro date Voltage Diam current	.055	$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-1			5		
		$V_{DS} = 30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55 ^{\circ}\text{C}$	Ch-2			5	<u>. </u>	
On State Dunin Commant	le ()	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-1	20		2.2 2.2 ± 100 ± 100 1 1 5 5 8 0.0058 5 0.0030 0 0.0075 9 0.0035	Α	
On-State Drain Current ^b	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, V_{GS} = 10 \text{ V}$	Ch-2	25			_ ^	
		V _{GS} = 10 V, I _D = 20 A	Ch-1		0.0048	0.0058		
D : 0	R _{DS(on)}	V _{GS} = 10 V, I _D = 20 A	Ch-2		0.0025	0.0030	Ω	
Drain-Source On-State Resistance ^b		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-1		0.0060	0.0075		
		$V_{GS} = 4.5 \text{ V}, I_D = 20 \text{ A}$	Ch-2		0.0029	0.0035		
Facility of Table 1 and	α.	V _{DS} = 10 V, I _D = 20 A	Ch-1		94			
Forward Transconductance ^b	9 _{fs}	V _{DS} = 10 V, I _D = 20 A	Ch-2		140		S	
Dynamic ^a								
Input Capacitance	C _{iss}		Ch-1		1500			
при Сараспансе	O _{ISS}	Channel-1 $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-2		3600			
Output Capacitance	C _{oss}	VDS - 13 V, VGS - 0 V, I - I WII IZ	Ch-1		285		pF	
	- 033	Channel-2	Ch-2		660		ρ.	
Reverse Transfer Capacitance	C _{rss}	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$	Ch-1		125			
·		V - 15 V V - 10 V L - 20 A	Ch-2		305	40		
	-	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-1		26			
Total Gate Charge	Q_g	$V_{DS} = 15 \text{ V}, V_{GS} = 10 \text{ V}, I_D = 20 \text{ A}$	Ch-2		60			
		Channel-1	Ch-1 Ch-2		12.5			
		$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$	Ch-1		29 4.7	51	nC	
Gate-Source Charge	Q _{gs}		Ch-2		10		1	
		Channel-2	Ch-1		4			
Gate-Drain Charge	Q _{gd}	$V_{DS} = 15 \text{ V}, V_{GS} = 4.5 \text{ V}, I_{D} = 20 \text{ A}$	Ch-2		9.5			
Onto Bookstone				0.5	2.6	5.2	_	
Gate Resistance	R_g	f = 1 MHz	Ch-1 Ch-2	0.1	0.6	1.2	Ω	

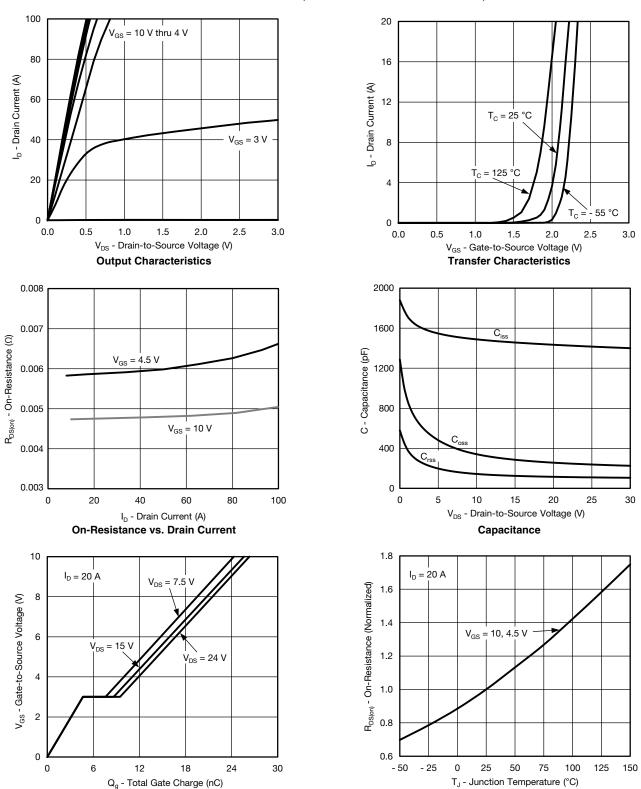
Notes:

a. Guaranteed by design, not subject to production testing. b. Pulse test; pulse width \leq 300 $\mu s,$ duty cycle \leq 2 %.

Vishay Siliconix

Parameter Syn		mbol Test Conditions				Max.	Unit
Dynamic ^a						•	
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-1		20	40	
•	=(=:,	$V_{DD} = 15 \text{ V}, R_{I} = 1.5 \Omega$	Ch-2		30	60	- - -
Rise Time	t _r	$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_g = 1 \Omega$	Ch-1 Ch-2		25 35	50 70	
		Channel 0	Ch-1		25	50	
Turn-Off Delay Time	t _{d(off)}	Channel-2 $V_{DD} = 15 \text{ V}, R_{I} = 1.5 \Omega$	Ch-2		35	70	
		$I_D \cong 10 \text{ A}, V_{GEN} = 4.5 \text{ V}, R_q = 1 \Omega$	Ch-1		10	20	
Fall Time	t _f	GEN 7 GEN 7 9	Ch-2		12	25	1
Turn-On Delay Time	t.,,		Ch-1		10	20	ns
Turn-On Delay Time	t _{d(on)}	Channel-1	Ch-2		12	25	-
Rise Time	t _r	V_{DD} = 15 V, R_L = 1.5 Ω $I_D \cong$ 10 A, V_{GEN} = 10 V, R_q = 1 Ω	Ch-1		25	25	
THISC THINC	4	D = 10 A, VGEN - 10 V, Hg - 122	Ch-2		12	25	
Turn-Off Delay Time	t _{d(off)}	Channel-2	Ch-1		30	60	
Tam On Boldy Time		$V_{DD} = 15 \text{ V}, R_{L} = 1.5 \Omega$	Ch-2		35	70	
Fall Time	t _f	$I_D \cong 10 \text{ A}, V_{GEN} = 10 \text{ V}, R_g = 1 \Omega$	Ch-1		10	20	
			Ch-2		10	20	
Drain-Source Body Diode Characteristi	CS			I	ı		ı
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C	Ch-1 Ch-2			40	
			Ch-1			100	Α
Pulse Diode Forward Current ^a	I _{SM}		Ch-2			120	
	.,	I _S = 10 A, V _{GS} = 0 V	Ch-1		0.8	1.2	
Body Diode Voltage	V_{SD}	I _S = 10 A, V _{GS} = 0 V	Ch-2		0.8	1.2	V
D D T			Ch-1		26	50	
Body Diode Reverse Recovery Time	t _{rr}		Ch-2		36	70	ns
Body Diode Reverse Recovery Charge	Q _{rr}	Channel-1	Ch-1		25	50	nC
Body Blode neverse necovery Charge	≺rr	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		36	70	110
Reverse Recovery Fall Time	t _a	Channel-2	Ch-1		17		
Tiovorso Floodyory Fall Fillio	*a	$I_F = 10 \text{ A}, \text{ dI/dt} = 100 \text{ A/}\mu\text{s}, T_J = 25 ^{\circ}\text{C}$	Ch-2		20		ns
Reverse Recovery Rise Time	t _b		Ch-1		9		'''
			Ch-2		16		

Notes:

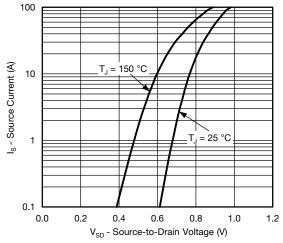

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

a. Guaranteed by design, not subject to production testing.

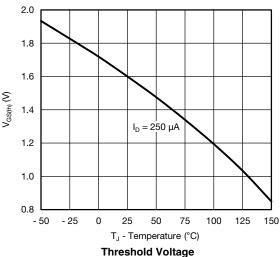
b. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.

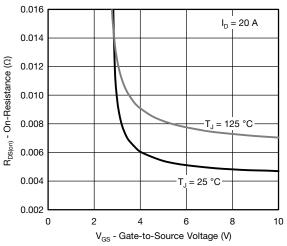
Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

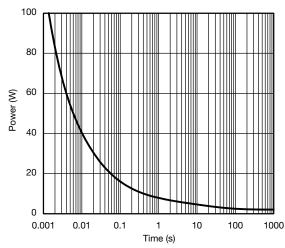


Gate Charge

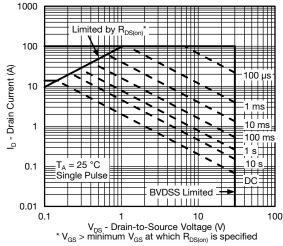

On-Resistance vs. Junction Temperature



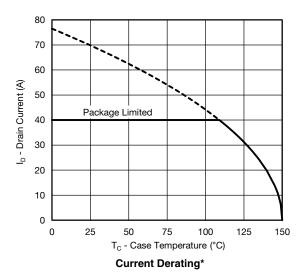
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

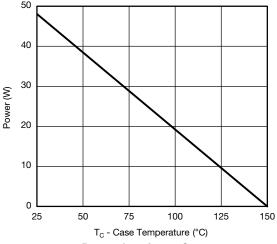


Source-Drain Diode Forward Voltage



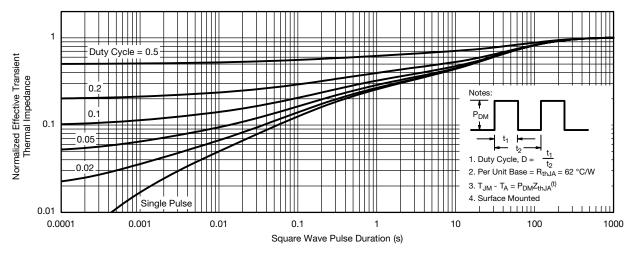
On-Resistance vs. Gate-to-Source Voltage



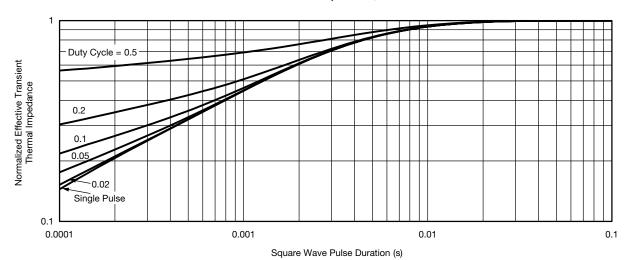

Single Pulse Power

Vishay Siliconix

CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

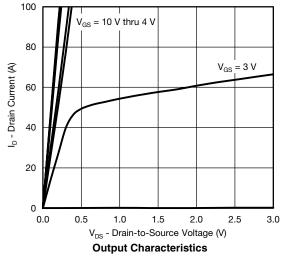


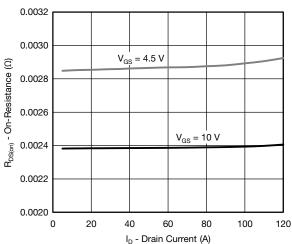
Power, Junction-to-Case

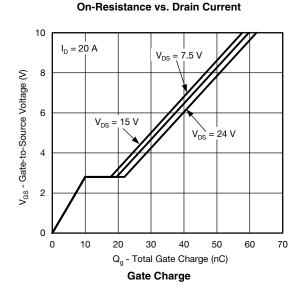

 $^{^{\}star}$ The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

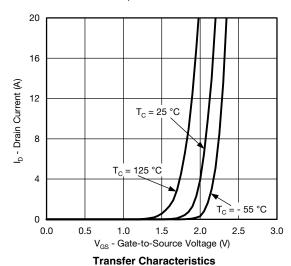
CHANNEL-1 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

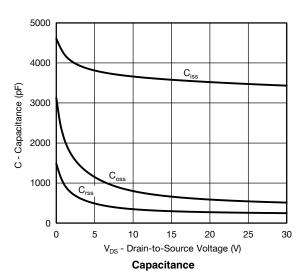
Normalized Thermal Transient Impedance, Junction-to-Ambient

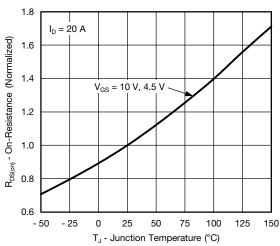


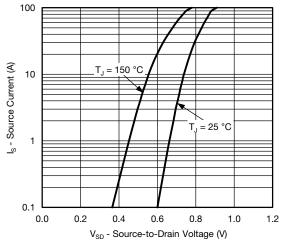

Normalized Thermal Transient Impedance, Junction-to-Case

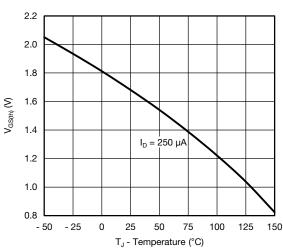

Vishay Siliconix

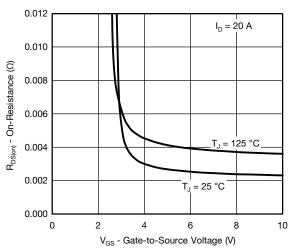


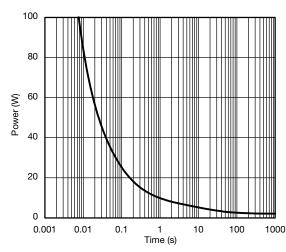

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

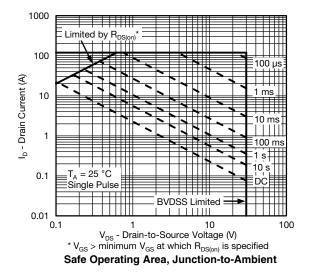




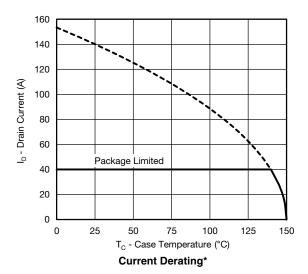

On-Resistance vs. Junction Temperature

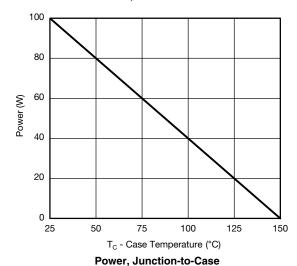

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Source-Drain Diode Forward Voltage


Threshold Voltage

On-Resistance vs. Gate-to-Source Voltage

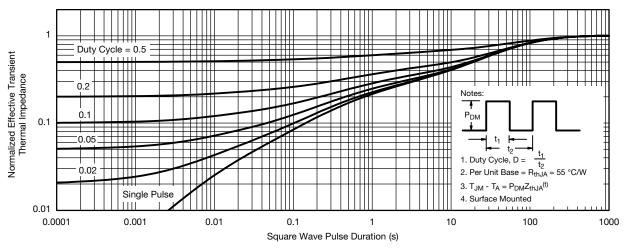

Single Pulse Power

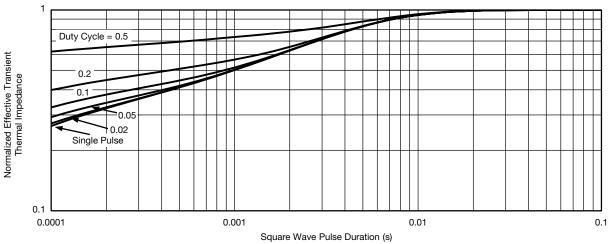


Vishay Siliconix

VISHAY

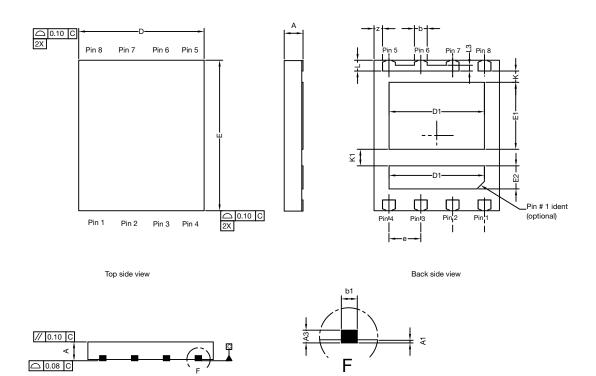
CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)




^{*} The power dissipation P_D is based on $T_{J(max)}$ = 150 °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

CHANNEL-2 TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

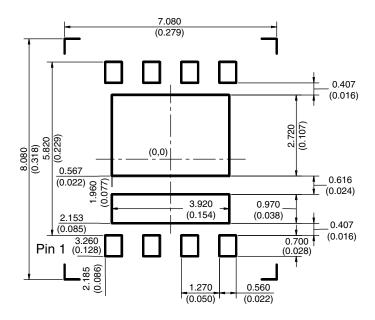
Normalized Thermal Transient Impedance, Junction-to-Ambient


Normalized Thermal Transient Impedance, Junction-to-Case

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppg?63539.

Document Number: 63539 S11-2380-Rev. C, 28-Nov-11

PowerPAIR® 6 x 5 Case Outline



		MILLIMETERS		INCHES				
DIM.	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.		
А	0.70	0.75	0.80	0.028	0.030	0.032		
A1	0.00	-	0.10	0.000	-	0.004		
A3	0.15	0.20	0.25	0.006	0.007	0.009		
b	0.43	0.51	0.61	0.017	0.020	0.024		
b1		0.25 BSC			0.010 BSC			
D	4.90	5.00	5.10	0.192	0.196	0.200		
D1	3.75	3.80	3.85	0.148	0.150	0.152		
E	5.90	6.00	6.10	0.232	0.236	0.240		
E1 Option AA (for W/B)	2.62	2.67	2.72	0.103	0.105	0.107		
E1 Option AB (for BWL)	2.42	2.47	2.52	0.095	0.097	0.099		
E2	0.87	0.92	0.97	0.034	0.036	0.038		
е	1.27 BSC 0.005 BSC							
K Option AA (for W/B)		0.45 typ.		0.018 typ.				
K Option AB (for BWL)	0.65 typ.			0.025 typ.				
K1	0.66 typ.			0.025 typ.				
L	0.33	0.43	0.53	0.013	0.017	0.020		
L3	0.23 BSC 0.009 BSC							
Z	0.34 BSC			0.013 BSC				

Revision: 20-May-13 Document Number: 63656

RECOMMENDED MINIMUM PAD FOR PowerPAIR® 6 x 5

Recommended Minimum Pad Dimensions in mm (inches)

Document Number: 67480 www.vishay.com Revision: 13-Jan-11

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000