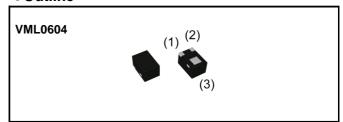


RV3C001ZP

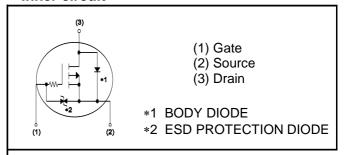
Pch -20V -100mA Small Signal MOSFET

Data Sheet

V_{DSS}	-20V
R _{DS(on)} (Max.)	3.8Ω
I _D	-100mA
P_D	100mW


Features

- 1) Ultra Small Package (0.6×0.4×0.36mm)
- 2) Low voltage drive (-1.2V) makes this device ideal for partable equipment.
- 3) Drive circuits can be simple.
- 4) Built-in ESD Protection Diode.


Application

Switching

Outline

●Inner circuit

Packaging specifications

	
Packaging	Taping
Reel size (mm)	180
Tape width (mm)	8
Basic ordering unit (pcs)	8,000
Taping code	T2L
Marking	RX
	Reel size (mm) Tape width (mm) Basic ordering unit (pcs) Taping code

•Absolute maximum ratings($T_a = 25$ °C)

Parameter	Symbol	Value	Unit
Drain - Source voltage	V_{DSS}	-20	V
Continuous drain current	I _D *1	±100	mA
Pulsed drain current	I _{D,pulse} *2	±400	mA
Gate - Source voltage	V_{GSS}	±10	V
Power dissipation	P _D *3	100	mW
Junction temperature	T _j	150	°C
Range of storage temperature	T _{stg}	-55 to +150	°C

●Thermal resistance

Parameter	Symbol	Values			Unit
Farameter	Symbol	Min.	Тур.	Max.	UTIIL
Thermal resistance, junction - ambient	R _{thJA} *3	-	-	1250	°C/W

•Electrical characteristics($T_a = 25$ °C)

Parameter	Symbol Conditions —		Values			Unit
raiailletei			Min.	Тур.	Max.	Offic
Drain - Source breakdown voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = -1mA$	-20	-	-	V
Zero gate voltage drain current	I _{DSS}	$V_{DS} = -20V, V_{GS} = 0V$	ı	-	-1	μΑ
Gate - Source leakage current	I _{GSS}	$V_{GS} = \pm 10V, V_{DS} = 0V$	ı	ı	±10	μΑ
Gate threshold voltage	V _{GS (th)}	$V_{DS} = -10V, I_{D} = -100\mu A$	-0.3	ı	-1	V
		$V_{GS} = -4.5V, I_{D} = -100 \text{mA}$	ı	2.5	3.8	
		$V_{GS} = -2.5V, I_{D} = -50 \text{mA}$	-	3.4	5.1	
Static drain - source	D *4	$V_{GS} = -1.8V, I_{D} = -20mA$	-	4.8	8.2	0
on - state resistance	R _{DS(on)}	$V_{GS} = -1.5V, I_{D} = -10mA$	-	6.0	13.2	Ω
		$V_{GS} = -1.2V, I_{D} = -1mA$	-	10.0	40.0	
		V _{GS} = -4.5V, I _D = -100mA, T _j =125°C	ı	3.3	6.6	
Transconductance	g _{fs} *4	$V_{DS} = -10V, I_{D} = -100 \text{mA}$	120	-	-	mS

^{*1} Limited only by maximum temperature allowed.

^{*2} Pw \leq 10 μ s, Duty cycle \leq 1%

^{*3} Each therminal mounted on a recommended land

^{*4} Pulsed

• Electrical characteristics ($T_a = 25$ °C)

Parameter	Symbol	Conditions	Values			Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Offic
Input capacitance	C _{iss}	$V_{GS} = 0V$	1	15.0	-	
Output capacitance	C _{oss}	$V_{DS} = -10V$	-	4.0	1	pF
Reverse transfer capacitance	C_{rss}	f = 1MHz	-	1.5	-	
Turn - on delay time	t _{d(on)} *4	$V_{DD} \simeq -10V, \ V_{GS} = -4.5V$	-	46	-	
Rise time	t _r *4	$I_D = -50 \text{mA}$	-	62	-	no
Turn - off delay time	t _{d(off)} *4	$R_L = 200\Omega$	-	325	-	ns
Fall time	t _f *4	$R_G = 10\Omega$	-	137	-	

•Body diode electrical characteristics (Source-Drain)($T_a = 25$ °C)

Parameter	Symbol Conditions	Conditions	Values			Unit
Parameter Symbol Con		Conditions	Min.	Тур.	Max.	Offic
Continuous source current	I _S *1	T _a = 25°C	-	-	-80	mA
Pulsed source current	I _{SM} *2	1 _a – 25 C	-	-	-400	mA
Forward voltage	V _{SD} *4	$V_{GS} = 0V, I_{s} = -100 \text{mA}$	ı	ı	-1.2	V

Power Dissipation: P_D/P_D max. [%]

•Electrical characteristic curves

Fig.1 Power Dissipation Derating Curve

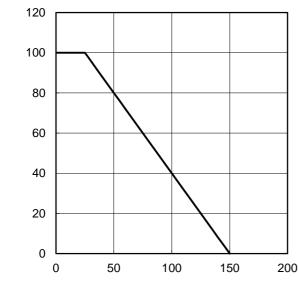
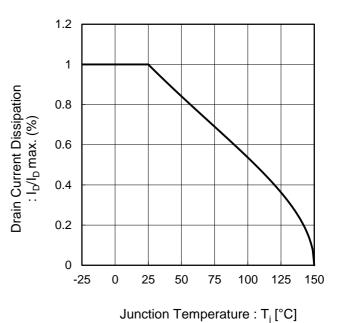



Fig.2 Drain Current Derating Curve

Junction Temperature : T_i [°C]

Fig.3 Typical Output Characteristics(I)

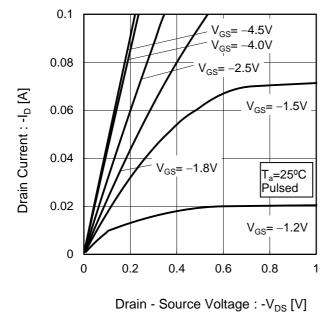
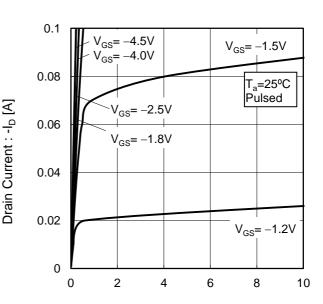



Fig.4 Typical Output Characteristics(II)

Drain - Source Voltage : -V_{DS} [V]

Drain - Source Breakdown Voltage : -V_{(BR)DSS} [V]

Gate Threshold Voltage: -VGS(th) [V]

•Electrical characteristic curves

Fig.5 Breakdown Voltage

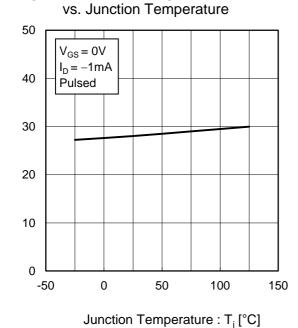
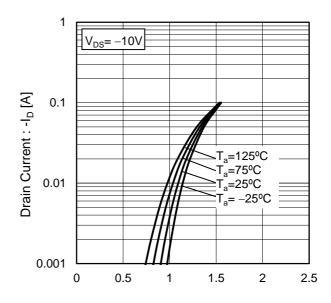



Fig.6 Typical Transfer Characteristics

Gate - Source Voltage : -V_{GS} [V]

Fig.7 Gate Threshold Voltage vs. Junction Temperature

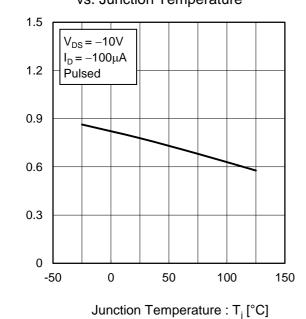
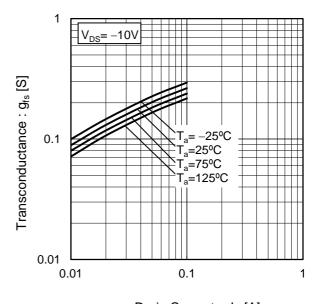
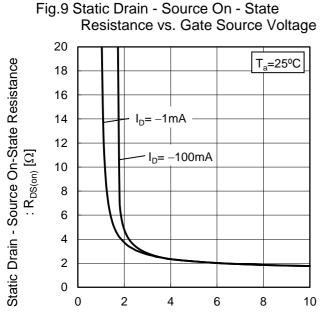
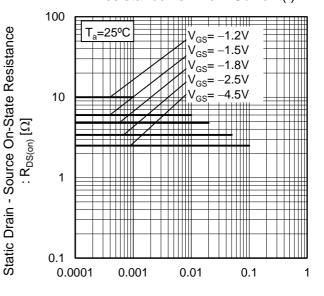
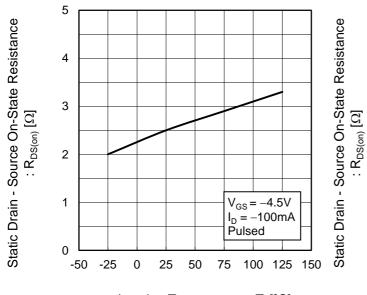



Fig.8 Transconductance vs. Drain Current

Drain Current : -I_D [A]

•Electrical characteristic curves


Fig.10 Static Drain - Source On - State Resistance vs. Drain Current(I)

Gate - Source Voltage : -V_{GS} [V]

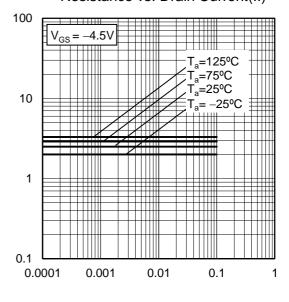

Drain Current : -I_D [A]

Fig.11 Static Drain - Source On - State Resistance vs. Junction Temperature

Junction Temperature : T_i [°C]

Fig.12 Static Drain - Source On - State Resistance vs. Drain Current(II)

Drain Current: -ID [A]

•Electrical characteristic curves

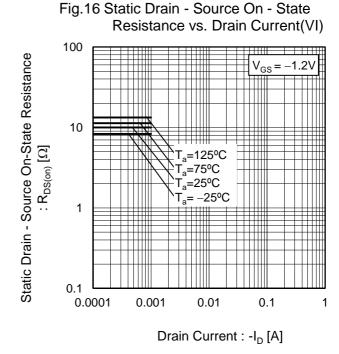
Resistance vs. Drain Current(III)

100 $V_{GS} = -2.5V$ $T_a = 125^{\circ}C$ $T_a = 75^{\circ}C$ $T_a = 25^{\circ}C$ $T_a = -25^{\circ}C$ $T_a = -25^{\circ}C$ 10

0.1

Drain Current : -I_D [A]

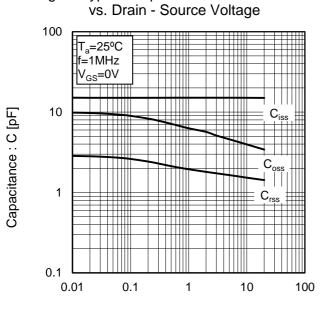
Fig.13 Static Drain-Source On-State


Fig.14 Static Drain - Source On - State Resistance vs. Drain Current(IV)

100 $V_{GS} = -1.8V$ $V_{GS} = -1.8V$ $V_{GS} = -1.8V$ $V_{GS} = -25^{\circ}C$ $V_{A} = -25^{\circ}C$

Drain Current: -ID [A]

Fig.15 Static Drain - Source On - State Resistance vs. Drain Current(V)


100 $V_{GS} = -1.5V$ V_{G

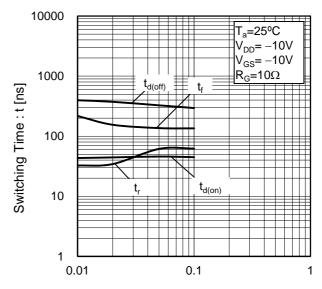

•Electrical characteristic curves

Fig.17 Typical Capacitance

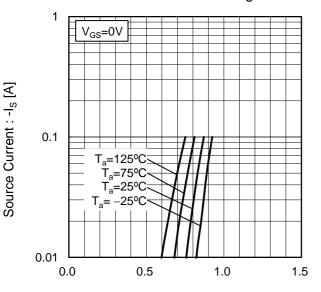

Drain - Source Voltage : -V_{DS} [V]

Fig.18 Switching Characteristics

Drain Current : -I_D [A]

Fig.19 Source Current vs. Source Drain Voltage

Source-Drain Voltage : $-V_{SD}[V]$

●Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

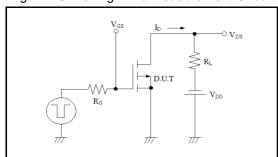
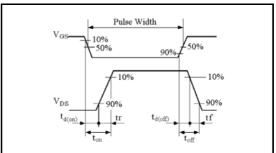
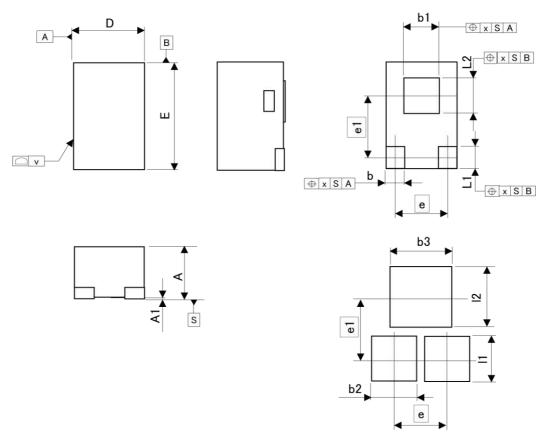



Fig.1-2 Switching Waveforms


●Notice

This product might cause chip aging and breakdown under the large electrified environment.

Please consider to design ESD protection circuit.

●Dimensions (Unit : mm)

VML0604

Pattern of terminal position areas [Not a recommended pattern of soldering pads]

DIM	DIM MILIMETERS		INCI	HES
DIIVI	MIN	MAX	MIN	MAX
Α	0.33	0.39	0.013	0.015
A1	0.00	0.05	0.000	0.002
b	0.05	0.15	0.002	0.006
b1	0.15	0.25	0.006	0.010
D	0.35	0.45	0.014	0.018
E	0.55	0.65	0.022	0.026
е	0.	30	0.0	12
e1	0.	35	0.0	14
L1	0.07	0.17	0.003	0.007
L2	0.15	0.25	0.006	0.010
Х	.=:	0.10		0.004
V	141	0.05	<u>=</u> 0	0.002

DIM MILIME		ETERS	INCHES	
DIIVI	MIN	MAX	MIN	MAX
b2	=	0.25	- -	0.010
b3	.=.	0.35		0.014
11	7 4 6	0.27	= 0	0.011
12	1 0	0.35	= 0	0.014

Dimension in mm/inches

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/