

UNISONIC TECHNOLOGIES CO., LTD

LR9102 Preliminary CMOS IC

LOW NOISE 300mA LDO REGULATOR

DESCRIPTION

The UTC **LR9102** is a typical LDO (linear regulator) with the features of high output voltage accuracy, low supply current, low ON-resistance, and high ripple rejection.

During operation of the UTC LR9102, the dropout voltage is very low and the response of line transient and load transient are very well.

Internally, there're many functions of UTC **LR9102** which can be seen in the block figure. There are a voltage reference unit, an error amplifier, resistor-net for voltage setting, a current limit circuit, and a chip enable circuit in each UTC **LR9102**.

The UTC **LR9102** can be used as an ideal of the power supply for hand-held communication equipment, such as: power source for portable communication equipment, power source for electrical appliances, for example, cameras, VCRs and camcorders and power source for battery-powered equipment.

* Ultra Supply Current: 50μA (Typ.)
 * Standby Mode: 0.1μA (Typ.)
 * Very Low Dropout Voltage: 0.14V (Typ.)

@I_{OUT} =300mA, V_{OUT} =2.85V

* Ripple Rejection: 75dB (Typ.)

 $@f=1kHz,V_{OUT}=2.85V$ ±50ppm/°C (Typ.)

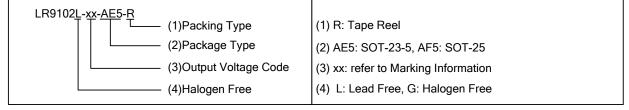
* Temperature-Drift Coefficient

of Output Voltage:

* Well Line Regulation: 0.02%/ V (Typ.)

* Output Voltage Accuracy: ±1.0% (Typ.)

* Internal Fold Back Protection 50mA (Typ.) @ short mode

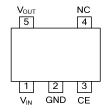

Circuit:

* $C_{\text{IN}}\text{=}C_{\text{OUT}}\text{=}1\mu\text{F}$ or more (Ceramic capacitors) are recommended to be used with this IC

■ RDERING INFORMATION

Ordering	Dealtons	Dealing		
Lead Free	Halogen Free	Package	Packing	
LR9102L-xx-AE5-R	LR9102G-xx-AE5-R	SOT-23-5	Tape Reel	
LR9102L-xx-AF5-R	LR9102G-xx-AF5-R	SOT-25	Tape Reel	

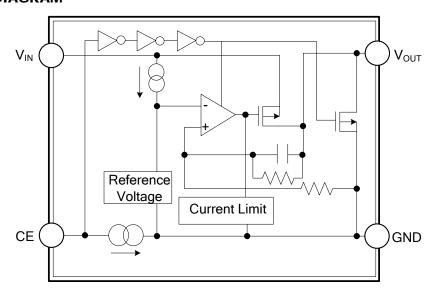
Note: xx: Output Voltage, refer to Marking Information.



www.unisonic.com.tw 1 of 4

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING			
SOT-23-5 SOT-25	15: 1.8V 25: 2.5V 28 :2.8V 33: 3.3V	Voltage Code R2XX L:Lead Free G: Halogen Free			


■ PIN CONFIGURATION

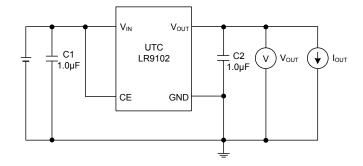
■ PIN DESCRIPTION

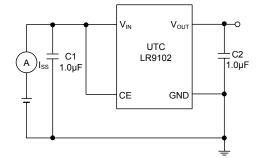
PIN NO.	PIN NAME	DESCRIPTION			
1	V_{IN}	Input Pin			
2	GND	Ground Pin			
3	CE	Chip Enable Pin. Active when this Pin is high.			
4	NC	No Connection			
5	V _{OUT}	Output Pin			

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

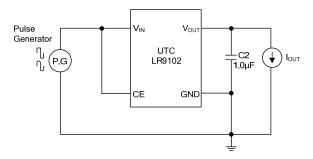
PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	6	V
Input Voltage (CE Pin)	$V_{\sf CE}$	6	V
Output Voltage	V_{OUT}	-0.3 ~ V _{IN} +0.3	V
Output Current	I _{OUT}	400	mA
Power Dissipation	P_D	420	mW
Junction Temperature	T_J	+125	°C
Operating Temperature	T _{OPR}	-40~+85	°C
Storage Temperature	T _{STG}	-55~+125	°C

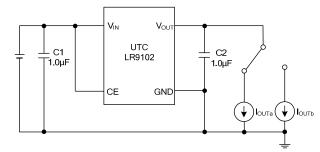

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{IN}=Set V_{OUT}+1V, I_{OUT}=1mA, C_I=C_O=1\mu F, unless otherwise specified)$

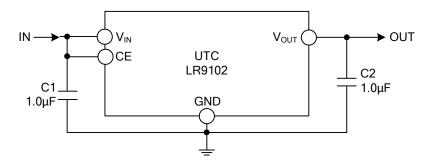
PARAMETER	, -	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Output Voltage			V _{IN} = Set V _{OUT} +1V		×0.99		×1.01	V
				V _{OUT} ≤ 2.0V	-20		+20	mV
Input Voltage		V _{IN}					6	V
Load Regulation		ΔV_{OUT}	1mA≤l _{OUT} ≤150mA			20	40	mV
Output Current		l _{out}			300			mA
Supply Current		I _{SS}	I _{OUT} =0A			50	90	μΑ
Supply Current (Standb	y)	I _{ST-BY}	V _{CE} =0V			0.1	2	μA
Short Current Limit		I _{LIMIT}	V _{OUT} =0V			50		mA
CE Pull-down Current		I_{PD}				0.3		μΑ
CE Input Voltage	High	V _{CEH}			1.2			V
CE Iliput Voltage	Low	V _{CEL}					0.3	V
Output Noise		eN	B _W =10Hz to 100kHz, I _{OUT} =30mA			30		μVrms
			f=1kHz, Ripple 0.2V _{P-P}					
Ripple Rejection		RR	V _{IN} =Set V _{OUT} +1V, I _{OUT} =30mA			75	dB	
			(In case that V _{OUT} =2.0V, V _{IN} =3V)					
		V _D	I _{OUT} =300mA	1.2V ≤V _{OUT} <1.5V		0.30	0.50	- - - -
				1.5V ≤V _{OUT} <1.7V		0.22	0.32	
Dropout Voltage				1.7V ≤V _{OUT} <2.0V		0.20	0.28	
Diopout voltage		V D		2.0V ≤V _{OUT} <2.5V		0.17	0.24	
				2.5V ≤V _{OUT} <2.8V		0.14	0.20	_
				2.8V ≤V _{OUT} ≤5.0V		0.12	0.19	
Line Regulation		ΔV_{OUT}	1.2V≤V _{OUT} ≤4.0V, V _{SET} +0.5V≤V _{IN} ≤5V			0.02	0.10	%/V
		ΔV_{IN}	4.0V <v<sub>OUT≤5.0V, V_{SET}+0.5V≤V_{IN}≤6.5V</v<sub>					
Output Voltage Temper Coefficient	ature	$\frac{\Delta V_{OUT}}{\Delta T}$	-40°C ≤ T _{OPR} ≤ 85°C			±50		ppm/°C
Low Output Nch Tr. ON Resistance		R _{LOW}	V _{IN} =4.0,V _{CE} =0V			70		Ω


TEST CIRCUIT



Basic Test Circuit

Test Circuit for Supply Current



Test Circuit for Load Transient Response

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.