

RFRP2920

Si Reverse Hybrid 5MHz to 100MHz (Low Current)

The RFRP2920 is a hybrid reverse amplifier. The part employs a silicon die. It has extremely low distortion and superior return loss performance. The part also provides optimal reliability with low noise and is well suited for 5MHz to 100MHz CATV amplifiers for reverse channel systems.

Ordering Information

RFRP2920 Box with 50 Pieces

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	65	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

Package: SOT-115J

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Low Noise
- Unconditionally Stable Under All Terminations
- 38.3dB Typ. Gain at 100MHz
- 160mA Max. at 24V_{DC}

Applications

■ 5MHz to 100MHz CATV Amplifier For Reverse Channel Systems

Caution! ESD sensitive device.

RoHS (Restriction of Hazardous Substances): Compliant per EU Directive 2011/65/EU.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

Nominal Operating Parameters

Parameter	Specification		Unit	Condition		
raiailletei	Min	Тур	Max	Onit	Condition	
General Performance					$V+ = 24V; T_{MB} = 30^{\circ}C; Z_{S} = Z_{L} = 75\Omega$	
Power Gain	37.8	38.3	38.6	dB	f = 5MHz	
Fower Gain	37.6	38.3		dB	f = 100MHz	
Slope ^[1]	-0.2	0	0.5	dB		
Flatness of Frequency Response			±0.3	dB	f = 5MHz to 100MHz	
Input Return Loss	20.0			dB	T = SWINZ to Tourinz	
Output Return Loss	20.0			dB		
Noise Figure		3.8	4.2	dB	f = 100MHz	
Total Current Consumption (DC)	150.0	158.0	160.0	mA		
Distortion Data 5MHz to 100MHz					$V+ = 24V$; $T_{MB} = 30^{\circ}C$; $Z_{S} = Z_{L} = 75\Omega$	
СТВ			-72	dBc	7 ch flat; $V_0 = 50 \text{dBmV}^{(2)}$	
CIB			-69	dBc	12 ch flat; V _O = 50dBmV ^[3]	
VMOD			-64	dB	7 ch flat; $V_0 = 50 \text{dBmV}^{[2]}$	
XMOD			-61	dB	12 ch flat; V _O = 50dBmV ^[3]	
680			-70	dBc	7 ch flat; V ₀ = 50dBmV ^[2]	
CSO			-68	dBc	12 ch flat; V _O = 50dBmV ^[3]	
d ₂			-70	dBc	[4]	
STB			-72	dB	[5]	

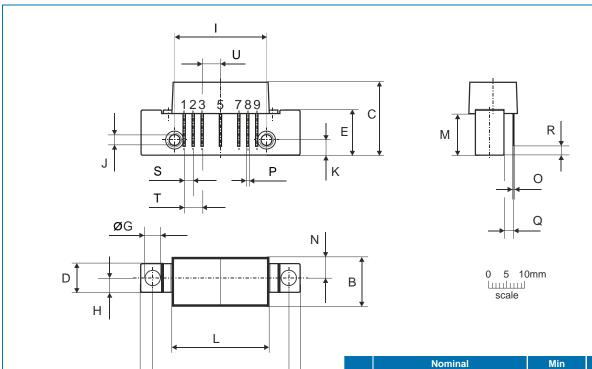
^{1.} The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.

Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.

Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

^{2. 7} channels, US frequency raster: T7 - T13 (7.0MHz to 43.0MHz), +50dBmV flat output level.


^{3. 12} channels, US frequency raster: T7 - T13 (7.0MHz to 43.0MHz), 2 - 6 (55.25MHz to 83.25MHz), +50dBmV flat output level.

^{4.} $f_1 = 7MHz$; $V_1 = 50dBmV$; $f_2 = 25MHz$; $V_2 = 50dBmV$; $f_{TEST} = f_1 + f_2 = 32MHz$.

^{5.} $f_1 = 13 MHz$; $V_1 = 50 dBmV$; $f_2 = 25 MHz$; $V_2 = V_1$; $f_3 = 7 MHz$; $V_3 = V_1$; $f_{TEST} = f_1 + f_2 - f_3 = 31 MHz$.

Package Drawing (Dimensions in millimeters)

Notes:

European Projection

Name		
Input		
GND		
+VB		
GND		
Output		

	Nominal	IVIIII	IVIAX
Α	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ^{± 0,15}	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
1	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
K	4,2 ^{± 0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
N	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{± 0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
T	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33